

Disclosures

Employee of Genesis Research Group

Presentation includes work prepared by ERA Economics

Outline

- Background
 - Chemical contaminants in the food supply
 - FDA action levels and guidance
 - Lead guidance example
- Economic framework for chemical contaminants
 - Cost benefit analysis overview
 - Measuring costs and benefits
- Case study: Pesticide policy analysis

Background

Chemical contaminants in the food supply

- Chemical hazards in food are contaminants that can enter food during production and pose a risk to food safety.
- Examples include:
 - Cleaning chemicals and pest control substances
 - Oven and grill cleaners, insecticides, and herbicides
 - **Environmental contaminants**
 - Heavy metals like lead and mercury, arsenic, and cadmium
 - Natural toxins
 - Aflatoxins
 - Processing contaminants/chemical by-products that can form during food processing
 - Acrylamide and ethyl carbamate

FDA action levels

- The US Food and Drug Administration (FDA) uses action levels as a regulatory tool to help reduce chemical contaminants in food products (including animal feed) when a certain level is unavoidable. 1
 - Action levels are limits that indicate when the FDA considers the food adulterated and when they *may* take legal action.
 - Action levels do NOT establish a permissible level of contamination.
- If there is no established action level, FDA may act against a product if it contains the contaminant at a detectible level.

https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-action-levelspoisonous-or-deleterious-substances-human-food-and-animal-feed

Setting action levels

The setting of action levels relies primarily on:

- 1. Exposure assessment attempts to assess how much lower exposure to the substance would be if the action level were in place.
- 2. Achievability assessment attempts to gather a representative sample of food products to assess what percentage of those foods would fall above or below the action level.

Lead in food intended for babies and young children

- Even low levels of lead exposure can be harmful to babies and young children.
- In 2021, FDA initiated the Closer to Zero action plan
 - Identifies actions to minimize exposure to toxic elements, including lead, from foods eaten by babies and young children
- In January 2023, FDA published draft action levels

Product	Draft action level (parts per billion)	Achievability (%)
Fruits, vegetables (excluding single-ingredient root vegetables), mixtures, yogurts, custards/puddings, and single-ingredient meats	10	96
Root vegetables (single ingredient)	20	88
Dry infant cereals	20	90

Economic Analyses

- FDA guidance does not require a formal benefit cost analysis (BCA) of enforcing the action level, as a regulation would.
- Many state, federal, and local agencies use cost benefit or similar analyses to evaluate the pros and cons of proposed programs, policies, or regulations.
- The Environmental Protection Agency regularly conducts BCA and has guidelines for conducting economic analyses²

² https://www.epa.gov/environmental-economics/guidelines-preparing-economic-analyses-2016

Economic framework for assessing regulation of chemical contaminants

BCA: Stylized overview

Farm-Level Costs

How does the policy affect farm-level costs (e.g., pest management, labor, farm management, capital)?

Market Effects

How does the policy affect the market (crop prices and production)?

Supply Chain Effects

How does the policy affect ancillary businesses (e.g., packagers)?

Impacts to business risk?

Regional Impacts

How does the policy affect regional jobs, income, taxes, vulnerable/disadvantaged communities?

Consumer

How does the policy affect exposure level, risk of exposure, and impact of exposure on health?

How does the policy affect consumer demand (food prices) for affected products?

BCA quantifies the aggregate change in individual well being resulting from a policy decision in monetary terms

BCA parameters

Percent of market impacted/market volume

Costs and technical feasibility to reduce/remove contamination from products

Cost and availability of substitutes for contaminated inputs or reformulation

Impact of shut down and product disappearance

Substitution effects (net +/-)

Marginal health benefits/reduction in exposure to contaminants from proposed changes to action levels

Case Study: Pesticide Policy Analysis

Pesticide policy overview

- Pyrethroids and neonicotinoids (neonics) insecticides that are an important part of integrated pest management (IPM) for lettuce growers
- Exposure to high levels of pyrethroids/pyrethrins in air food, or water can cause a variety of neurological effects³
- The few available alternatives are more costly, less effective, and require additional management by growers and PCAs

Proposed policy would ban pyrethroids and neonicotinoid in CA

Representative crop: conventional lettuce produced in California

Farm-Level Costs

Stochastic farm budget Impacts to grower costs, returns, and risk

Supply Chain & Regional Effects

Regional impacts to packing/shipping industries

Input-output economic model

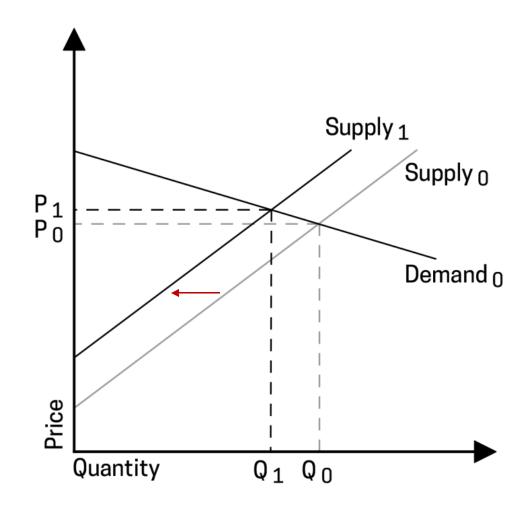
Consumer

Economic model of lettuce market Impacts to food prices

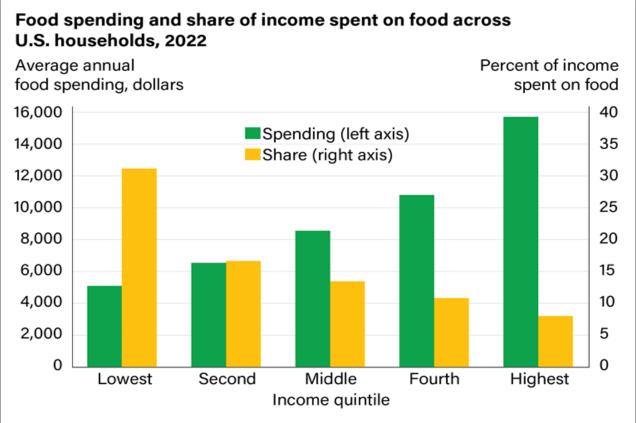

Increased direct production costs

 Additional direct costs per acre range from \$124 to \$288, plus additional yield/quality decrement, and management costs

Region	Incr. cost w/o pyrethroids	Incr. cost w/o neonics	Incr. cost w/o both	Prod. loss w/o pyrethroids	Prod. loss w/o neonics	Prod. loss w/o both
Coast	\$97	\$135	\$232	5%	10%	15%
Desert	\$124	\$163	\$288	9%	29%	38%
San Joaquin Valley	\$124	-	\$124	5%	-	5%


Operating cost effects

- Operating costs for conventional farming increase by approximately 12.3%
 - Includes additional operating costs and yield decrement
 - Does not include additional costs for manager time and crop quality effects


Pesticide policy market implications

- Increasing costs affect growers, buyers, and consumers
 - Some costs are passed on to consumers in the form of higher food prices
 - Short run impacts for growers are greater because crops are grown under contract

Food price impact

- Increases conventional retail prices by 8.2%
- Higher food costs disproportionately impact lower income families

Note: U.S. households are sorted from lowest to highest household income, and then divided into five equal groups, or quintiles.

Source: USDA, Economic Research Service using data from the U.S. Department of Labor, Bureau of Labor Statistics, Consumer Expenditure Survey 2022.

Overview: Measuring benefits

Reduction in exposure to contaminant and affected population

Decrement to health and associated costs to be avoided

Level of exposure and severity health effects **Duration of effect** Impacts on productivity and quality of life Effects on survival/mortality

Costs of treatment avoided

Acute care costs Ongoing costs for long term effects

Benefits = Cost of treatment avoided + value of detrimental health effect avoided

Summary

- Some level of chemical contaminants in food products is unavoidable, but there are policy/regulatory measures that can be used to minimize exposure
- There are a wide variety of potential economic impacts of potential food polices/regulations
- Estimating and comparing costs and benefits is an important step in the policy/regulatory design process

Thank you

Contact:

Joanna.MacEwan@GenesisRG.com

Duncan@ERAeconomics.com