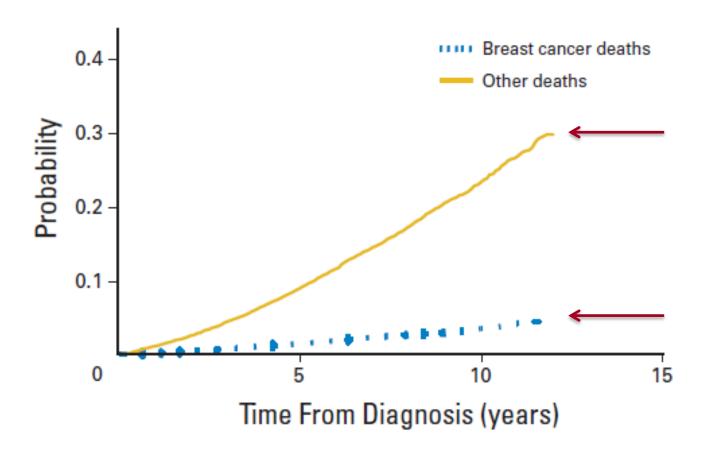

Physical Issues Cancer Survivors Face and Interventions for Improved Physical Well-Being

Kevin C. Oeffinger, MD
Director, Duke Center for Onco-Primary Care
Director, Duke Cancer Supportive Care and Survivorship Center


National Cancer Policy Forum Long-Term Survivorship Care July 25, 2017

Late Mortality Among 5+ Year HL Survivors MSKCC Adult Hodgkin Lymphoma Study (1975-2000; N=747)


Cumulative Incidence by Causes of Death for Patients With Stage I Testicular Seminoma

SEER Registry: N=9193 men; Diagnosed 1973-2001

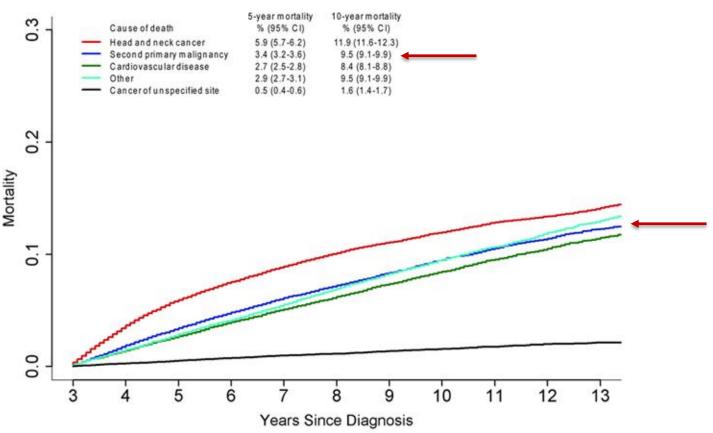
Probability of death from breast cancer or other causes among women age 50 and older with ER+ early stage breast cancer

SEER: 1988-2001

Outline

- Selected 'physical' issues
 - Second (and subsequent) primary cancers
 - Cardiovascular disease
 - Accelerated aging
- Interventions
 - Risk-stratified screening and surveillance
 - Management of comorbidities
 - Interception?
 - Healthy lifestyles [Wendy Demark-Wahnefried, PhD]
- Focus survivors of adult cancers

Second Primary Cancer (SPC)


- 20% of incident cancers are a second (or subsequent) primary cancer
- Causal pathways:
 - Lifestyle habits
 - Aging
 - Genetic factors
 - Treatment exposures for the first cancer
 - All of the above (interactions)

SPC after Head / Neck Cancer

SEER - 1992 - 2005

Cause-specific mortality among
3-year survivors of head and neck cancer

SPC after Head / Neck Cancer

Risk prediction model – 10-year cumulative risk of SPC

Cohort of 293,435 from 12 French registries

Age at H/N cancer	Calendar period	10-yr cumulative risk of SPC	Difference with general population
55 - 64 years	2001 - 2003	41.0%	+25.9%
	2004 - 2006	40.6%	+25.7%
	2007 - 2010	41.1%	+26.9%

SPC after Head / Neck Cancer

SEER - 1975 - 2006

Treatment	SIR	95% CI	AER*
Any solid tumor	2.2	2.1-2.2	167.7
Lung	3.7	3.7-3.8	75.2
Head / neck	12.4	12.0-12.7	59.8
Esophagus	8.3	7.8-8.9	14.2

^{*}per 10,000 person-years

Aging and SPC

SEER – 1992 – 2008 Risk of SPC based upon age at first cancer

Age at first cancer	Females HR (95% CI)	Males HR (95% CI)
51 – 65 years	4.7 (4.3-5.0)	8.8 (7.8-9.9)
66 - 80	7.1 (6.6-7.6)	15.1 (13.4-17.0)
> 80	6.2 (5.7-6.7)	15.2 (13.5-17.2)

SPC after Breast or Colorectal Cancer

Risk prediction model – 10-year cumulative risk of SPC

Cohort of 293,435 from 12 French registries FEMALES

Calendar period for first cancer – 2007-2010

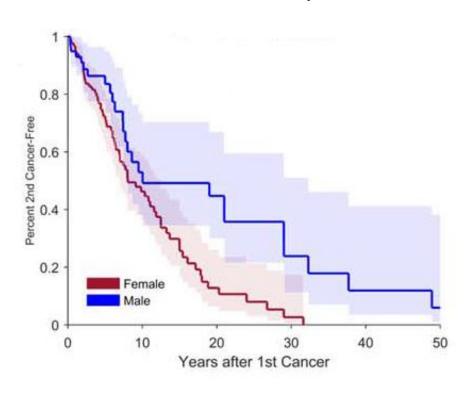
	First Bre	ast Cancer	First Color	ectal Cancer
Age at first cancer	10-yr cumulative risk	Difference with general population	10-yr cumulative risk	Difference with general population
55 - 64 yrs	6.8%	+1.5%	10.0%	+3.0%
65 - 74	9.3%	+1.9%	10.7%	+2.2%
≥ 75	10.5%	+2.0%	10.6%	+1.6%

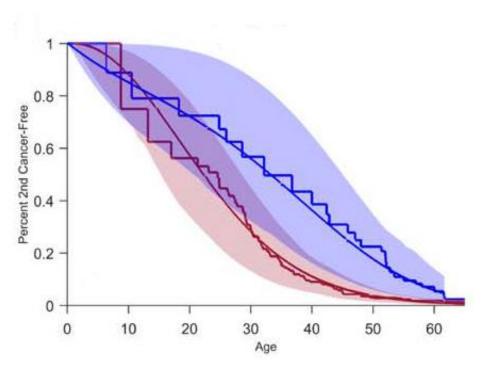
SPC after Prostate or Colorectal Cancer

Risk prediction model – 10-year cumulative risk of SPC

Cohort of 293,435 from 12 French registries MALES

Calendar period for first cancer – 2007-2010


	First Pros	tate Cancer	First Color	ectal Cancer
Age at first cancer	10-yr cumulative risk	Difference with general population	10-yr cumulative risk	Difference with general population
55 - 64 yrs	13.1%	+5.5%	19.4%	+6.3%
65 - 74	16.0%	+5.0%	21.7%	+3.1%
≥ 75	16.4%	+2.5%	22.1%	+4.4%


SPC in TP53 carriers

NCI Li-Fraumeni Syndrome Cohort (N=286)

Risk of SPC by time since first cancer and by age

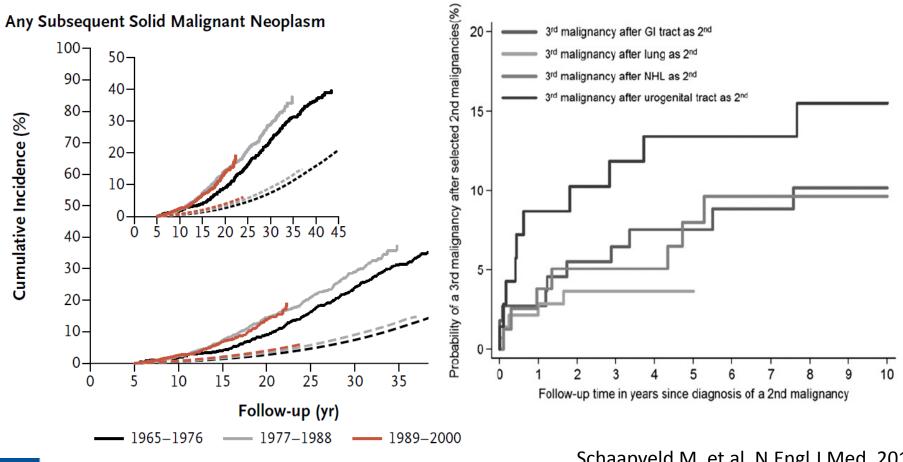
SPC in Mismatch Repair (MMR) genes

Colon Cancer Family Registry (N=764) Cumulative risk of extracolonic cancer following CRC

	1	l0 years	20 years			
Cancer site	Risk, %	(95% CI)	Risk,%	(95% CI)		
Both sexes						
Kidney etc.*	1.90	(0.87 to 3.17)	5.15	(2.86 to 7.68)		
Urinary bladder	1.61	(0.65 to 2.75)	3.15	(1.37 to 5.20)		
Small intestine	0.92	(0.28 to 1.73)	4.00	(1.92 to 6.41)		
Stomach	0.66	(0.13 to 1.40)	1.15	(0.19 to 2.48)		
Hepatobiliary tract†	0.83	(0.16 to 1.69)	1.42	(0.42 to 2.73)		
Men						
Prostate	2.74	(0.86 to 4.77)	5.90	(2.69 to 9.76)		
Women						
Endometrium	12.12	(7.66 to 17.11)	23.99	(16.79 to 32.84)		
Breast	1.94	(0.58 to 3.83)	11.38	(0.63 to 16.69		
Ovary	0.94	(0.00 to 2.11)	2.08	(0.50 to 4.14)		

^{*} Kidney etc. included kidney, renal pelvis, ureter and other and unspecified urinary organs.

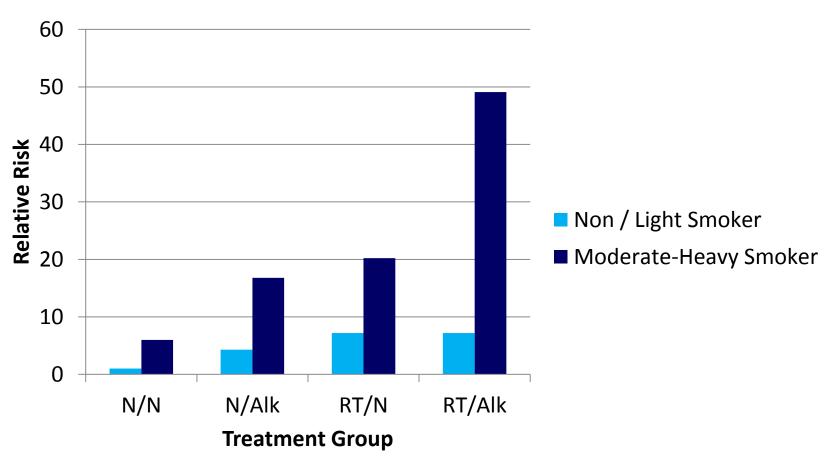
[†] Hepatobiliary tract included liver and intrahepatic bile duct, gall bladder, and other and unspecified parts of biliary tract.

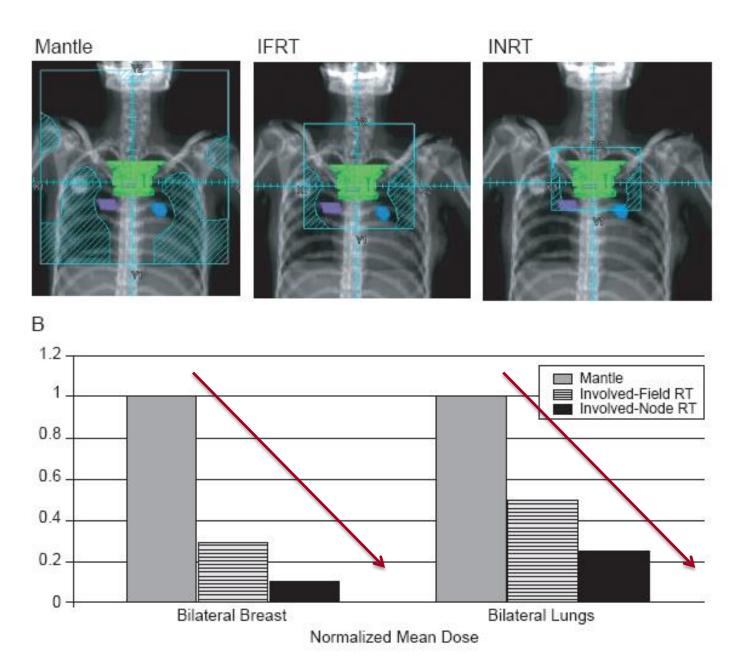


SPC following Hodgkin Lymphoma

Dutch HL Cohort (N=3905)

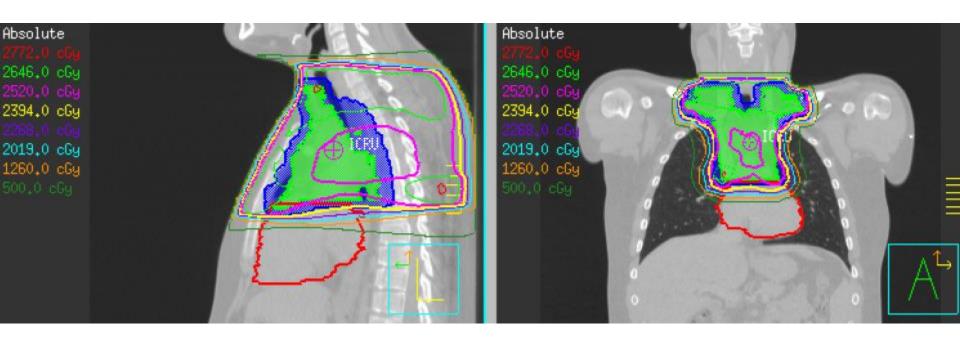
Age 15-50 at HL diagnosis, 1965-2000


Schaapveld M, et al. N Engl J Med, 2015 Van Eggermond AM, et al. Blood, 2014


Lung cancer after Hodgkin lymphoma

Case-Control study from population-based registry

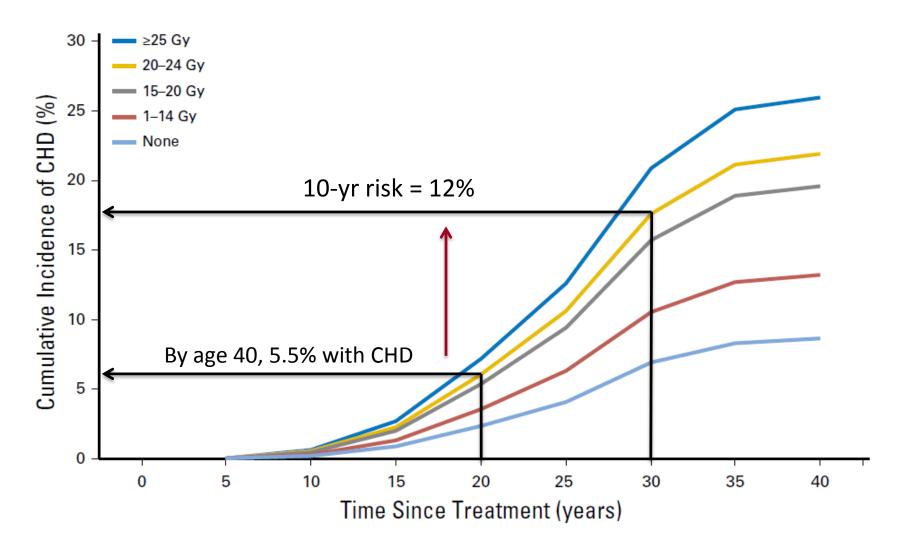

Age at Hodgkin lymphoma – median 50 years


Hodgson DC, et al. Semin Radiat Oncol 2007

30 Gy Irradiation to 20 year-old with Hodgkin lymphoma

Courtesy of Constine LS.

Involved Nodal Radiation


Mantle / Mediastinal Radiotherapy

Men <u>and</u> women treated with mediastinal radiotherapy have a substantially elevated risk of coronary artery disease.

- 20 yrs post moderate-dose RT (37.2 Gy), actuarial risk of symptomatic CAD = 21.2%
 Reinders JG, et al. Radiother Oncol, 1999
- By 30 yrs, incidence of MI = 12.9%
 Aleman BM, et al. Blood, 2007
- Standardized Mortality Ratio with MI = 3.2 Swerdlow AJ, et al. JNCI, 2007

Cumulative incidence of coronary heart disease in HL survivors diagnosed prior to age 51 (1965-1995)

van Nimwegen FA, et al. J Clin Oncol, 2016

2013 Prevention Guidelines Tools

CV RISK CALCULATOR

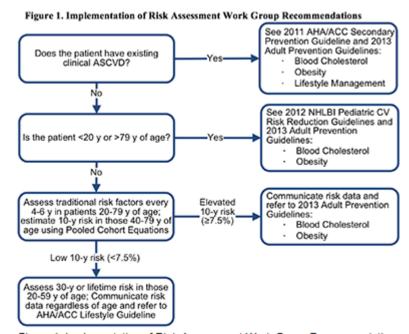


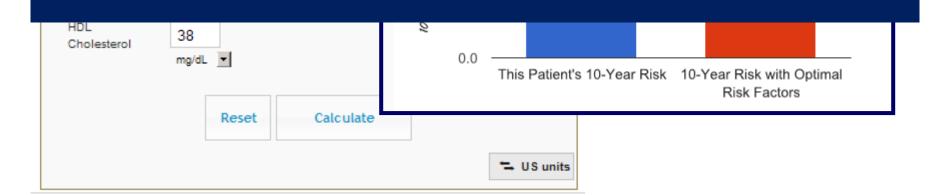
Figure 1. Implementation of Risk Assessment Work Group Recommendations

Pooled Cohort Risk Assessment Equations

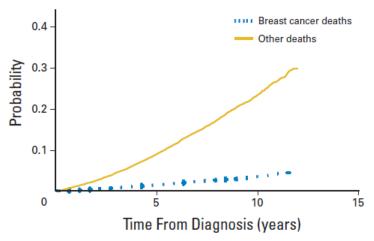
Predicts 10-year risk for a first atherosclerotic cardiovascular disease (ASCVD) event

Gender	Male	Systolic BP	105	mmHg
	Female	Receiving treatment for high	No	Yes
Age	40 years	blood pressure (if SBP > 120 mmHg)		
Race	White or othe	Diabetes	No	Yes
Total Cholesterol	232 mg/dL 💌	Smoker	No	Yes
HDL Cholesterol	38 mg/dL ▼			
	Reset	Calculate		

Pooled Cohort Risk Assessment Equations

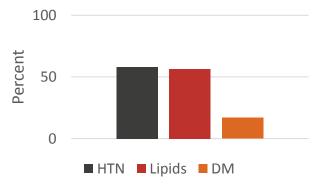


Pooled Cohort Risk



Salz T, et al

MSK and Danish Cancer Institute



Probability of death from breast cancer or other causes among women age 50 and older with ER+ early stage breast cancer SEER: 1988-2001

Percent of women with a early stage breast cancer and a cardiovascular risk factor SEER-Medicare: 2000-2007

Hanrahan EO, et al. J Clin Oncol, 2007

Chen J, et al. J Am Coll Cardiol, 2012

Caveats:

- Most women with breast cancer will not die of breast cancer
- Continued monitoring and management of common comorbidities may be as important for longevity / QoL as treatment of the breast cancer
- Lack of standardized approaches to manage HTN, DM, and lipid disorders

Jawa Z, et al. Medicine, 2016 Chen J, et al. J Am Coll Cardiol, 2012

JOURNAL OF CLINICAL ONCOLOGY

ASCO SPECIAL ARTICLE

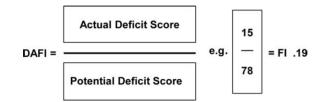
Prevention and Monitoring of Cardiac Dysfunction in Survivors of Adult Cancers: American Society of Clinical Oncology Clinical Practice Guideline

Saro H. Armenian, Christina Lacchetti, Ana Barac, Joseph Carver, Louis S. Constine, Neelima Denduluri, Susan Dent, Pamela S. Douglas, Jean-Bernard Durand, Michael Ewer, Carol Fabian, Melissa Hudson, Mariell Jessup, Lee W. Jones, Bonnie Ky, Erica L. Mayer, Javid Moslehi, Kevin Oeffinger, Katharine Ray, Kathryn Ruddy, and Daniel Lenihan

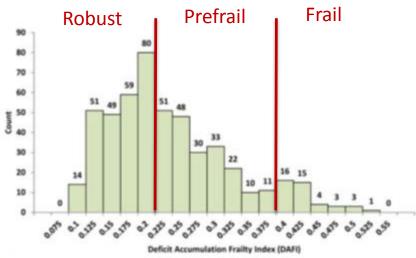
Clinical Question 3: Which preventive strategies are effective in minimizing risk during the administration of potentially cardiotoxic cancer therapy?

Recommendation 3.1. Clinicians should screen for and actively manage modifiable cardiovascular risk factors (eg, smoking, hypertension, diabetes, dyslipidemia, obesity) in all patients receiving potentially cardiotoxic treatments.

Table 4. Multivariable Cox Regression Analyses of Cardiovascular Disease Deaths in Men Diagnosed With <u>Testicular Nonseminoma</u> According to Baseline Characteristics

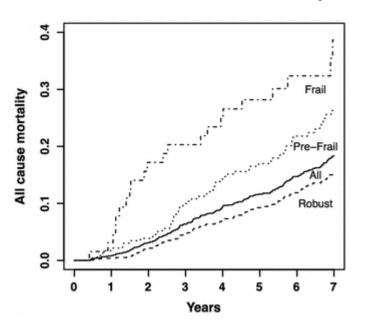

	All C	ardiovascular De (n = 104)	aths
Variable	HR	95% CI	P
Initial treatment by time since TC diagnosis			
< 1 year			
Surgery (no RT)	_	_	Ref
Chemotherapy (no RT)	4.86*	1.25 to 32.08	.04
1-4 years			
Surgery (no RT)	_	_	Ref
Chemotherapy (no RT)	1.35	0.54 to 3.45	.53
≥ 5 years			
Surgery (no RT)	_	_	Ref
Chemotherapy (no RT)	0.90	0.51 to 1.58	.72
Age at diagnosis, years			
< 30	_	_	Ref
30-39	3.47*	1.99 to 6.13	< .01
40-49	8.97*	4.73 to 17.02	< .01
≥ 50	34.26*	17.81 to 66.17	< .01

'Accelerated Aging' and Frailty



Deficit-Accumulation Index (DAFI):

- 51-items
- Demographics
- ADLs
- Patient-rated KPS
- Falls
- Polypharmacy
- Comorbidities
- Nutritional status
- Psychosocial status
- Social support
- Health care professional questionnaire
- Basic lab values


Robust	0.0 - < 0.2
Prefrail	0.2 - < 0.35
Frail	<u>></u> 0.35

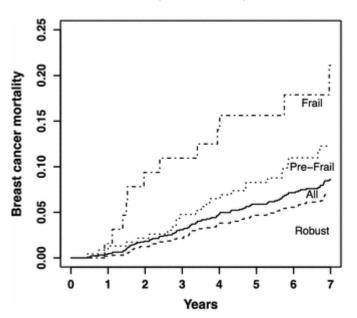


Figure 2. The distribution of frailty scores in the Cancer and Aging Research Group cohort is illustrated according to the frailty index (FI). DAFI indicates deficit-accumulation frailty index.

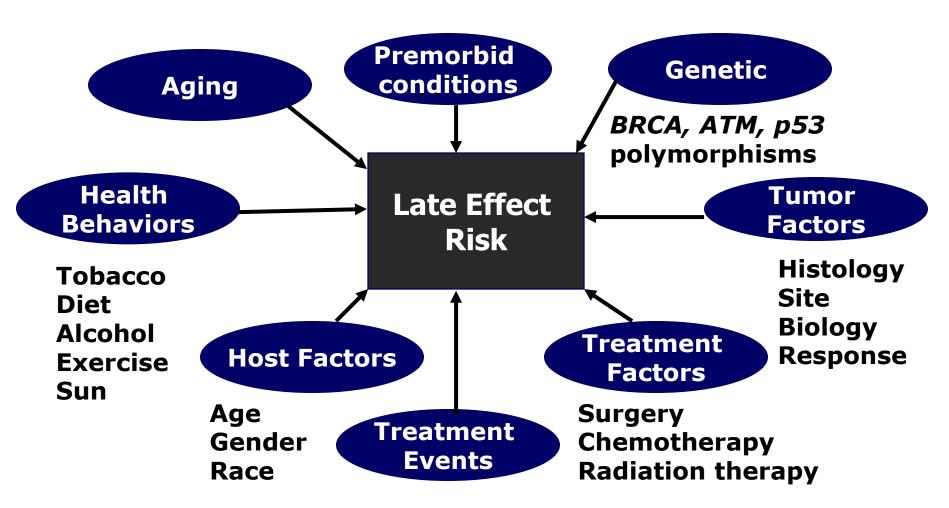
Frailty and Mortality

Older breast cancer patients: CALGB 369901 (Alliance)

St. Jude Lifetime Cohort Study

Table 4. Risk for Death by Frailty Status												
		Total				Womer	n			Me	n	
Phenotype*	No. of Patients	Deaths (%)	HR†	95% CI	No. of Patients	Deaths (%)	HR	95% CI	No. of Patients	Deaths (%)	HR†	95% CI
Frail	151	4.6	2.6	1.2 to 6.2	125	3.2	1.9	0.6 to 3.0	26	11.5	6.0	4.6 to 7.3
Not frail	1,771	1.4			831	1.3			940	1.4		

Abbreviation: HR, hazard ratio.


*Frail is defined as at least three from among low lean muscle mass, exhaustion, low energy expenditure, slowness, weakness. Not frail is defined as two or fewer from among low lean muscle mass, exhaustion, low energy expenditure, slowness, or weakness.

†HR from Cox proportional hazards model.

System	Exposures	Potential Late Effects
Cardiac	Radiation therapy Anthracyclines AntiHER2 therapy	Myocardial infarction Congestive heart failure Valvular disease Arrhythmias
Pulmonary	Radiation therapy BCNU/CCNU Bleomycin	Restrictive lung disease Exercise intolerance
Renal/Urological	Radiation therapy Platinums Ifosfamide/Cyclophos	Atrophy or hypertrophy Renal insufficiency or failure
Endocrine	Radiation therapy Alkylating agents	Pituitary, thyroid, adrenal disease Ovarian or testicular failure Infertility
CNS	Radiation therapy Intrathecal chemotherapy ? other systemic chemotherapy	Cognitive dysfunction
Psychological	Cancer	Post-traumatic stress Employment & educational problems Insurance discrimination Adaptation/problem solving
Second malignancies	Radiation therapy Alkylating agents Epipodophyllotoxins	Solid tumors Leukemia Lymphoma

Factors contributing to late effects

Interventions for Improved Physical Well-Being

Risk-stratified screening for SPC

- Average-risk individuals according to existing guidelines
 - Considerations for screening interval?
- High-risk groups
 - Genetic risk (Li-Fraumeni, BRCA2)
 - Cancer therapy risk (Hodgkin lymphoma)
 - Lifestyle risk (Lung cancer)
- Interventions to increase screening rates

Risk-stratified screening for late effects

1. Which patients with cancer are at increased risk for developing cardiac dysfunction?

Recommendation 1.1. It is recommended that patients with cancer who meet any of the following criteria should be considered at increased risk for developing cardiac dysfunction.

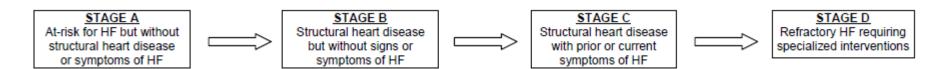
- Treatment that includes any of the following:
 - High-dose anthracycline (eg, doxorubicin $\geq 250 \text{ mg/m}^2$, epirubicin $\geq 600 \text{ mg/m}^2$)
 - High-dose radiotherapy (RT; ≥ 30 Gy) where the heart is in the treatment field
 - Lower-dose anthracycline (eg, doxorubicin $< 250 \text{ mg/m}^2$, epirubicin $< 600 \text{ mg/m}^2$) in combination with lower-dose RT (< 30 Gy) where the heart is in the treatment field
- Treatment with lower-dose anthracycline (eg, doxorubicin < 250 mg/m², epirubicin < 600 mg/m²) or trastuzumab alone, and presence of any of the following risk factors:
 - Multiple cardiovascular risk factors (≥ two risk factors), including smoking, hypertension, diabetes, dyslipidemia, and obesity, during or after completion of therapy
 - Older age (≥ 60 years) at cancer treatment
 - Compromised cardiac function (eg, borderline low left ventricular ejection fraction [50% to 55%], history of myocardial infarction, ≥ moderate valvular heart disease) at any time before or during treatment
- Treatment with lower-dose anthracycline (eg, doxorubicin < 250 mg/m², epirubicin < 600 mg/m²) followed by trastuzumab (sequential therapy)

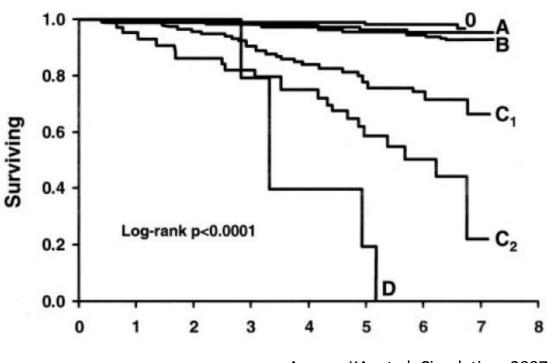
(Evidence based; benefits outweigh harms; Evidence quality: intermediate; Strength of recommendation: moderate)

Risk-stratified screening for late effects

5. What are the preferred surveillance and monitoring approaches after treatment in patients at risk for cardiac dysfunction?

- Recommendation 5.2. An echocardiogram may be performed between 6 and 12 months after completion of cancer-directed therapy in asymptomatic patients considered to be at increased risk (Recommendation 1.1) of cardiac dysfunction. (Evidence based; benefits outweigh harms; Evidence quality: intermediate; Strength of recommendation: moderate)
- Recommendation 5.4. No recommendations can be made regarding the frequency and duration of surveillance in patients at increased risk (Recommendation 1.1) who are asymptomatic and have no evidence of cardiac dysfunction on their 6- to 12-month post-treatment echocardiogram.
- Recommendation 5.5. Clinicians should regularly evaluate and manage cardiovascular risk factors such as smoking, hypertension, diabetes, dyslipidemia, and obesity in patients previously treated with cardiotoxic cancer therapies. A heart-healthy lifestyle, including the role of diet and exercise, should be discussed as part of long-term follow-up care. (Evidence based and consensus; benefits outweigh harms; Evidence quality: intermediate; Strength of recommendation: moderate)


Risk-stratified screening for SPC


- Barriers to generating evidence:
 - NIH funding favors intervention > observation
 - Will early intervention improve outcomes?
 - Heart failure as an example

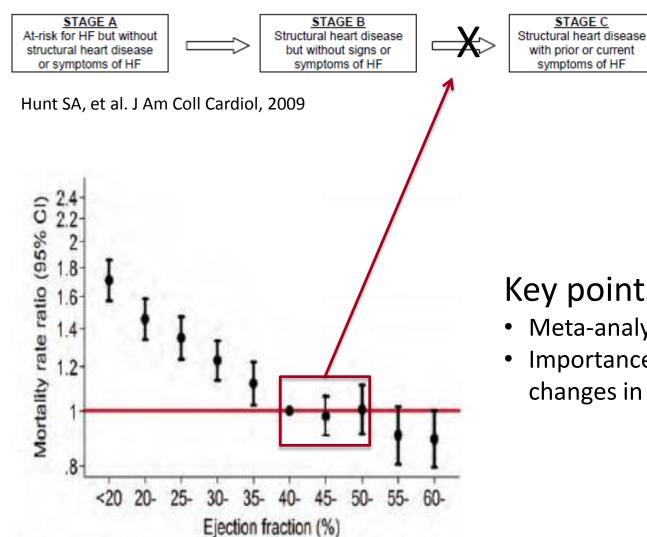
Heart Failure

Hunt SA, et al. J Am Coll Cardiol, 2009

Ammar KA, et al. Circulation, 2007

Key points

- 5-yr survival for stage C: 75%
- Transitioning from stage B to stage C was associated with a 5-fold increased mortality risk


Heart Failure

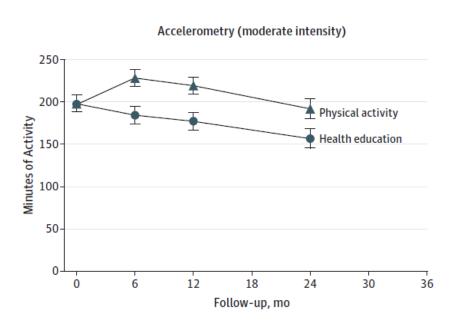
STAGE D

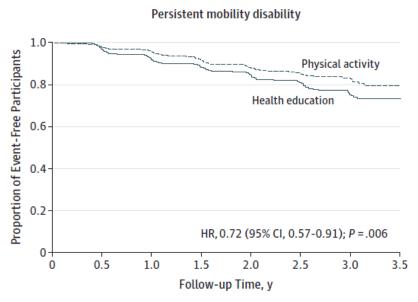
Refractory HF requiring

specialized interventions

Key points

STAGE C


- Meta-analysis of 39,372 patients
- Importance of 5 unit incremental changes in LVEF on survival


Can we prevent frailty?

LIFE Study

818 sedentary individuals age 70 – 89 years Structured, moderate-intensity physical activity program vs health education program

Precision Screening and Chemoprevention

- 'Liquid biopsy'
 - circulating cell-free DNA (cfDNA)
 - circulating tumor cells (CTC)

Vockley JG and Niederhuber JE. BMJ, 2015 Meyskens FL, et al. J Natl Cancer Inst, 2016 Albini A, et al. Clin Cancer Res, 2016

 Epigenetic-marker based system with detection rate of breast cancer similar to mammography

Uehiro N, et al. Breast Ca Res, 2016

- Cancer interception
 - Example: ErbB2 and lapatinib

Li D, et al. Oncotarget, 2017

Summary

- Survival rates continue to improve
- Incidence and magnitude of risk of <u>selected</u> long-term and late effects is robust
- Evidence supporting risk-stratified surveillance and early intervention is needed
- Lifestyle modifications are <u>evidence-based</u>
 (Dr. Demark-Wahnefried's talk)

Thank You!

kevin.oeffinger@duke.edu