Building Data and Knowledge Management Systems Across the Cancer Control System

Alliance for Clinical Trials in Oncology

Disclosures: none relevant to today's discussion

- Research funding to the Alliance for Clinical Trials in Oncology Foundation
 - AbbVie
 - Agenus
 - Astellas
 - AstraZeneca
 - Baxalta
 - Bayer HealthCare
 - Breast Cancer Research Foundation
 - Bristol-Myers Squib
 - Celgene
 - Complion
 - Czarnowski
 - Derse, Inc.
 - Eisai
 - Exelixis
 - Genentech
 - GHI
 - Gilead Sciences
 - GSK Total

- Incyte Corporation
- Janssen
- Jazz Pharma
- Leap Therapeutics
- Leidos
- Lexicon Pharma
- Lilly
- Maltrex
- Merck
- Millennium
- Novartis
- Pfizer
- Pharmacyclics
- Robert Wood Johnson Foundation
- Roche/Genentech
- Sagerock Advisors
- Sanofi
- STO
- Syntalogic
- Taiho Oncology
- Takeda
- Tesaro
- Teva

Data-Driven Improvements in Clinical Care

Clinical Research:

- Randomized Clinical Trials
- Pragmatic Trials
- Comparative Effectiveness Research
- Observational Research: Longitudinal Cohorts, Registries

Quality Improvement:

- Quality Metrics
- Clinical Pathways/Decision Support

EPORT CARD

Economic Factors:

Health Care Resource Utilization

Current state of data accumulation: Fragmented, Siloed, Expensive, Inefficient


Mrs. Smith, a 75 year old generally healthy but obese woman, presented to an emergency room with gastrointestinal bleeding

Upper endoscopy:

tumor at the junction of the esophagus and the stomach

Biopsy: gastrointestinal stromal tumor

Surgical Pathology Report

Patient: Last Name, First Name MRN: Medical Record Number DOB: Date of Birth (Age: #)

Procedure: Date Attending: Doctor's Name

Clinical History: Large Gastric Mass

Specimen: Gastric Mucosa

Stomach, Partial Gastrectomy:

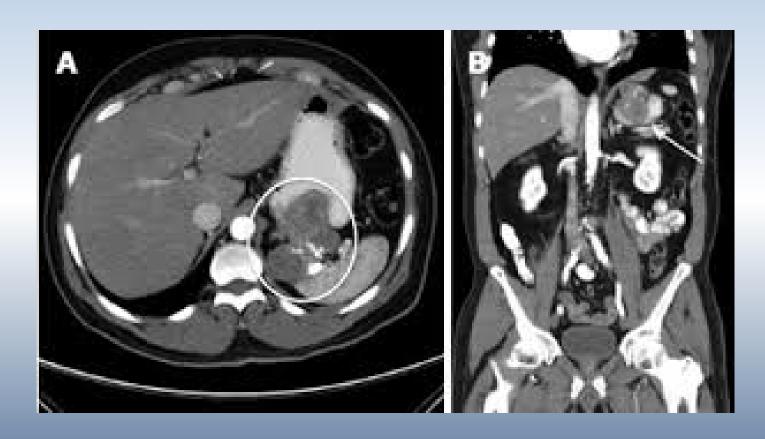
- Malignant Epithelioid Gastroir Tumor Size 10 x 9 x 8 cm
- Cell Type: Epithelioid and Spindled
- High cellularity; present Mucosal Invasion: Focally present adjacent to ulceration
- Mitotic Count: 10/50 HPF
- Myxoid background: Focally present
- CD117, vimentin, and CD34; uniformly positive

The specimen consists of an approximately 5 x 7 cm portion of gastric mucosa that is surrounded and underlying by a lobulated mass which is 10 x 9 x 8 cm. The central portion of the mass appears to have an approximately 1.5-cm ulcer. The mucosa away from the area of ulceration is partially removed from the underlying tumor. The underlying mass appears encapsulated and lobular. Gross sections show the lesion to consist of several different patterns. A single area has a gray to gray-tan pattern with an area of central necrosis showing a fairly uniform appearance whereas; other regions of the tumor are gray white- and somewhat lobular in appearance. Areas of yellow necrosis are scattered through the tumor. Representative portions submitted.

Sections through the neoplasm show it to be primarily a high cellular neoplasm. The cells are in part arranged in fascicles and clusters with enlarged elongate nuclei having relatively find nucleoli. In some areas, the fascicles have an interwover appearance. Mitotic figure up to 10:50 HPF. A few areas show foci of necrosis with the cells appearing to be surrounded by somewhat myxoid stroma. Foci of displayed necrosis are present. The lesions appear circumscribed, although not specifically encapsulated. It focally involved the mucosa and shows full thickness ulceration. The tumor immediately beneath the mucosal area of ulceration has a nearly lobular somewhat spindled growth pattern. Some areas of the tumor have a slightly more rounded nuclei and somewhat epithelioid appearance. The cells appear to be arranged in groups and clusters. Some of the cells have cyptoplasmic vacuoles. These areas also show a prominent mitotic activity. Some mitotic figured are abnormal and atypical. The tumor contains numerous relatively open vascular channels which appear to be part of the neoplasm. The tumor has a pseudo capsule and in some areas appear to be nearly covered.

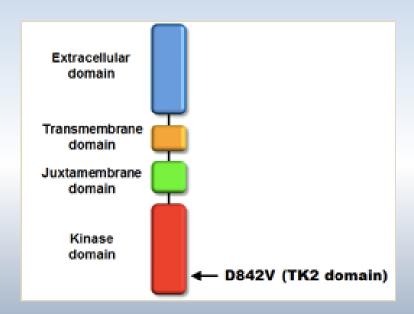
Immunostains are strongly positive for CD117 (C-kit), CD34, and Vimentin, Smooth muscle actin, Desmin, Synaptophysin, S-100, and Ck8/18 are negative.

Immunostains were performed on the core biopsy and demonstrate that the tumor cells are positive for CD117. The


data entry required: demographics/insurance/contacts complete medical history

*CT Images not available

- Sent home, but worried because of no definite treatment plan
 - Next day: Emergency Room visit
 - She lives alone, her daughter misses several days of work to coordinate her care
 - Non-reimbursed medical expenses are increasing

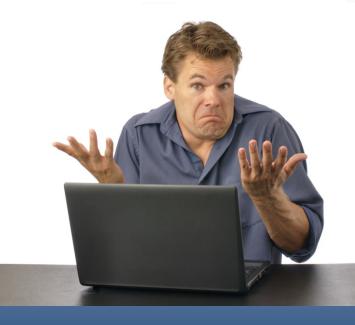

• 2 days later, her CT scan arrives

Imatinib recommended; genotyping ordered

Result:

Conclusion: Imatinib is not effective

- Declines clinical trial participation
 - Subtotal gastrectomy performed
 - Lengthy post operative recovery
 - No adjuvant therapy, higher risk for disease recurrence



Outcome of 1000 Patients With Gastrointestinal Stromal Tumor (GIST) Treated by Surgery in the Pre and Post-imatinib Eras

Michael J. Cavnar, MD,* Kenneth Seier, MsC,† Christina Curtin, BS,* Vinod P. Balachandran, MD,* Daniel G. Coit, MD,* Sam S. Yoon, MD,* Aimee M. Crago, MD, PhD,* Vivian E. Strong, MD,* William D. Tap, MD,‡¶ Mithat Gönen, PhD,† Cristina R. Antonescu, MD,§ Murray F. Brennan, MD,* Sam Singer, MD,* and Ronald P. DeMatteo, MD*

Annals of Surgery • Volume XX, Number XX, Month 2019

KIT exon 9	44 (7.6)
KIT exon 11 deletion	216 (37.1)
KIT exon 11 other	117 (20.1)
KIT exon 13	9 (1.5)
KIT exon 17	4 (0.7)
KIT multiple exons	48 (8.2)
PDGFRA D842V/I	23 (4)
PDGFRA other	27 (4.6)
NF1	5 (0.9)
SDH	3 (0.5)
Wild-type	86 (14.8)
Unknown	418 (N/A)

- Mrs. Smith presents with a high risk gastrointestinal stromal tumor, complicated by gastrointestinal bleeding
- Well before her visit, her full EHR, including all images, is available to you formatted in a manner identical with the one that your team uses

Mary Smith

Date of birth 5 Apr 1967 (51) Admin. sex Female Location Boston, MA ROID 12345432312

Language English

Treatment Options Nonmetastatic gastrointestinal stromal tumor, high risk

Outcomes for 12,345 patients with GIST were captured by CancerLinQ.

more

> **Similar patients** 914 patients, age-matched > 70*ref

Outcomes overall survival rate and common s

*tumor mutational testing may change recommendations, likelihood of this is 15% with gastric location of primary tumor; CLINICAL TRIALS MAY BE AVAILABLE

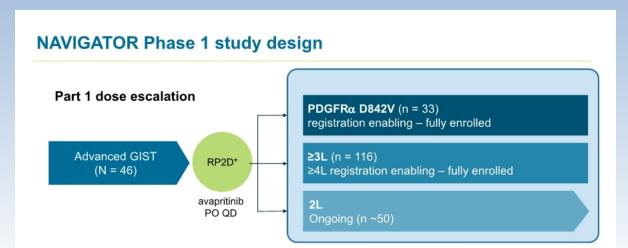
*recommend pre-operative functional assessment due to age, BMI

• PLAN:

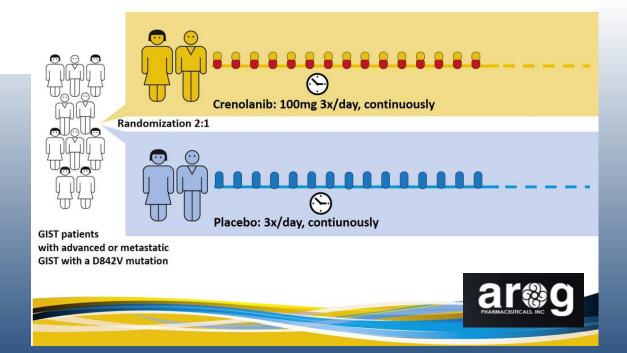
- Genotyping, initiate pre-operative imatinib
- Home-based fitness program in preparation for surgery in ~6 months

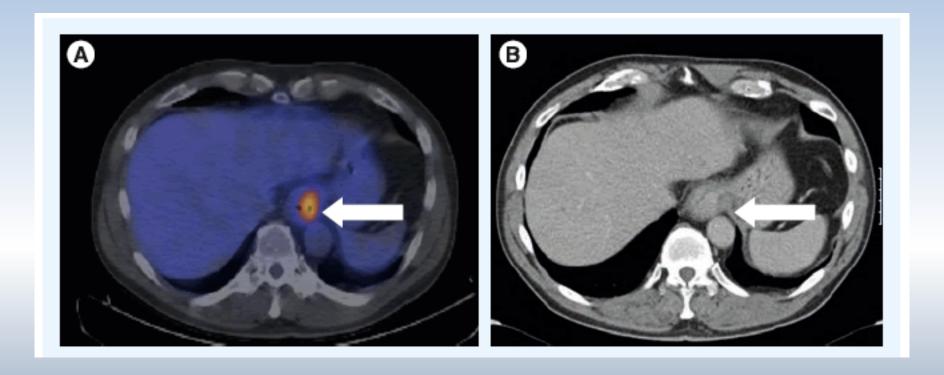
Back home, Mrs. Smith is concerned that her bowel movements are a bit dark, and calls her granddaughter, who reports this to the web-based patient support site coordinated by your clinic

 Tumor genomic characterization results show you that she is unlikely to respond to imatinib


> 10.1200/JCO.2018.36.15_suppl.11533 *Journal of Clinical Oncology* 36, no. 15_suppl (May 20, 2018) 11533-

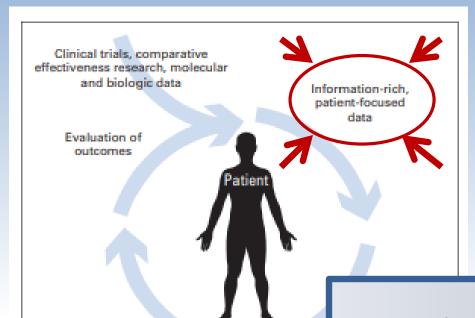
11533.


A retrospective natural history study of patients (pts) with PDGFRa D842V mutant advanced gastrointestinal stromal tumor (GIST) previously treated with a tyrosine kinase inhibitor (TKI).


<u>Margaret von Mehren</u>, <u>Michael C. Heinrich</u>, <u>Hongliang Shi</u>, <u>Patrick McNamara</u>, <u>Khalid Kevin Mamlouk</u>, <u>Anthony Boral</u>, ...

Treatment change: surgery or treatment on a clinical trial

- Successful surgery, minimally invasive gastric resection
- Smooth post-operative recovery



Five years later:

- International cohort: 90% of GIST patients,
 - 390 cases with a pD842V mutation
- Prospectively collected <u>overall survival</u> data from clinical trials and EHR-based <u>longitudinal data</u>

- Clinical care is <u>efficient</u>
- Unnecessary <u>costs are reduced</u>
- <u>Home-based</u> evaluations and interventions are facilitated
- Patients and families are <u>engaged and informed</u>
- <u>Errors</u> caused by poor communication <u>are reduced</u>
- Research is <u>facilitated</u>
- Learning is integrated into every-day practice

WHY IS THIS SO DIFFICULT TODAY?

Transformation of subsequent care delivery

Definition: Learning Health System

"An integrated health system which harnesses the power of data and analytics to learn from every patient and feed the knowledge of what works best back to clinicians, health professionals, patients and other stakeholders to create cycles of continuous improvement."


Friedman CP et al, 2010; Sci Trans Med 2:57

- RECOMMENDATION A: A U.S. National Cancer Control Plan should principally ensure resource integration and operational coordination across the various components of the cancer control system and should actively do the following:
- Improve, where feasible, effective, and affordable, the availability of preventive, screening, diagnostic, and therapeutic interventions. Encourage timely palliative care, hospice care, survivorship services, and related social services according to the preferences and values of patients and their families.
- Integrate the use of social, behavioral, and other information made possible by the convergence of communication, social media, cognitive, financial, and sensor technologies as well as electronic health records, cancer registries, and insurance claims to establish large-scale interoperable data sources.
- Apply the tools of complex systems analyses for assessing the "value" of cancer control interventions, establishing robust policy and incentive
 assessments to guide the development and commercialization of products and services, developing new financing and payment mechanisms that
 alleviate overall cost burden, and aiding individual patients and their families in making informed decisions about cancer care.
- Minimize the waste and harm stemming from disparate clinical practices, interventions lacking evidence of effectiveness, and conflicting clinical practice guidelines.
- Track and monitor financial links, incentives, and disincentives throughout the processes and systems of cancer control and rigorously require conflict-of-interest disclosures across cancer care, research, and patient advocacy activities.
- Expand and support reproducibility strategies for developing reliable evidence in cancer control from biomedical, clinical, public health, and social science research.
- Discourage direct-to-consumer marketing and advertising of clinical products and services from companies, medical centers, intermediary firms, and other organizations by terminating the tax deductibility of these business expenses. Furthermore, tighten and enforce rules to particularly curb promotional tactics and strategies that are likely to mislead patients about the benefits of products and care services not based on strong evidence.
- Launch and expand public engagement, literacy, and outreach activities, starting with K–12 curriculums and through technology platforms, to broaden the understanding of cancer prevention as an integral component of a healthy life course.

STRUCTURED DATA ELEMENTS FROM CURRENT EHRS

GENERALLY AVAILABLE

- Diagnosis codes
- Encounter codes
- Infused medications

- Laboratory tests
- Smoking/Pain assessments
- Physical exam values

SOMETIMES AVAILABLE

- Staging (group and
 ER/PR/Her2 tests individual elements)
- Oral medications

- ECOG performance scores
- Hospice referral

GENERALLY NOT AVAILABLE

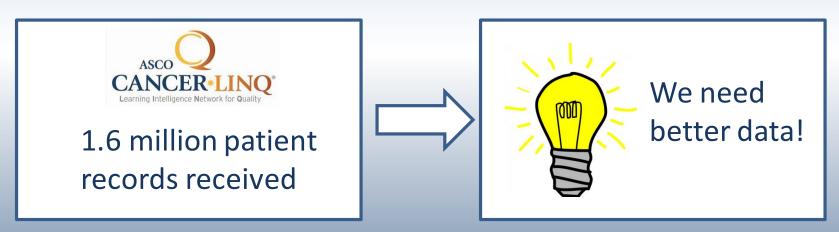
- Histology
- Genetic tests
- Treatment intent

- Surgery
- Radiation Therapy
- Imaging results
- Disease status (progressing, stable, NED)

ASCO CancerLinQ Tobacco Use Assessment*

Shaping The Future Of Cancer Care

Value	Distinct Patients
Non-smoker	560,281
Never smoked tobacco	462,842
Ex-smoker	373,431
Current smoker	121,186
Unknown tobacco consumption	83,550
Smokes tobacco daily	81,250
Occasional tobacco smoker	22,607
Heavy smoker	5,898
Light tobacco smoker	3,478
Tobacco user	576
Current tobacco non-user	212
Chews tobacco	160
Passive smoker	140
Smokeless tobacco	96
Pipe smoker	23


*>15.5 million entries

Subset of **51** different representations

EMRs:

Allscrips Epic
Aria Mosaiq
Centricity OncoEMR
CureMD NextGen

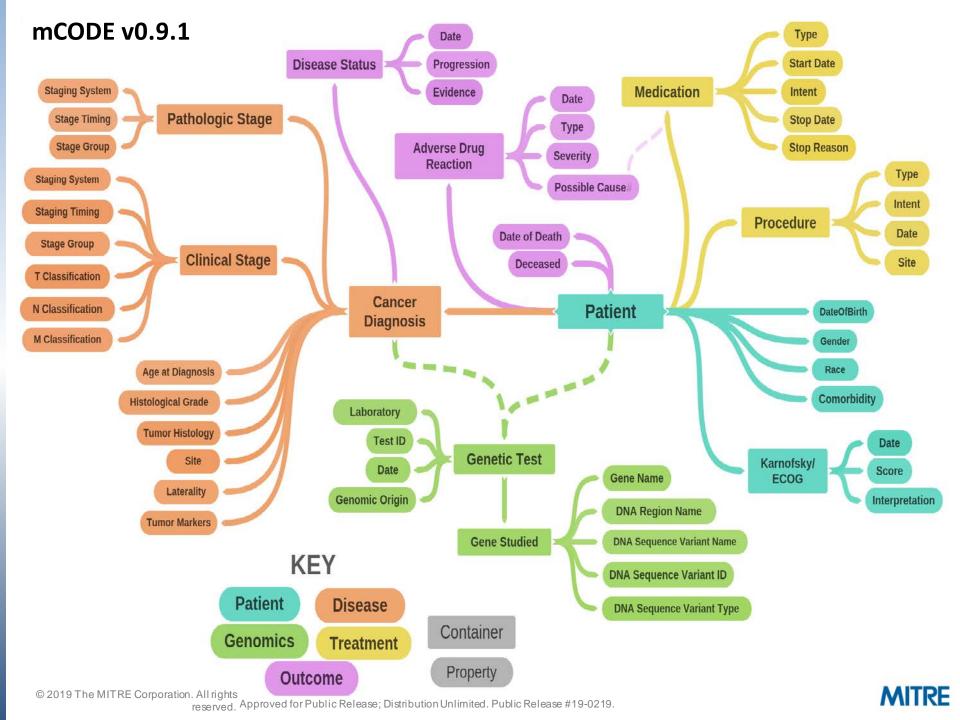
Retrospective data curation using machine learning and national language processing is INSUFFICIENT and NOT SCALABLE

COLLABORATION ISN'T A 21ST CENTURY SKILL. IT'S A TIMELESS SKILL.

Collaboration was critical in the past and it will be critical in the future. Humans had to collaborate in the age of hunter-gathering and we'll need it in the age of artificial intelligence.

mCODE[™]

Purpose: To develop and maintain standard computable data formats, known as Minimal Common Oncology Data Elements (mCODE), to achieve data interoperability and enable progress in clinical care quality initiatives, clinical research, and healthcare policy development



mcodeinitiative.org

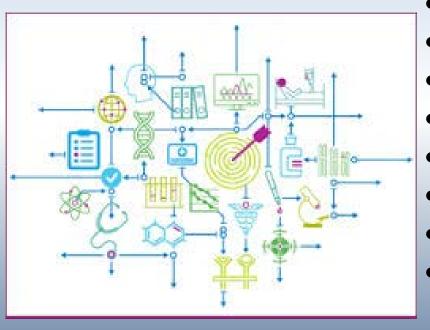
mCODE[®]

Will facilitate research

Integrating
Clinical trials
And
Real world
Endpoints
data

mCODE[®]

Will facilitate data sharing



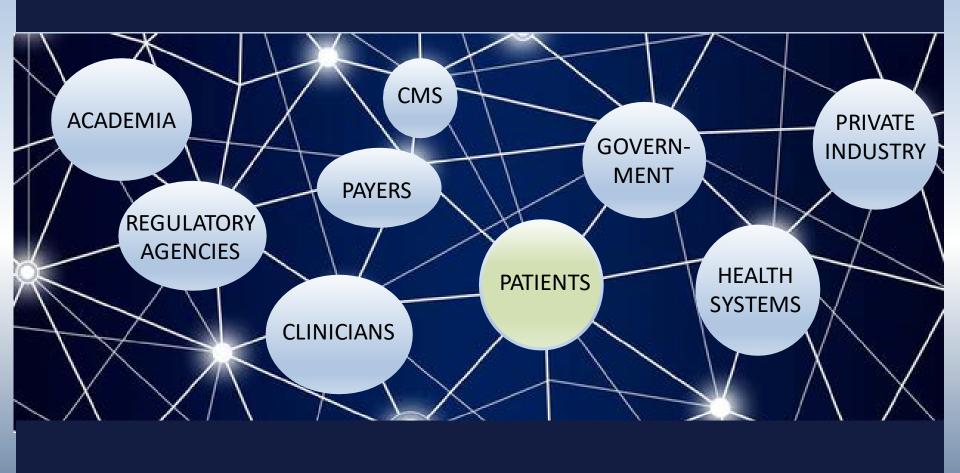
A wide range of organizations will develop

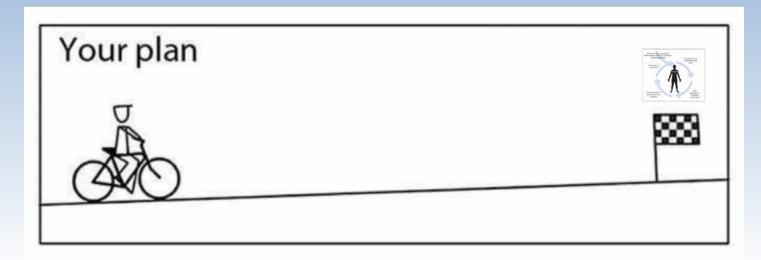
mCODE -enabled

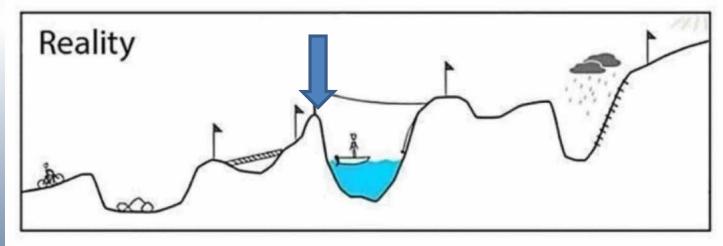
tools for data capture, analysis, and clinical application

- Clinical pathways
- Clinical decision support
- Care coordination
- Clinical trials data management
- Clinical registries
- Outcomes research models
- Clinical practice quality initiatives
- Development and implementation of machine learning approaches

mCODE[™]


will facilitate patient engagement in healthcare




- Consent for research data use
- Patient reported outcomes
- Medical records home
- Patient education

- Care coordination
- Wellness programs
- Chronic disease management
- Rare disease care & research

Who benefits?

