
Data Sharing Consortiums and Large Datasets to Inform Cancer Diagnosis

Improving Cancer Diagnosis and Care: Patient Access to Oncologic Imaging and Pathology Expertise and Technologies: An NCPF Workshop

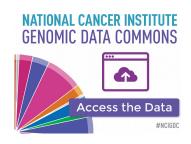
Amy P. Abernethy, MD, PhD CMO, CSO & SVP Oncology Flatiron Health

Perspective

Strengthening Research through Data Sharing

Elizabeth Warren, J.D.

The standard of the clinical trial system. Some benefits are obvious: when researchers have access to complete data, they can answer new questions, explore different lines of analysis, and more efficiently conduct large-scale analyses across trials. Other advantages, such as providing a guardrail against conflicts of interest in a clinical trial system in which external sponsorship of research is common and necessary, are less visible yet just as critical.

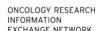

Data Sharing Consortiums

Historical definition: "the practice of making data used for scholarly research available to other investigators" (Wikipedia & NIH)

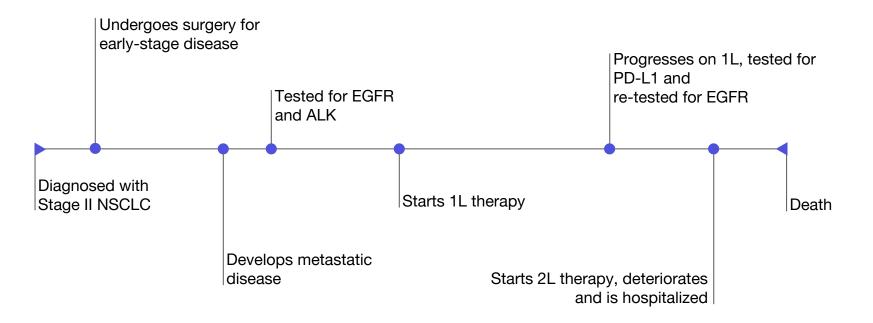
Aggregation of datasets (different variables, to generate critical mass)

Increasing focus on real-world data collected as a routine byproduct of care

Flatiron Health as an example, but there are many others



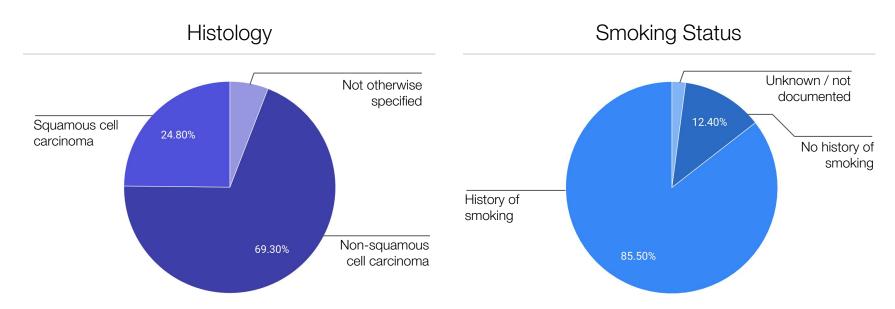
The National Patient-Centered Clinical Research Network



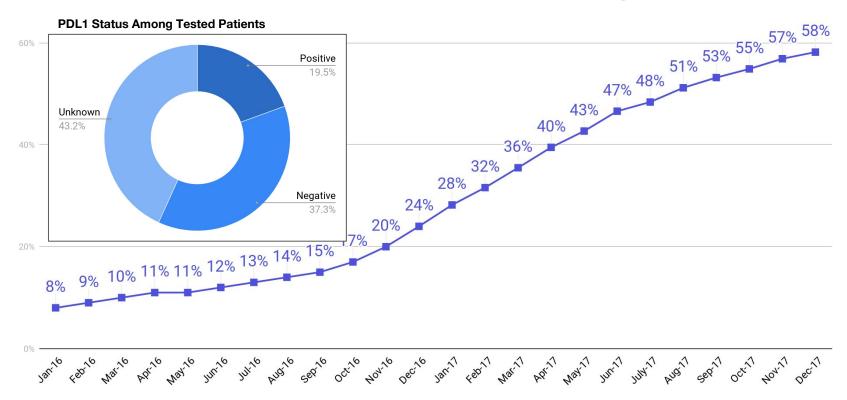
21st Century Cures

SEC. 505F. UTILIZING REAL WORLD EVIDENCE.

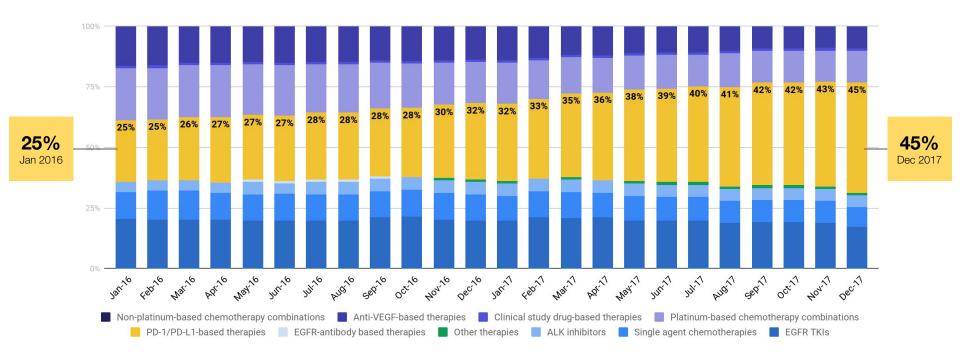
- (a) In General.—The Secretary shall establish a program to evaluate the potential use of real world evidence—
- (1) to help to support the approval of a new indication for a drug approved under section 505(c); and
- (2) to help to support or satisfy postapproval study requirements.


Large datasets can be used to inform cancer diagnosis and the interrelationship of diagnosis, treatment, and outcome, but it is important how they get curated

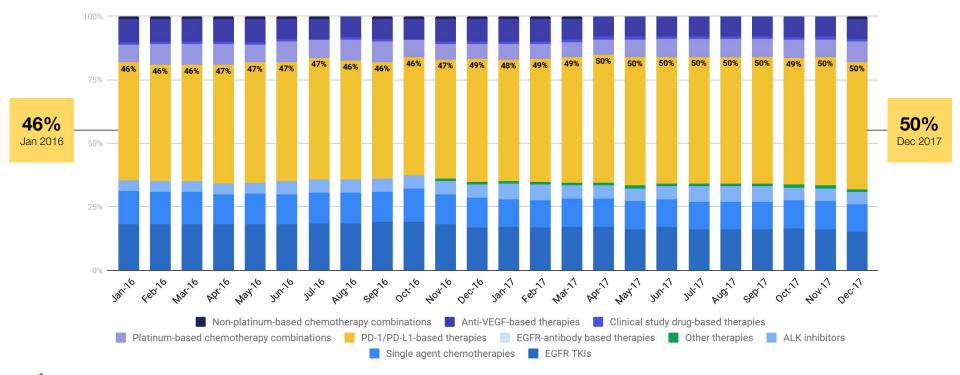
The Promise of Data Sharing at Scale

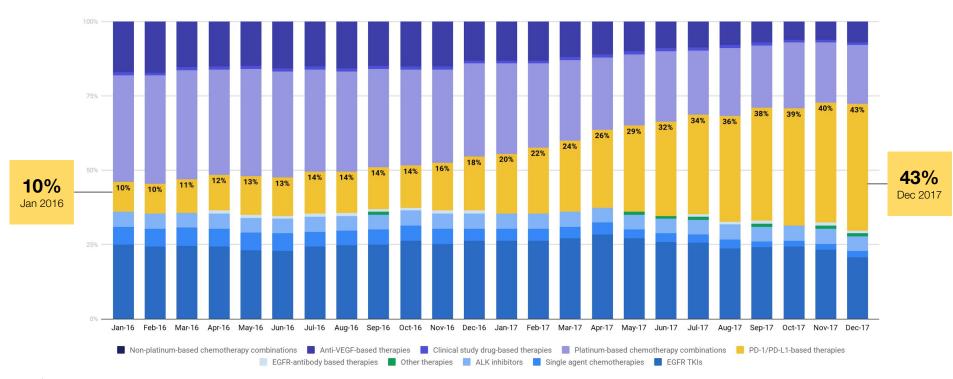

As of January 2018

Patients in cohort: 43,697 (Community: 39,915 | Academic: 3,782)

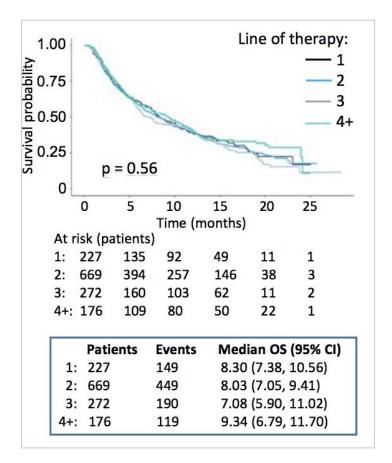


PDL1 Biomarker Testing

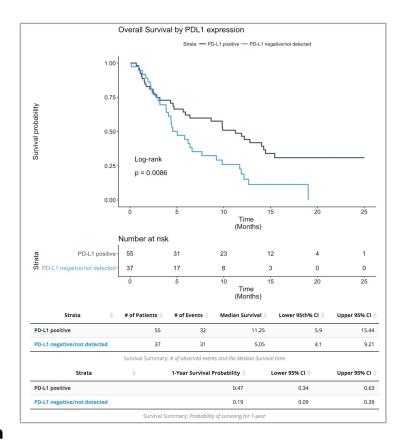

Patient Share by Therapy Class — PD1/PDL1 All Lines


Patient Share by Therapy Class — PD1/PDL1

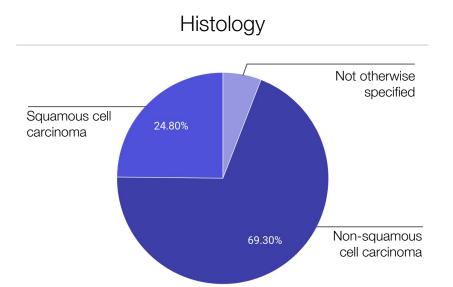
2nd or 3rd Line+

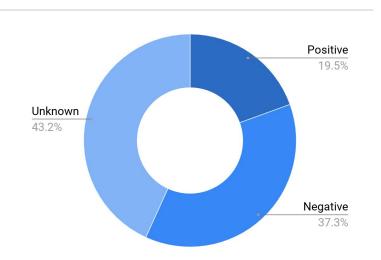


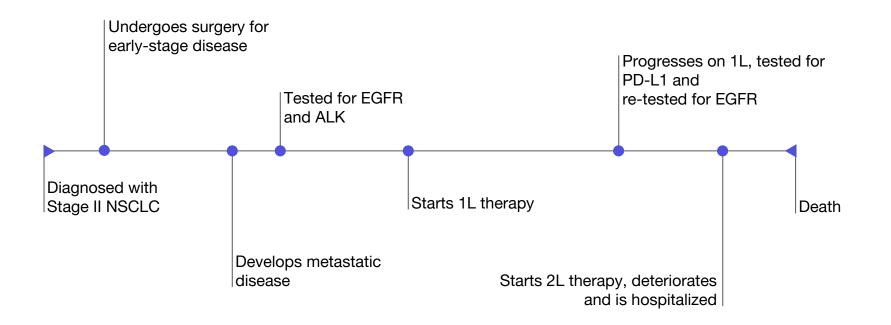
Patient Share by Therapy Class — PD1/PDL1


Overall survival of PD-1 treated mNSCLC patients

Findings: Stratification by line of therapy in which patients received their first PD-1 inhibitor did not reveal significant differences in OS estimates

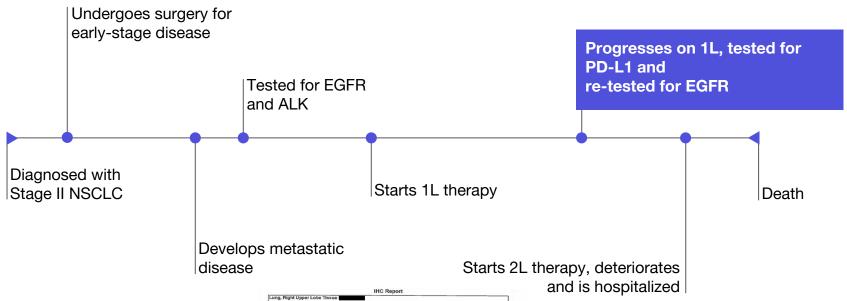

PDL1 expression predicts survival


Findings: Patients who were PD-1 positive had a significantly longer median survival time (by ~5 months) and higher 1-year survival probability than those who were PD-1 negative

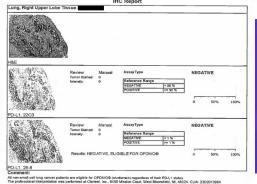

Hinges on Confident Diagnosis

PDL1 Status

Diagnostic events are a combination of clinical, pathological, radiological, & biomarker data - *in context*



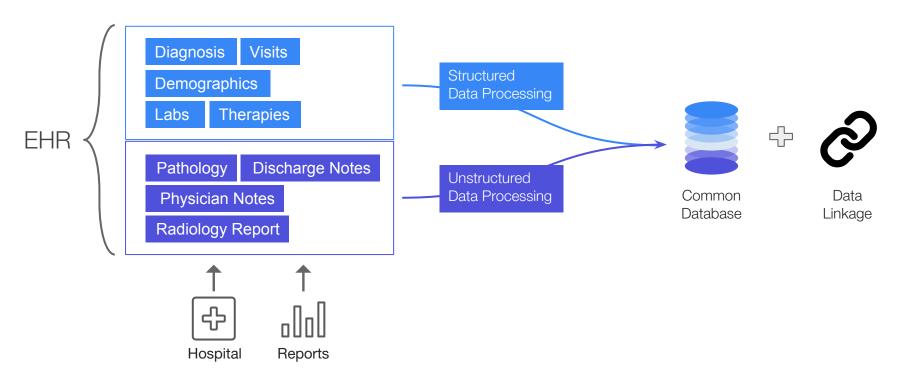
Undergoes surgery for early-stage disease Progresses on 1L, tested for PD-L1 and Tested for EGFR re-tested for EGFR and ALK **Diagnosed with** Starts 1L therapy Stage II NSCLC Death Develops metastatic disease Starts 2L therapy, deteriorates and is hospitalized Gross Description The specimen is received in formalin labeled with the patient's name. It consists of a 1 x 0.3 x 0.1 cm aggregate of pink-tan to red-pink soft tissue cores and fragments entirely submitted in one block. Dictated by: GREGORY W SMITH PA Entered: 02/06/12 - 1544 JAM Microscopic Description The specimen consists of a well differentiated adenocarcinoma, favor lung primary. CK7 and TTF are positive. CK20 is negative. A colleague agrees with this malignant diagnosis. Dictated by: THOMAS J GRIFONE MD Entered: 02/07/12 - 1423 SML SPECIMEN SUBMITTED AS TRUCUT BIOPSY LEFT LUNG NODULE: - NELL-DIFFERENTIATED ADENOCARCINOMA, FAVOR LUNG PRIMARY. - SEE ABOVE.



Undergoes surgery for early-stage disease Progresses on 1L, tested for PD-L1 and Tested for EGFR re-tested for EGFR and ALK Diagnosed with Starts 1L therapy Stage II NSCLC Death **Develops metastatic** disease Starts 2L therapy, deteriorates and is hospitalized Path?

Time to progression is dependent on when patient is evaluated

Currently restaging study showed no soft tissue disease. Bone scan showed stable, bony metastasis, with the exception of 1 new lesion in the left superior pubic ram. I lesion is not clear/even though it is possible this is new metastatic lesion; however, it is unusual to have an isolated progression yet rest of the bony metastasis are stable. The patient is completely asymptomatic. His tumor markers are stable; therefore, we decided to continue the current management and we will get followup studies in 3-4 months.


Data Management Challenges

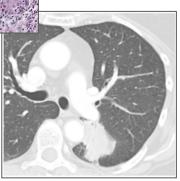
- Need for a common data model
- Scaled curation
- Access to identified source documents
- Differences in timing of assessments
- Data provenance
- Traceability
- Standard policies & procedures to synthesize complex clinical data
- Rigorous quality controls

Here's what that looks like at Flatiron...

Data source and curation

Curate in a reliable way (human, Al) and document data quality

and ALK


Diagnosed with Stage II NSCLC

Starts 1L therapy

Death

Develops metastatic disease

Starts 2L therapy, deteriorates and is hospitalized

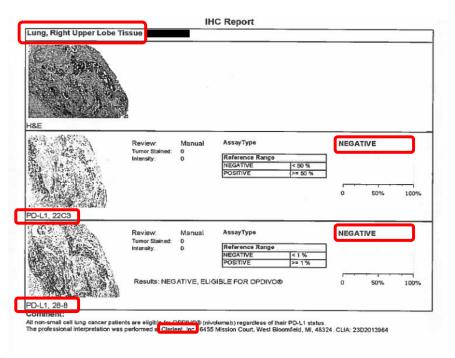
Gross Description

The specimen is received in formalin labeled with the patient's name. It consists of a 1 x 0.3 x 0.1 cm aggregate of pink-tan to red-pink soft tissue cores and fragments entirely submitted in one block.

Dictated by: GREGORY W SMITH PA Retered: 02/06/12 - 1544 JAM

Microscopic Description

The specimen consists of a well differentiated adenocarcinoma, favor lung primary. CK7 and TTF are positive. CK20 is negative. A colleague agrees with this malignant diagnosis.


Dictated by: THOMAS J GRIFONE MD Entered: 02/07/12 - 1423 SML

Diagnosis

SPECIMEN SUBMITTED AS TRUCUT BIOPSY LEFT LUNG NODULE:

- WELL-DIFFERENTIATED ADENOCARCINOMA, FAVOR LUNG PRIMARY.
- SEE ABOUT.

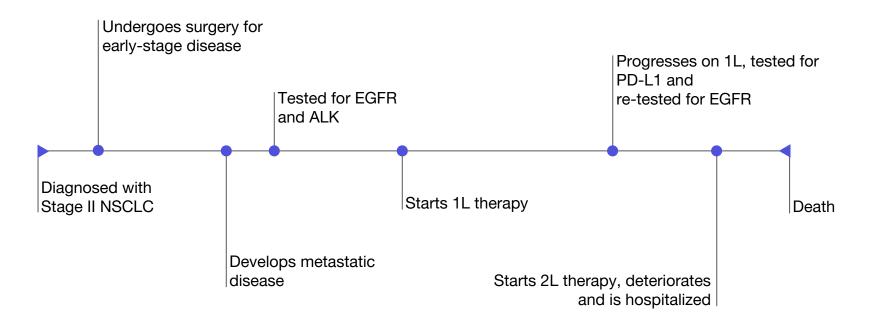
Consistent approach to curating unstructured data

PD-L1 IHC Report Scanned into EHR Contains Rich Data:

- Test status
- Test result
- Date biopsy collected
- Date biopsy received by laboratory
- Date result received by provider
- Lab name
- Sample type
- Tissue collection site
- Type of test (e.g., FISH)
- Assay / kit (e.g., Dako 22C3)
- Percent staining & staining intensity

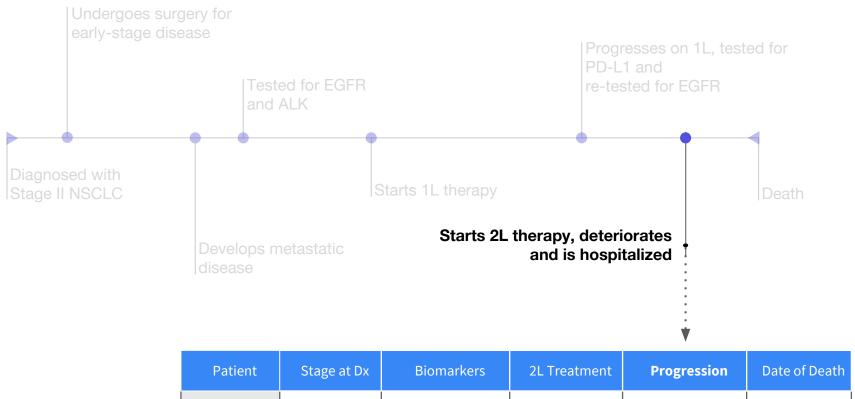
... for every test the patient receives

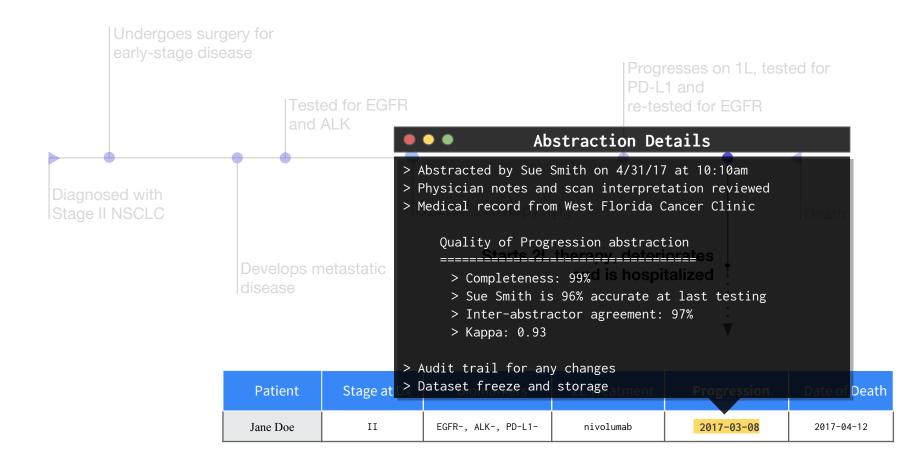
Technology Enabled Abstraction


Expert abstractors

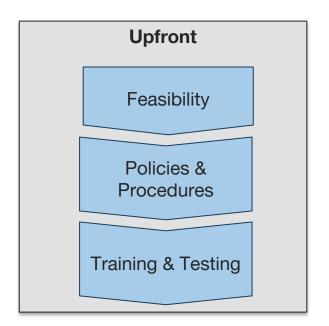
A network of abstractors comprised of oncology nurses, certified tumor registrars, and oncology clinical research professionals.

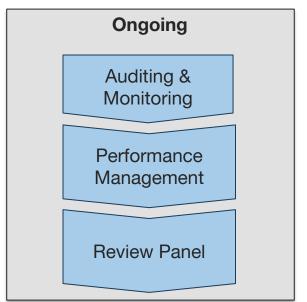
Flatiron Technology

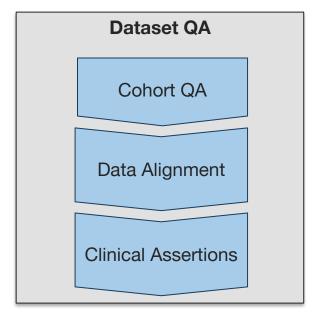

Software helps trained human abstractors efficiently organize and review unstructured documents to capture key data elements in predetermined forms.


Documentation of source, quality and provenance.

Patient	Stage at Dx	Biomarkers	2L Treatment	Progression	Date of Death
Jane Doe	II	EGFR-, ALK-, PD-L1-	nivolumab	2017-03-08	2017-04-12







Quality assurance & quality control

Centralized Controlled Environment

Resulting clinical data quality and completeness

Completeness of technology-enabled abstraction

Example: Advanced NSCLC

Structured data only	Flatiron data completeness	
26%	100%	
0%1	94%	
37%	99%²	
61%	95%	
9%	100%³	
11%	99%³	
	only 26% 0% ¹ 37% 61% 9%	

1 58% are free text in dedicated field in EHR (requiring hand abstraction) 2 Including 8% of patients with results pending or unsuccessful test 3 Including 6% of patients with results pending or unsuccessful test

Accuracy of technology-enabled abstraction

Example: Sites of metastases

Site of met	Inter-abstractor agreement	Карра
Bone	97%	0.93
Brain	96%	0.91
Liver	92%	0.83
Lung	94%	0.87

Link Datasets

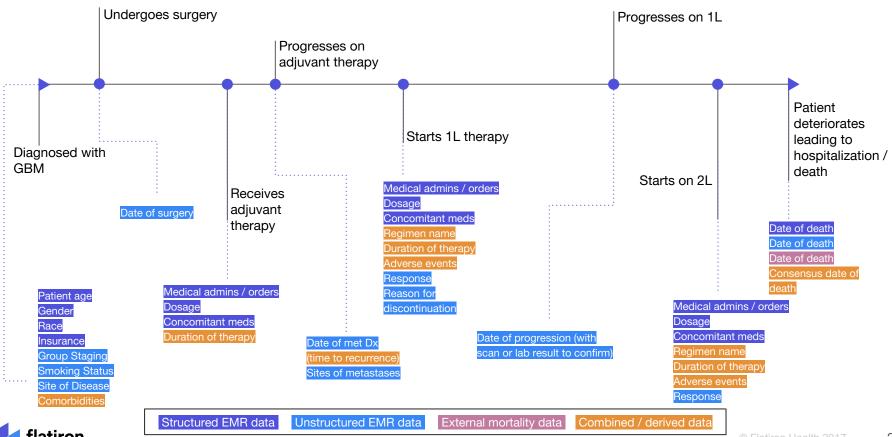
Flatiron

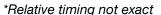
- Demographics
- Diagnosis
- Visits
- Therapies
- Physicians Notes
- Discharge Notes
- Pathology Reports
- Radiology Reports
- Mortality*

Genomics

External

Mortality


Other EHRs


Core

🔗 Linked

A comprehensive view of the patient journey

Collaboration with the FDA

- Determine how and when Flatiron data can be used to document the effectiveness and safety of cancer drugs
- Define optimal ways to analyze Flatiron data
- Document endpoints (e.g., evidence of tumor burden or survival)
 that are clinically meaningful in the Flatiron data
- Best describe the reliability and quality of our data for end-users

RWE QUALITY

gure 1).

Clinical Pharmacology & Therapeutics

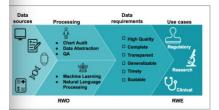
Explore this journal >

Open Access C (reative Commons

Development

Harnessing the Power of Real-World Evidence (RWE): A Checklist to Ensure Regulatory-**Grade Data Quality**

Rebecca A. Miksad, Amy P. Abernethy M


First published: 6 December 2017 Full publication

DOI: 10.1002/cpt.946 View/save citation

Citation tools *

Browse Early View Articles Online Version of Record published before inclusion in an issue

Early View

RWE is generated from high-quality data that are 1) from relevant RWD sources, 2) cleaned, harmonized,

ed to fill in gaps, and 3) include endpoints. Quality

need to encompass the entire process to generate RWE, a sources and processing to defining appropriate use

Figure 1. Open in figure viewer Download Powerpoint slide

The journey from data to evidence. Real-world data (RWD) are data that are routinely collected in the form of electronic health records (EHRs), patient disease registries, wearables, genomic datasets, medical claims registries, and others. These data can be aggregated, linked, and processed to produce key conclusions in the form of real-world evidence (RWE). The proposed checklist can be used to assess if the quality of the RWD is regulatory-grade.

mal RWD source depends on the RWE hypothesis and .[3] As the EHR is a contemporaneous (prospective or ctive) account of the clinical narrative, it provides al details and longitudinal follow-up for outcomes. The

Abstract

The role of real-world evidence (RWE) in regulatory, drug development, and healthcare decision-making is rapidly expanding. Recent advances have increased the complexity of cancer care and widened the gap between randomized clinical trial (RCT) results and the evidence needed for real-world clinical decisions.[1] Instead of remaining invisible, data from the >95% of cancer patients treated outside of clinical trials can help fill this void.

Meta-characteristics of RWD and RWE Regulatory grade RWE, a potential checklist

Clinical Depth Data granularity to enable appropriate interpretation and contextualization of patient information. Completeness Inclusion of both structured and unstructured information supports a thorough understanding of patient clinical experience. **Longitudinal Follow-up** Ability to review treatment history and track patient journey going forward over time. **Quality Monitoring** Systematic processes implemented to ensure data

☐ Timeliness / Recency

Timely monitoring of treatment patterns and trends in the market to derive relevant insights.

Scalability

Efficient processing of information with data model that evolves with standard of care.

Generalizability

Representativeness of the data cohorts to the broader patient population.

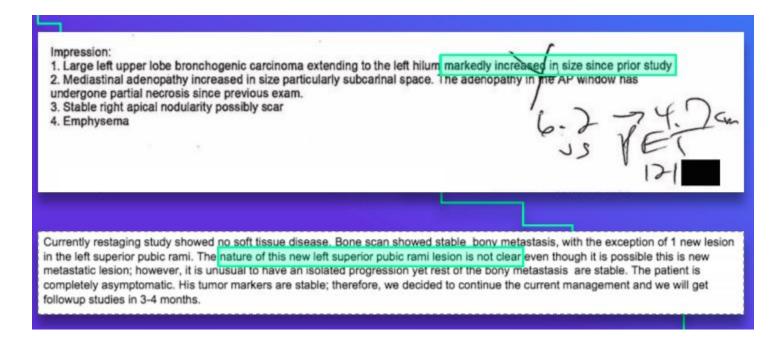
Complete Provenance

Robust traceability throughout the chain of evidence.

accuracy and quality.

Data Quality Concerns

These will always be there, so, we need to figure out a way to address them


Challenges with Images

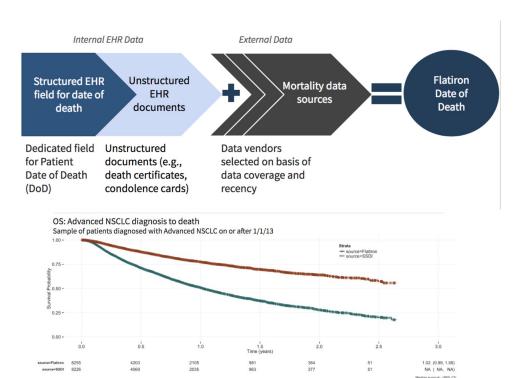
Images captured as part of routine care differ in meaningful ways from those captured within clinical trials:

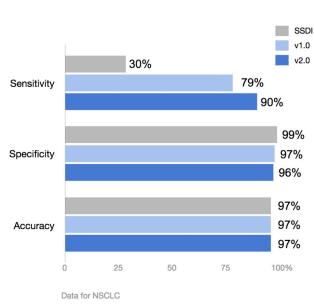
- Raw images are not available for central review
- Imaging reports generated outside of clinical trials often lack info needed for RECIST
- RECIST requires comparison to prior charts. Radiologists interpreting imaging may not have access to prior images.

Accounting for Changing Interpretations Over Time

Need a consistent approach to documenting quality

Project:	FDA	PD-1 inhibitors in aNS	CLC			
					Kappas scale	
Note: For questions where a hig	gh percentage of patients have a common answer (e.g., PD-L1 testing stat	us), kappa may be significantly lo	ower than inter-rater ag	reement.	Almost perfect	0.8 to 1.0
In these cases, it may be more	accurate to use inter-rater agreement to measure reliability of the data.				Substantial	0.6 to 0.8
					Moderate	0.4 to 0.6
					Fair	0.2 to 0.4
					Slight	0 to 0.2
Table: Enhanced_Advance	dNSCLC					
Summary of variable inter-	rater agreement and kappas					
√ariable	Description of variable	Corresponding question(s) on abstraction form	Question type	Inter-rater agreement (exact day for dates)	Kappa (exact agreement)	Kappa (30-day window for dates
DiagnosisDate	Date of initial diagnosis	Enter the date of initial diagnosis	date	0.795	0.794	0.90
AdvancedDiagnosisDate	Date of diagnosis of advanced disease: first recurrence or metastasis	Enter the date of the first diagnosis of metastatic or advanced NSCLC	date	0.695	0.695	0.79
		Enter the date of initial diagnosis [for ~55% of patients in the cohort who are diagnosed metastatic]	date	0.795	0.794	0.90
MetastaticDiagnosisDate	Date of diagnosis of metastatic disease	Enter the date of distant metastatic diagnosis [for ~45% of patients in the cohort who are diagnosed non-metastatic]	date	0.527	0.476	0.55
Histology	Histology	Select the histology	drop down	0.947	0.894	
GroupStage	Group stage at time of initial diagnosis	Select the group stage	drop down	0.848	0.768	
SmokingStatus	Documented history of smoking	Smoking status	drop down	0.934	0.695	
gfrTested	Indicator of whether the tumor was tested for a EGFR mutation	Was the tumor tested for a EGFR mutation?	boolean	0.927	0.84	
AlkTested	Indicator of whether the tumor was tested for an ALK rearrangement	Was the tumor tested for an ALK rearrangement?	boolean	0.901	0.791	
PdL1Tested	Indicator of whether the tumor was tested for PD-L1 expression	Was the tumor tested for PD-L1 expression?	boolean	0.901	0.547	
KrasTested	Indicator of whether the tumor was tested for a KRAS mutation	Was the tumor tested for a KRAS mutation?	boolean	0.894	0.728	
Ros1Tested	Indicator of whether the tumor was tested for a ROS-1 rearrangement	Was the tumor tested for a ROS-1 rearrangement?	boolean	0.881	0.725	




Validation of Endpoints

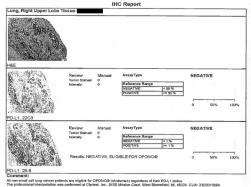
Data Quality & Validation Framework			
Face Validity	Oncologist agreement with definition & approach		
	Regulator and other stakeholder agreement with definition & approach		
Feasibility & Quality	Completeness of collected data		
of Variables	Inter-rater agreement on progression dates for duplicate abstracted patients		
(structured & abstracted)	Qualitative feedback from abstractors reviewing the medical records		
	Likelihood of predicting a downstream event (e.g., overall survival)		
Validity of Outputs	 Association between OS and PFS/TTP Patient-level correlation Responsiveness of endpoint to treatment effects 		

Evaluate data against a reference standard

E.g., gold standard = National Death Index

Data in context reinforces diagnostic accuracy

Progresses on 1L, tested for PD-L1 and re-tested for EGFR


Diagnosed with Stage II NSCLC

Starts 1L therapy

Death

Starts 2L therapy, deteriorates and is hospitalized

Overall Survival by PDL1 expression Strata - PD-L1 positive - PD-L1 negative/not detected 0.50 Log-rank p = 0.0086Number at risk (Months) PD-L1 positive 11.25 15.44 PD-L1 negative/not detected 5.05 9.21 Upper 95% CI 0.63

1. Large left upper lobe bronchogenic carcinoma extending to the left hilum markedly increased in size since prior study 2. Mediastinal adenopathy increased in size particularly subcarinal space. The adenopathy in the AP window has undergone partial necrosis since previous exam. 3. Stable right apical nodularity possibly scar

4. Emphysema

Currently restaging study showed no soft tissue disease. Bone scan showed stable, bony metastasis, with the exception of 1 new lesion in the left superior pubic rami. The nature of this new left superior pubic rami lesion is not clear even though it is possible this is new completely asymptomatic. His tumor markers are stable; therefore, we decided to continue the current management and we will get followup studies in 3-4 months.

Labeled data helps with Al / machine learning

Increasing importance

Find labeled data

Extract good **features**

Train a **model**

Technical expertise

Problems to be Solved

- Ambiguous interpretation
- Differing issues in scan timing
- Data curation standards with appropriate labeling to support AI/ML
- Data linkage privacy while maintaining adequate information for context
- Consistent approach to documenting data quality
- Consistent endpoint definitions
- Appropriate use of Al/ML

Policy Context for Data Sharing

- Enabling policy (21st Century Cures, PDUFA VI)
- Privacy, security and governance
 - Need approaches to maintain privacy while ensuring adequate contextual information
- Incentives for data sharing
- Regulatory policy that drives standards
 - Consistent approach to documenting data quality
 - Consistent endpoint definitions
 - Incorporating machine learning and Al

Take Home Summary

- Data sharing consortiums offer the opportunity to observe the interrelationship between diagnosis, treatment, and outcomes at scale
- To achieve this we must solve the challenges of data aggregation, curation, and confident assessment of data quality - this can be achieved
- With respect to diagnostic data quality, we must resolve issues related to ambiguous interpretation, differences in scan timing, data curation standards, evaluation of data in context, and the roles of machine learning and artificial intelligence

