

Disclosures

- Board of directors, Radiological Society of North America
- Advisory board, Nuance Communications
- Shareholder and advisor, whiterabbit.ai
- Shareholder and advisor, Nines.ai
- Research support from:
 - Google
 - Siemens
 - GE Healthcare
 - Philips

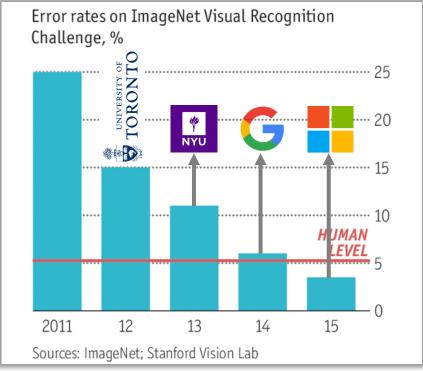
Al: Artificial Intelligence ML: Machine Learning NN: Neural **Networks** DL: Deep Learning

Definitions

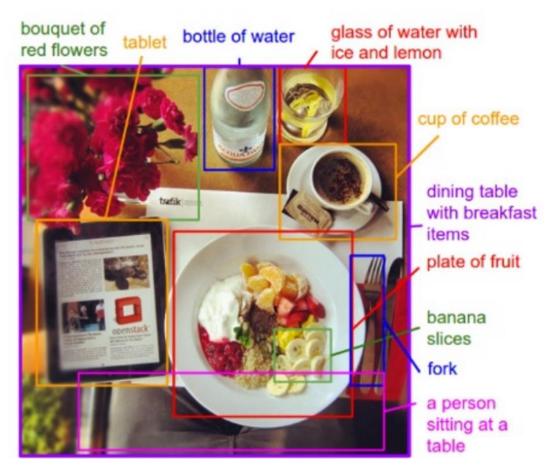
- AI: When computers do things that make humans seem intelligent
- ML: Rapid automatic construction of detectors and classifiers from data
- NN: New and extremely powerful "black box" form of machine learning



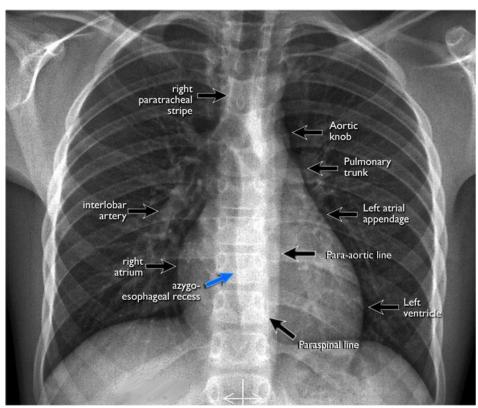
ImageNet



- Russakovsky O, Deng J, Su H, et al. ImageNet Large Scale Visual Recognition Challenge. Int J Comput Vis. 2015;115(3):211-252.
- $\bullet \quad \text{https://www.economist.com/news/special-report/21700756-artificial-intelligence-boom-based-old-idea-modern-twist-not-light and the second seco$
- http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/



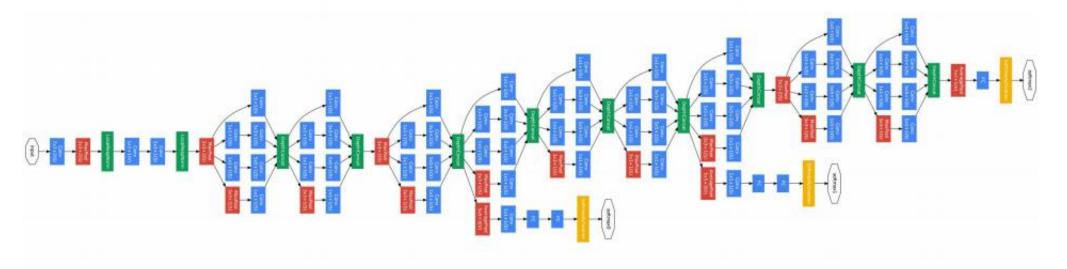
Karpathy, Andrej & Li, Fei Fei. Deep Visual-Semantic Alignments for Generating Image Descriptions, CVPR, 2015



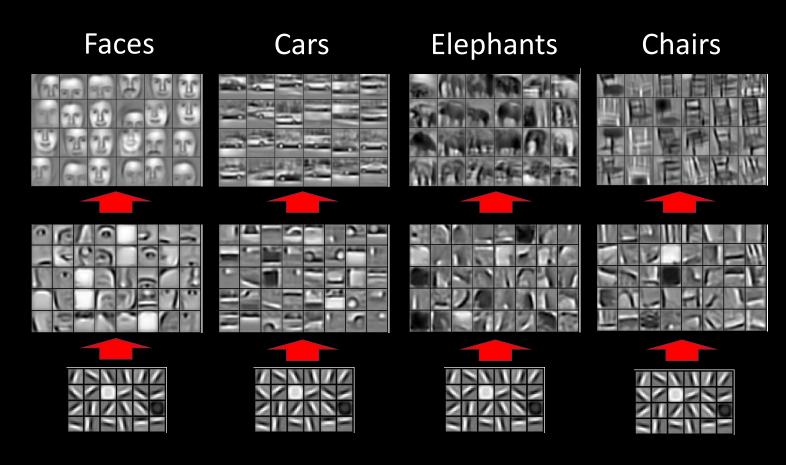
http://www.radiologyassistant.nl/

"Deep" Neural Networks: Tens of Millions of Parameters

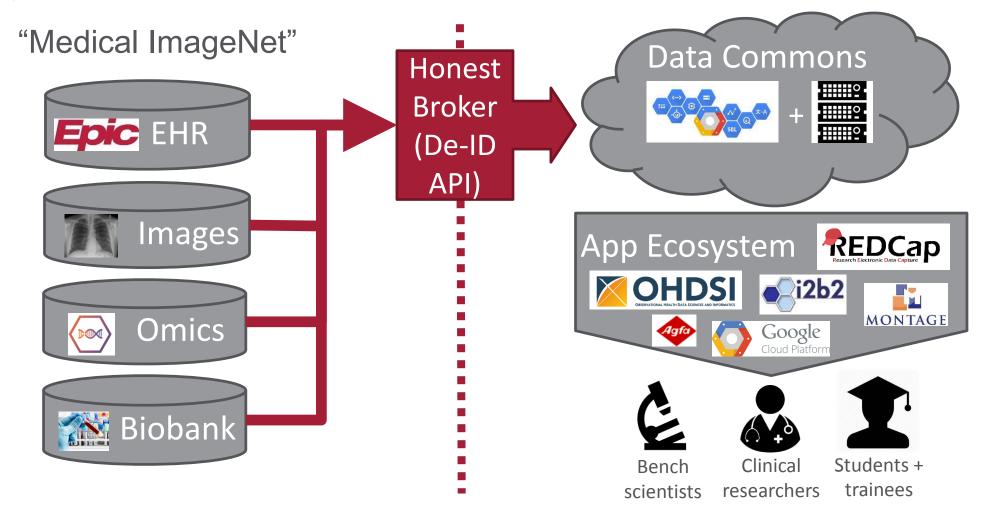
The Inception Architecture (GoogLeNet, 2014)



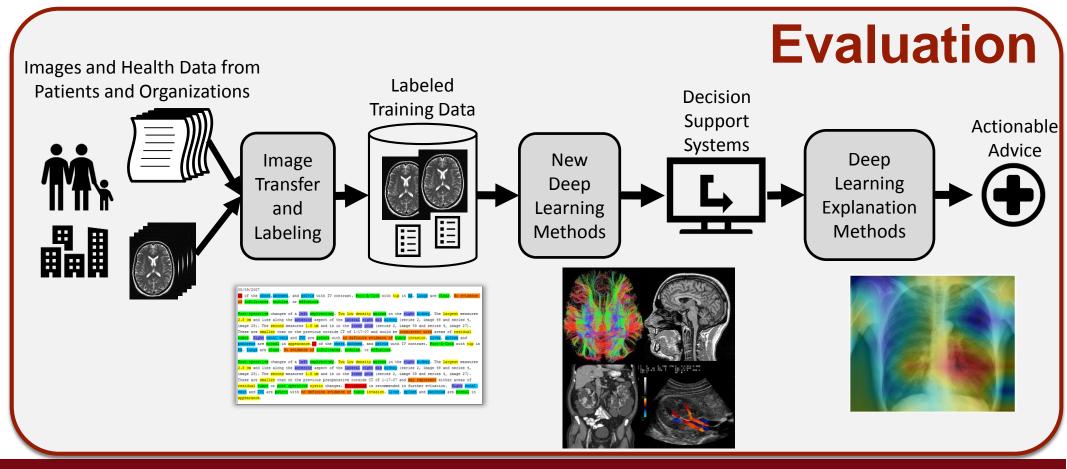
Learning Object Recognition



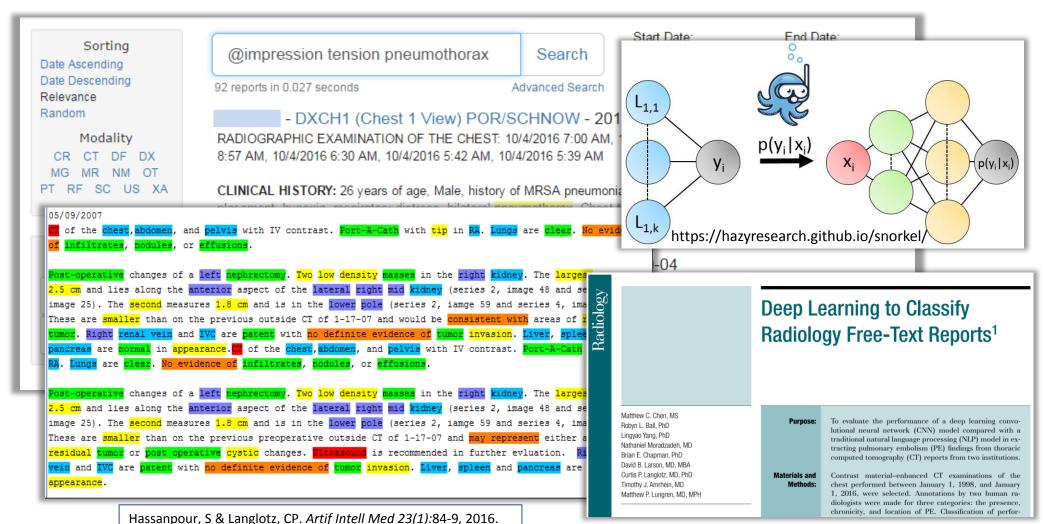
Stanford | MEDICINE Data Science Enterprise Resource



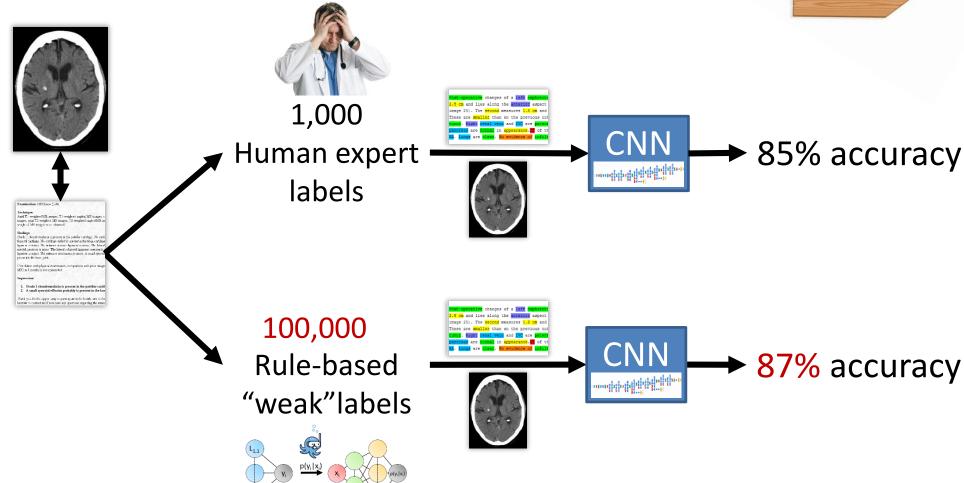
Deep Learning Research in Radiology



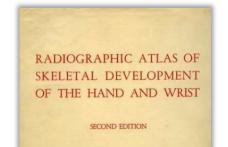
Cohort Selection and Image Labeling



The Power of Weak Labeling



Performance of a Deep-Learning Neural Network Model in Assessing Skeletal Maturity on Pediatric Hand Radiographs¹





David B. Larson, MD, MBA Matthew C. Chen, MS Matthew P. Lungren, MD, MPH Safwan S. Halabi, MD Nicholas V. Stence, MD Curtis P. Langlotz, MD, PhD

Table 2

Summary Statistics of Paired Interobserver Difference between Bone Age Estimate of Each Reviewer and Mean of the Other Three Human Reviewers' Estimates, Compared with That of Model

Variable	Clinical Report	Reviewer 1	Reviewer 2	Reviewer 3	Mean
MAD					
Reviewer	0.65	0.55	0.53	0.69	0.61
Model	0.51	0.53	0.53	0.53	0.52
P value (paired t test)	<.01	.50	.99	<.01	

Note.—Unless otherwise noted, data are expressed as years. The authors of the clinical report were treated collectively as a single reviewer.

Saliency Maps

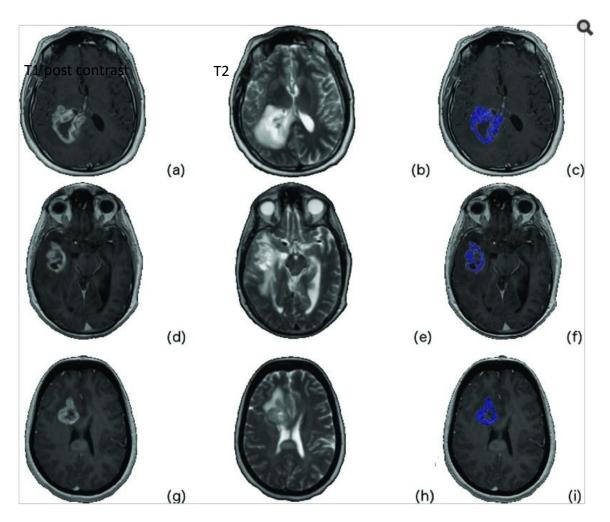
Machine learning enables systems tailored to local demographics.

Expert-Level Chest Radiograph Interpretation

I A	Pathology	Wang et al. (2017)	Yao et al. (2017)	CheXNet (ours)
	Atelectasis	0.716	0.772	0.8209
	Cardiomegaly	0.807	0.904	0.9048
J	Effusion	0.784	0.859	0.8831
I I	nfiltration	0.609	0.695	0.7204
	Mass	0.706	0.792	0.8618
I	Nodule	0.671	0.717	0.7766
1	Pneumonia	0.633	0.713	0.763
	Pneumothorax	0.806	0.841	0.893
	Consolidation	0.708	0.788	0.7939
1	Edema	0.835	0.882	0.8932
]	Emphysema	0.815	0.829	0.9260
]	Fibrosis	0.769	0.767	0.8044
]	Pleural Thickening	0.708	0.765	0.8138
1	Hernia	0.767	0.914	0.9387

Matt Lungren, MD, MPH and Andrew Ng, PhD. https://arxiv.org/abs/1711.05225

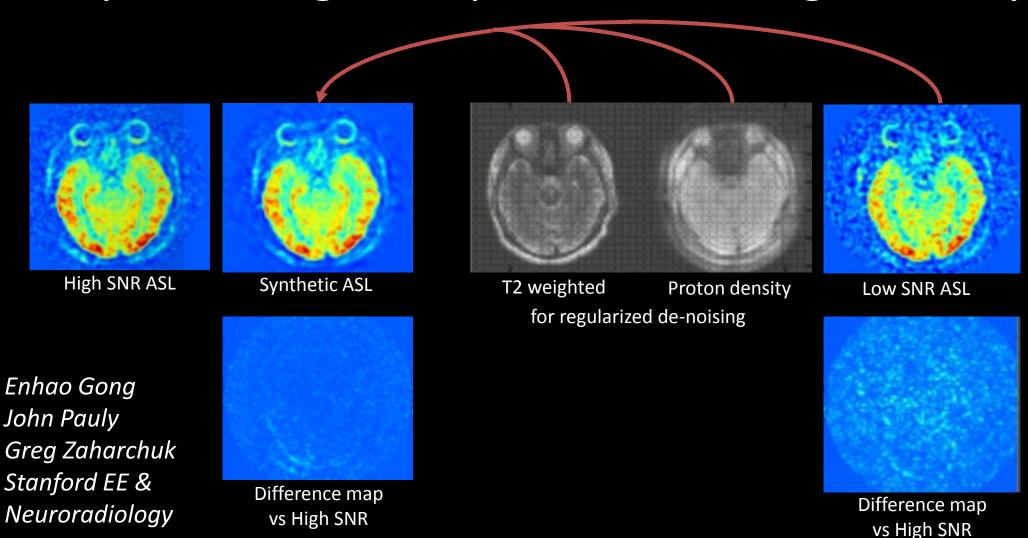
Radiogenomics



Features (Az=0.72):

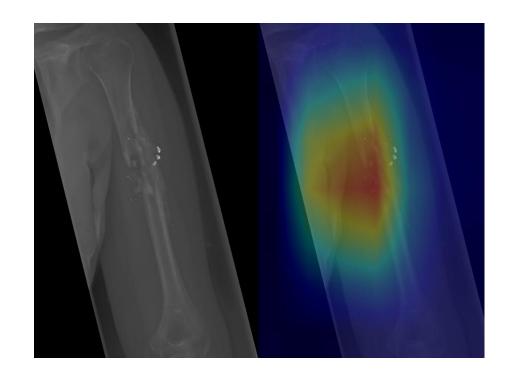
- Gray level nonuniformity
- Run length non uniformity
- Cluster prominence
- Haralick correlation
- Cluster shade
- Inertia
- Inverse difference moment
- Long run low gray level emphasis

Deep Learning to Improve MRI Image Quality



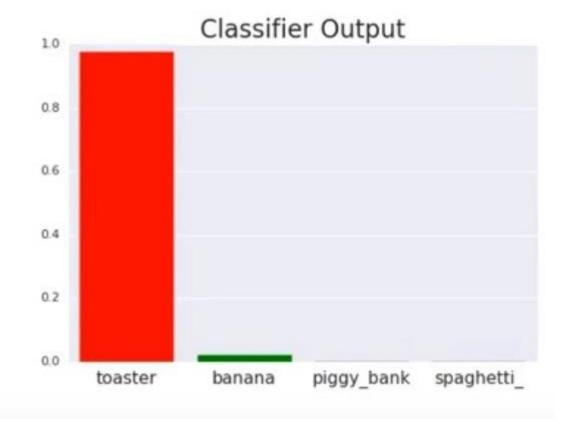
Al in Medical Imaging Opportunities

- Efficient image creation
- Image quality control
- Imaging triage
- Computer-aided detection
- Computer-aided classification
- Radiogenomics



These are not stop signs?

Everything is a toaster.



Conclusions

- 1. Machine learning will revolutionize clinical imaging practice
 - a. Radiologists and pathologists must be trained how to use these new systems
- 2. Machine learning methods are needed for complex health data
 - a. Automated labeling
 - b. New machine learning model structures
 - c. Explanation and other forms of model transparency
- 3. Data-driven cancer care organizations will thrive
 - a. Data linked across types: EHR, genomics, clinical imaging
 - b. Learning cancer systems deliver care with precision
- 4. Sharing of training data sets will accelerate progress
 - a. Subset of cases with high-quality labels for validation

Thank You

Curtis P. Langlotz, MD, PhD
Professor of Radiology and Biomedical Informatics
Associate Chair for Information Systems
Department of Radiology, Stanford University

Informatics Director for Radiology
Stanford Health Care

@curtlanglotz