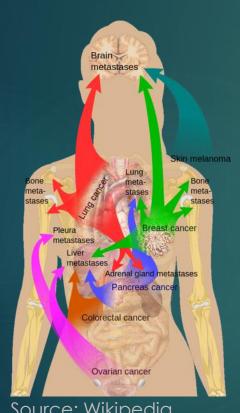
Genomic Standards and Knowledge Bases for Decision Support


Jeremy Warner M.D., M.S.
Associate Professor of Medicine and Biomedical Informatics
Vanderbilt University
February 13, 2018

Disclosures

NIH funding: P30 CA068485, R01 HL133786, R01 LM010685, U24 CA184407, U24 CA194215, U2C OD023196

Ownership: co-founder, HemOnc.org LLC

Three questions that every cancer patient asked (c. 3000 BCE – May 2001)

Source: Wikipedia

► Who's like me?

► How long have I got?

► What are my options?

Diagnosis

Prognosis

Prediction

FDA U.S. FOOD & DRUG **ADMINISTRATION**

A to Z Index | Follow FDA | En Español

SEARCH

Home

Food

Drugs

Medical Devices

Radiation-Emitting Products

Vaccines, Blood & Biologics

Animal & Veterinary

Cosmetics

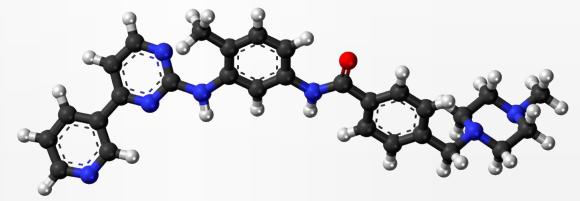
Tobacco Products

Drug Approval Package

FDA Home Drugs Drug Approvals and Databases Drugs@FDA

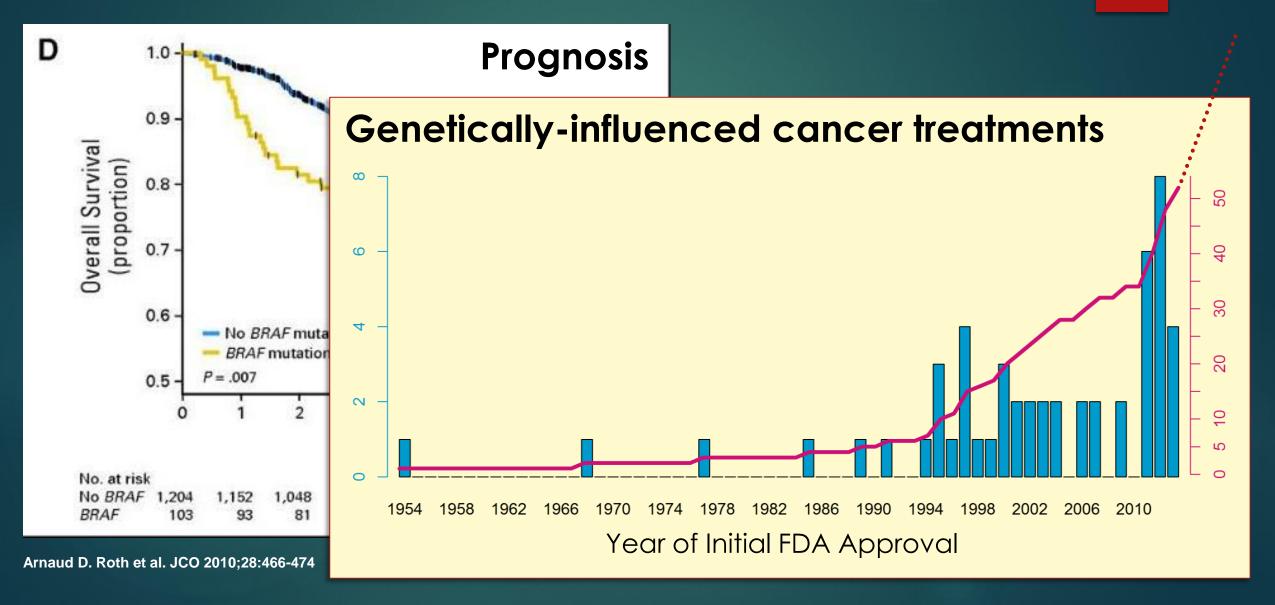
Gleevec (Imatinib Mesylate) Capsules Company: Novartis Pharmaceuticals Corporation

> **Application No.: 21-335 Approval Date: 5/10/2001**


- Approval Letter(s) (PDF)
- Printed Labeling (PDF)
- Medical Review(s)

Part 1 (PDF)

Part 2 (PDF)


Part 3 (PDF)

- Chemistry Review(s) (PDF)
- Pharmacology Review(s) Part 1 (PDF) Part 2 (PDF)
- Statistical Review(s) (PDF)
- Clinical Pharmacology Biopharmaceutics Review(s)

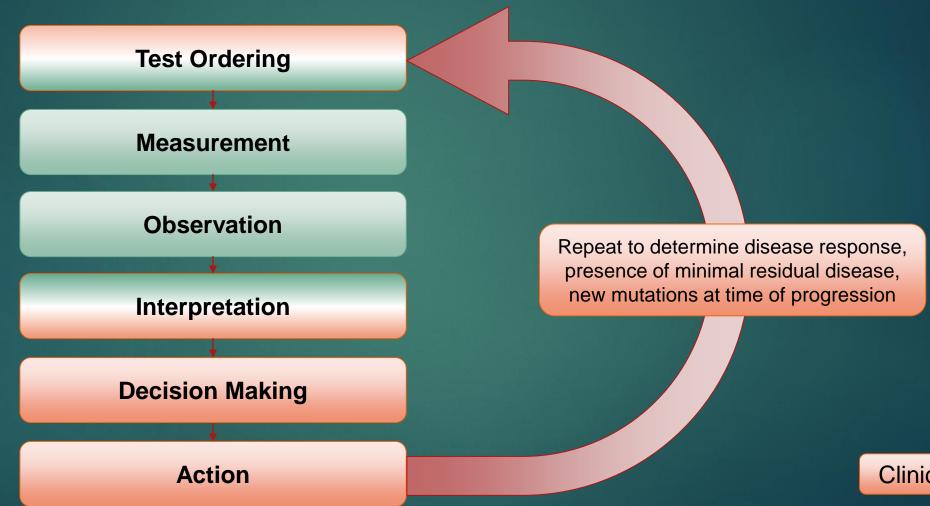
Source: Wikipedia

Biomarkers

Three questions that every genomically-informed cancer patient asks (c. 2001-)

How chase I got?

► What are my options? →



Precision oncology: a definition

- ► Right patient
- ► Right treatment
- ► Right time

In 2018, the potential to achieve these goals appears to be primarily through cancer molecular profiling, targeted agents, (and immunotherapy)

Precision oncology decision making

Clinician task

Laboratory task

2001-2010: Ad hoc genomic testing

EGFR

2004: EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib¹

KRAS

2006: *KRAS* mutation status is predictive of response to cetuximab therapy in colorectal cancer²

BRAF

2010: Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma³

- 1. Pao et al. doi:10.1073/pnas.0405220101
- 2. Lièvre et al. doi: 10.1158/0008-5472.CAN-06-0191
- 3. Bollag et al. doi: 10.1038/nature09454

2011: SNaPshot Panels:

"Driver" Genes Providing "Actionable" Results

Lung cancer:

EGFR, KRAS, PIK3CA, BRAF, NRAS, MEK, AKT1, PTEN

Melanoma:

NRAS, BRAF, KIT, CTNNB1, GNAQ, GNA11

Colon cancer:

KRAS, BRAF, AKT1, PIK3CA, SMAD4, PTEN, NRAS

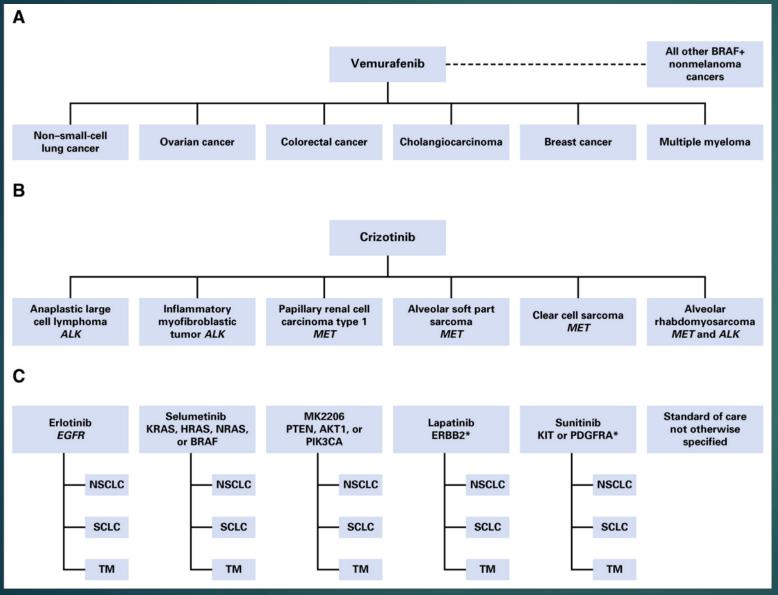
Breast cancer:

PIK3CA, PTEN, AKT1

Glioma:

IDH1, IDH2, BRAF

Acute Myeloid Leukemia:


IDH1, IDH2, FLT3-TKD, DNMT3A, KIT

Name	Sequence			
AKT1_ex2_a1	5'-GAGGGTCTGACGGGTAGAGT-3'			
AKT1_ex2_a2	5'-TCTTGAGGAGGAAGTAGCGT-3'			
BRAF_ex11_a1*	5'-TCTGTTTGGCTTGACTTGACTT-3'			
BRAF_ex11_a2*	5'-TCACCACATTACATACTTACCATGC-3'			
BRAF_ex15_a1*	5'-TGCTTGCTCTGATAGGAAAATG-3'			
BRAF_ex15_a2*	5'-CTGATGGGACCCACTCCAT-3'			
EGFR_ex18_a1*	5'-CCAACCAAGCTCTCTTGAGG-3'			
EGFR_ex18_a2*	5'-CCTTATACACCGTGCCGAAC-3'			
EGFR_ex20_a1*	5'-TGTTCCCGGACATAGTCCAG-3'			
EGFR_ex20_a2*	5'-ATCTGCCTCACCTCCACCGT-3'			
EGFR_ex21_a1*	5'-CCTCCTTCTGCATGGTATTC-3'			
EGFR_ex21_a2*	5'-GCAGCATGTCAAGATCACAG-3'			
KRAS_ex2_a1*	5'-TCATTATTTTTATTATAAGGCCTGCTG-3			
KRAS_ex2_a2*	5'-AGAATGGTCCTGCACCAGTAA-3'			
KRAS_ex3_a1*	5'-AATTGATGGAGAAACCTGTCTCTTG-3'			
KRAS_ex3_a2*	5'-TGGTCCCTCATTGCACTGTA-3'			
MEK1_ex2_a1	5'-AGCGAAAGCGCCTTGAGGCCTT-3'			
MEK1_ex2_a2	5'-AACACCACACCGCCATTGCCAG-3'			
NRAS_ex3_a1	5'-ATAGATGGTGAAACCTGTTTGTTGG-3'			
NRAS_ex3_a2	5'-TGTATTGGTCTCTCATGGCACT-3'			
PIK3CA_ex9_a1*	5'-GACAAAGAACAGCTCAAAGCAA-3'			
PIK3CA_ex9_a2*	5'-TTTAGCACTTACCTGTGACTCCA-3'			
PIK3CA_ex20_a1*	5'-GAGCAAGAGGCTTTGGAGTA-3'			
PIK3CA_ex20_a2*	5'-ATCCAATCCATTTTTGTTGTCC-3'			
PTEN_ex7_a1*	5'-GGTGAAGATATATTCCTCCAATTCA-3'			
PTEN_ex7_a2*	5'-TTCTCCCAATGAAAGTAAAGTACAAA-3'			

2014: Complexity increases

Foundation One® CURRENT GENE LIST												
ABL1	C11orf30 (EMSY)	DDR2	FGFR4	IL7R	MET	PIK3CA	SDHD	TSHR				
ABL2	CARD11	DICER1	FH	INHBA	MITF	PIK3CB	SETD2	U2AF1				
ACVR1B	CBFB	DNMT3A	FLCN	INPP4B	MLH1	PIK3CG	SF3B1	VEGFA				
AKT1	CBL	AURKA	CDKN2A	FANCC	GNA13	KMT2A (MLL)	NOTCH2	QKI	STAG2			
AKT2	CCND1	AURKB	CDKN2B	FANCD2	GNAQ	KMT2C (MLL3)	NOTCH3	RAC1	STAT3			
AKT3	CCND2	AXIN1	CDKN2C	FANCE	GNAS	KMT2D (MLL2)	NPM1	RAD50	STAT4			
ALK	CCND3	AXL	CEBPA	FANCF	GPR124	KRAS	NRAS	RAD51	STK11			
AMER1	CCNE1	BAP1	CHD2	FANCG	GRIN2A	LMO1	NSD1	RAF1	SUFU			
(FAM123B) APC	CD274	BARD1	CHD4	FANCL	GRM3	LRP1B	NTRK1	RANBP2	SYK			
APC	CD274 CD79A	BCL2	CHEK1	FAS	GSK3B	LYN	NTRK2	RARA	TAF1			
ARAF	CD79B	BCL2L1	CHEK2	FAT1	H3F3A	LZTR1	NTRK3	RB1	TBX3			
ARAF ARFRP1	CDC73	BCL2L2	CIC	FBXW7	HGF	MAGI2	NUP93	RBM10	TERC			
ARID1A	CDH1	BCOR	CREBBP	FGF10	HNF1A	MAP2K1	PAK3	RET	TERT (promoter only)		(Thy I	
ARID1B	CDK12	BCORL1	CRKL	FGF14	HRAS	MAP2K2	PALB2	RICTOR	TET2			
ARID2	CDK4	BLM	CRLF2	FGF19	HSD3B1	MAP2K4	PARK2	RNF43	TGFBR2			
ASXL1	CDK6	BRAF	CSF1R	FGF23	HSP90AA1	MAP3K1	PAX5	ROS1	TNFAIP3		100	
ATM	CDK8	BRCA1	CTCF	FGF3	IDH1	MCL1	PBRM1	RPTOR	TNFRSF14			
ATD	CDKN1A	BRCA2	CTNI									
ATR		BRD4	CTNI			SEL	ECT REARF	RANGEME	NTS			
ATRX	CDKN1B	BRIP1	CU	NIK DDAF	DDD4	ET)/4	ET)//	KIT	MVC	NITDIZO	DADA	TMDDCCO
		BTG1	CYI	ALK BRAF	BRD4	ETV4	ETV6	KIT	MYC	NTRK2	RARA	TMPRSS2
		ВТК	DA	CL2 BRCA1	EGFR	ETV5	FGFR2	MSH2	NOTCH2	PDGFRA	RET POS1	
				BCR BRCA2	ETV1	ETV6	FGFR3	MYB	NTRK1	RAF1	ROS1	

Molecular basket trials

NATIONAL CANCER INSTITUTE NCI-MATCH CLINICAL TRIAL

THIS PRECISION MEDICINE TRIAL EXPLORES TREATING PATIENTS BASED ON THE MOLECULAR PROFILES OF THEIR TUMORS

NCI-MATCH* IS FOR ADULTS WITH:

- solid tumors (including rare tumors) and lymphomas
- tumors that no longer respond to standard treatment

ABOUT 5,000
CANCER PATIENTS
WILL BE
SCREENED WITH A

THE BIOPSIED TUMOR TISSUE WILL UNDERGO GENE

IF A PATIENT'S TUMOR HAS A GENETIC ABNORMALITY THAT MATCHES ONE TARGETED BY A DRUG

NOT ALL PATIENTS WILL HAVE TUMORS WITH AN ABNORMALITY THAT MATCHES A DRUG BEING TESTED

PATIENTS WITH TUMORS
THAT SHARE THE SAME
GENETIC ABNORMALITY,
REGARDLESS OF TUMOR
TYPE, WILL RECEIVE THE
DRUG THAT TARGETS
THAT ABNORMALITY

Cunanan et al. doi: 10.1200/JCO.2016.69.9751

Enrollment by Drug as of 2/1/18

Targeted Agent and Profiling Utilization Registry Study

Drug Name	Total participants enrolled on drug		
Axitinib (INLYTA)	4		
Bosutinib (BOSULIF)	1		
Cetuximab (ERBITUX)	54		
Cobimetinib (COTELLIC) + Vemurafenib (ZELBORAF)	34		
Crizotinib (XALKORI)	15		
Dasatinib (SPRYCEL)	8		
Erlotinib (TARCEVA)	1		
Nivolumab (OPDIVO) + Ipilimumab (YERVOY)	13		
Olaparib (LYNPARZA)	87		
Palbociclib (IBRANCE)	134		
Pembrolizumab (KEYTRUDA)	68		
Pertuzumab (PERJETA) + Trastuzumab (HERCEPTIN)	47		
Regorafenib (STIVARGA)	15		
Sunitinib (SUTENT)	87		
Temsirolimus (TORISEL)	55		
Vismodegib (ERIVEDGE)	5		
Total	628		

113 Sites, 20 states

7 Pharma partners

AstraZeneca (1)

Bayer (1)

Bristol-Meyers Squibb (3)

Eli Lilly (1)

Genentech (6)

Merck (1)

Pfizer (6)

Precision Oncology and the FDA: Scope of approvals is changing

Year of Approval*	Traditional	Targeted**	Gene mutation- specific	FDA gene mutation-specific requirement
2010	2	2		
2011	1	4	3	2 (25%)
2012	2	8	2	
2013	1	4	3	4 (50%)
2014		8	1	5 (56%)
2015	3	10	3	4 (25%)
2016		4		3 (75%)
2017	1	15	3	3 (100%)

^{*}New hematology/oncology approvals only, not including biosimilars **Including immunotherapy and CAR-T cell therapy

Game changer #1: May 2017

Pembrolizumab: now FDA approved for <u>any solid</u> tumor with MSI-H or dMMR status

Game changer #2: Nov 2017

← GENOMIC TESTING

FOUNDATIONONE CDXTM

The first FDA-approved broad companion diagnostic for solid tumors, including: NSCLC, Colorectal, Breast, Ovarian, and Melanoma

Solid Tumor

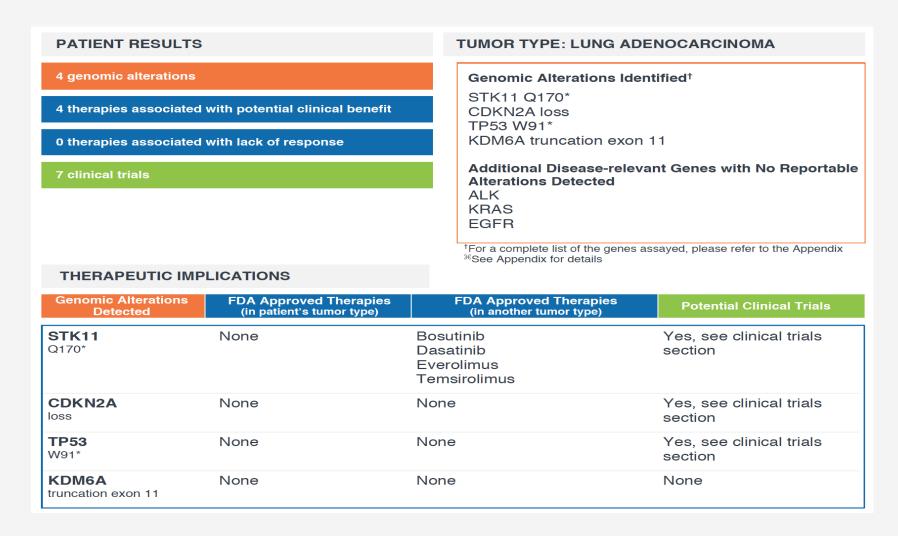
SAMPLE TYPE

FFPE

RESULTS EXPECTED

<2 weeks*

Jump to a section

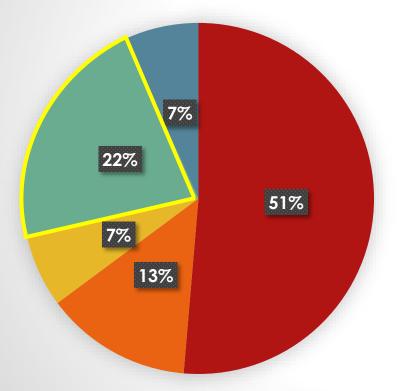

Overview

CDx Claims

Real Life Results

Learn More

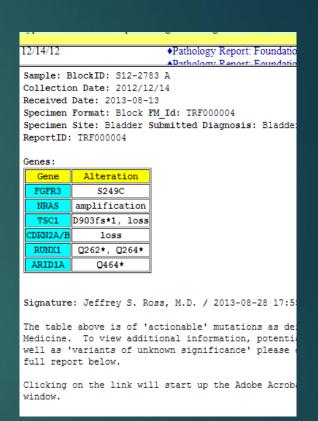
Cancer Molecular Profile Report Examples



Credit: Dr. Subha Madhavan and the Georgetown Lombardi Cancer Center

Moving the data

When you order a somatic cancer gene panel (a.k.a. cancer molecular profile), does your lab send (this could be an in-house or external lab) and can your EHR store discrete data results?


- Lab cannot send discrete results and EHR cannot store, all results come as PDFs
- Lab can send discrete results, but EHR cannot store
- Lab cannot send discrete results, but EHR can store
- Lab can send discrete results, and EHR can store
- We rarely or never order cancer gene panels

Poll of ASCO membership, 2016

Cancer molecular profile reporting

Better! (but still custom)

SMART on FHIR Genomics: facilitating standardized clinico-genomic apps

RECEIVED 20 December 2014
REVISED 10 April 2015
ACCEPTED 18 April 2015
PUBLISHED ONLINE FIRST 21 July 2015

Gil Alterovitz^{1,2,3,*}, Jeremy Warner^{4,5,*}, Peijin Zhang^{6,*}, Yishen Chen⁷, Mollie Ullman-Cullere⁸, David Kreda², Isaac S. Kohane^{1,2,3}

c. GeneticObservation			
AssessedCondition ¹	Condition	1	Condition described by this observation
SourceSeq ²	Sequence	0*	Sequence resource linked to this observation
DNASequenceVariation ⁴	String	0*	HGVS nomenclature for cDNA variant
Geneld ⁴	CodeableConcept	0*	HGNC identifier and symbol
VariantTranscript ReferenceSequenceId ⁴	CodeableConcept	0*	cDNA reference sequence identifier either RefSeq or ENSEMBL
DNASequenceVariationType ⁴	CodeableConcept	0*	Classification of variant change using LOINC Answer List values 48019-4 or Sequence Ontology values
DNARegionName ⁴	String	0*	Gene region containing the variant, eg, Exon 19
ProteinReference SequenceId ⁴	CodableConcept	0*	Protein reference sequence identifier either RefSeq or ENSEMBL
AminoAcidChange ⁴	String	0*	HGVS nomenclature for amino acid change
AminoAcidChangeType ⁴	CodableConcept	0*	Classification of variant change using LOINC Answer List values 48019-4 or Sequence Ontology values
VariationId ⁴	CodableConcept	0*	Variant identifier in ClinVar, dbSNP, or COSMIC
AlleleName ⁴	String	0*	Common name for variant for display purposes
AllelicState ⁴	CodableConcept	0*	Level of occurrence of the DNA variation in relation to the genomic context. LOINC answer list: LOINC 53034-5
Subject ³	Patient	1	Genetic laboratory's patient identification for this sequence
Specimen ³	Specimen	1	Specimen source of data
Interpretation ³	CodeableConcept	0*	Interpretation of the effect of this observation. Uses "Observation Interpretation Codes" value set of FHIR.
Comment ³	String	0*	Comments on this variant

HL7 Domain Analysis Model: Clinical Sequencing, Release 1

February 2017

HL7 Informative Document

Sponsored by Clinical Genomics Work Group (CGWG)
Co-Chairs: Gil Alterovitz, Mollie Ullman-Cullere, Bob Milius, Amnon Shabo (Shvo)

Questions or comments regarding this document should be directed to Gil Alterovitz at ga@alum.mit.edu or Mollie Ullman-Cullere at mollie.ullmancullere@gmail.com

Copyright © 2017 Health Level Seven International * ALL RIGHTS RESERVED. The reproduction of this material in any form is strictly forbidden without the written permission of the publisher. HL7 and Health Level Seven are registered trademarks of Health Level Seven International. Reg. U.S. Pat & TM Off.

Use of this material is governed by HL7's IP Compliance Policy.

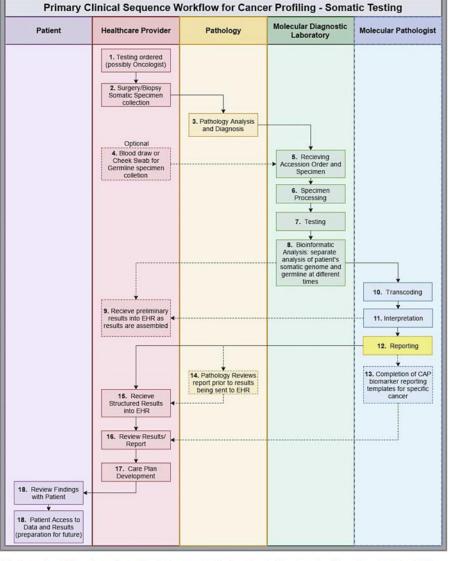
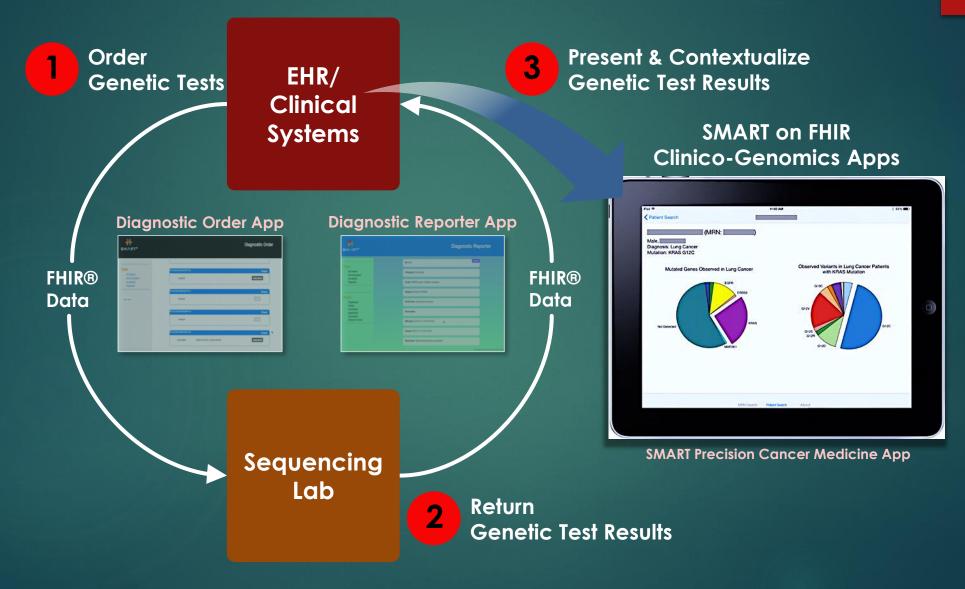



Figure 5.3-1: General workflow of somatic testing: 1. Sequence testing is ordered either by a physician or by an oncologist. 2. Suspected tumorigenic cells are identified and a specimen is collected by a clinician/surgeon. 3. The somatic specimen is sent to pathology where it is tested and analyzed for proper diagnosis. 4. (Optional) Blood is drawn or cheek swabbed for cells containing DNA for germline testing. 5. Laboratory receives specimen(s) and an order for genetic testing, including relevant data to aid in evaluation and interpretation of findings: indication for testing, cancer type, and relevant clinical/pathological data for the patient.

HL7 Domain Analysis Model: Clinical Sequencing, R1 ©2017 Health Level Seven International. All rights reserved.

Page 23 of 70 February 2017

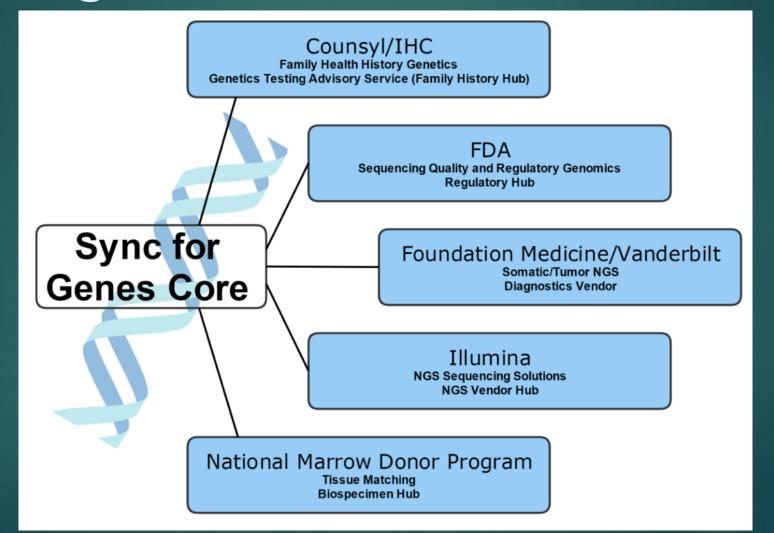
Standards-enabled workflow

Improving Cancer-Related Outcomes with CONNECTED HEALTH

A Report to the President of the United States from the President's Cancer Panel

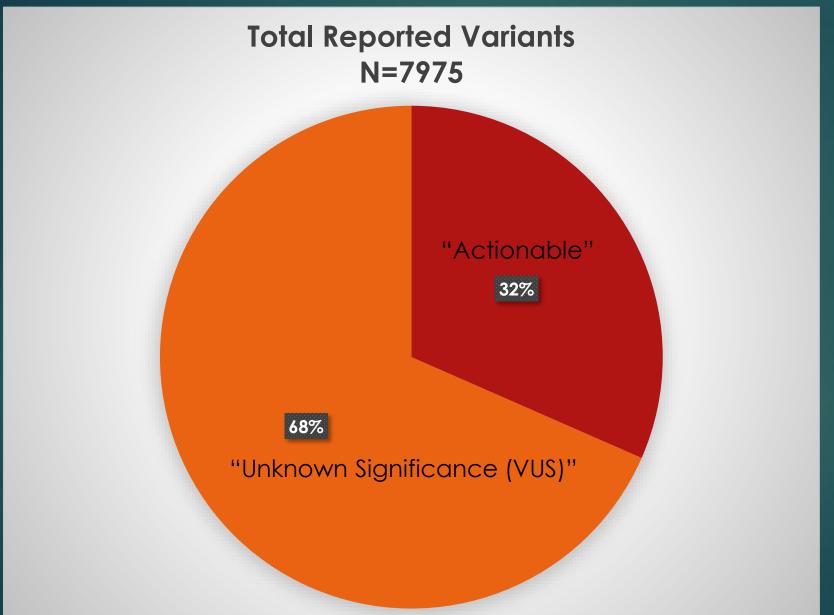
Precision Cancer Medicine App Helps Oncologists Use Genomic Information

Genomic data increasingly are informing treatment decisions for cancer patients and those at risk for cancer, but commercially available EHRs generally cannot display clinical genomic data in meaningful ways. The Precision Cancer Medicine (PCM) app was designed to present patients' genomic test results to oncologists in real time as a component of clinical practice, as well as provide links to external knowledge bases that otherwise would be unavailable through the native EHR system. PCM was piloted at Vanderbilt University and integrated into that institution's EHR system. However, because the app was developed based on an open-access API (Substitutable Medical Applications and Reusable Technology, or SMART) and uses the emerging HL7 Fast Healthcare Interoperability Resources standard, it could easily be deployed for other compatible EHR systems.


Sources: Mandel JC, Kreda DA, Mandl KD, Kohane IS, Ramoni RB. SMART on FHIR: a standards-based, interoperable apps platform for electronic health records. J Am Med Inform Assoc. 2016;23(5):899-908; Warner JL, Rioth MJ, Mandl KD, Mandel JC, Kreda DA, Kohane IS, et al. SMART precision cancer medicine: a FHIR-based app to provide genomic information at the point of care. J Am Med Inform Assoc. 2016;23(4):701-10.

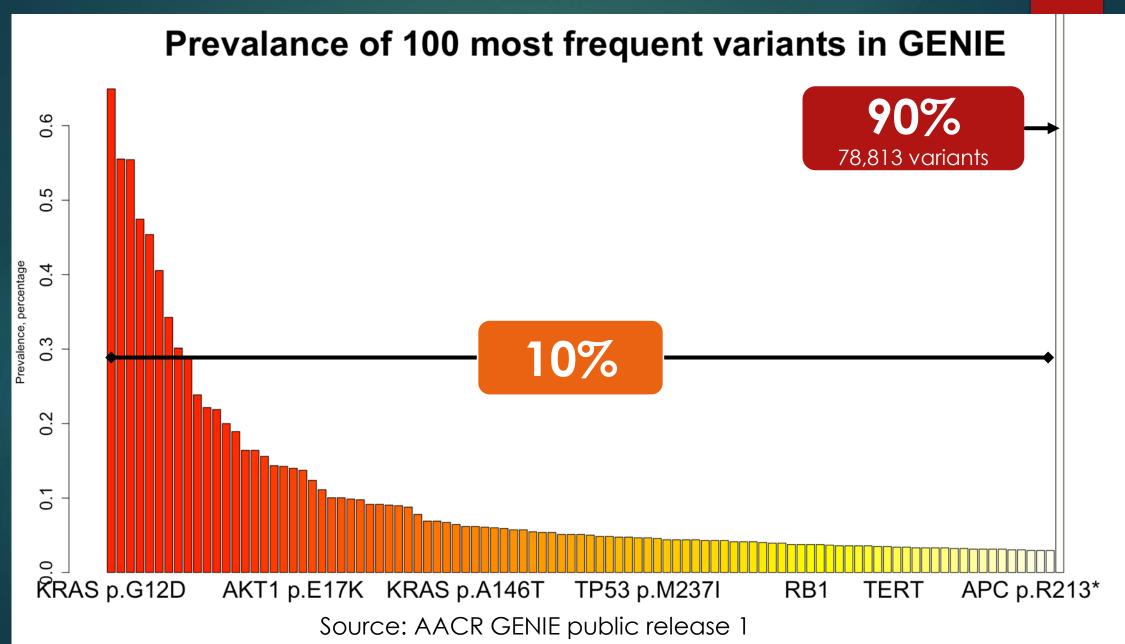
Action Item 3.3

Develop and test tools and interfaces, including apps, tailored to needs of the oncology workforce.


https://prescancerpanel.cancer.gov/report/connectedhealth/

Sync for Genes: Bringing genomic knowledge into the workflow

Why we need knowledge bases I


Median "actionable" variant per patient:

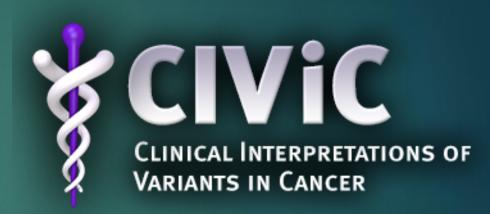
4

Median VUS per patient:

7

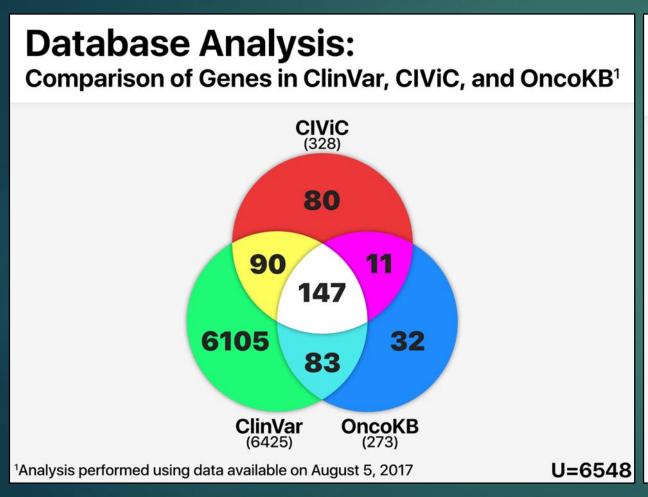
Why we need knowledge bases II

Precision oncology knowledge bases (a sampling)

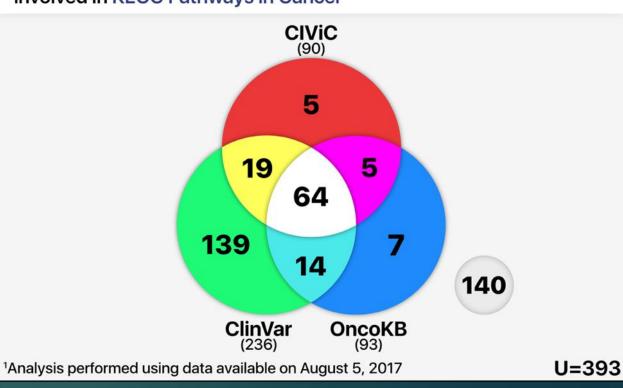

Micheel et al. doi: 10.1016/j.cancergen.2014.06.016

Chakravarty et al. doi: 10.1200/PO.17.00011

Huang et al. doi: 10.1093/jamia/ocw148



Griffith et al. doi: 10.1038/ng.3774


Patterson et al. doi: 10.1186/s40246-016-0061-7

Unequal database coverage

Comparison of Genes in ClinVar, CIViC, and OncoKB, that are involved in KEGG Pathways in Cancer¹

The problem in a nutshell – Representative interpretations from 3 knowledge bases use a variety of custom nomenclature, ontologies, etc.

Gene: BRAF (Entrez: 673)

Isoform: ENST00000288602 RefSeq: NM_004333.4

Variant: V600E (????)

Disease: Melanoma (oncotree)

Drug: Dabrafenib knownEffect: Sensitive

Level: 2B

ApprovedIndications: Dabrafenib is FDA-approved for BRAF V600E mutant unresectable or metastatic melanoma.

Gene: BRAF (Entrez: 673) Isoform: ENST00000288602.6

Variant: V600E (chr7:g.140453136A>T) Disease: Skin Melanoma (DOID:8923)

Drug: Dabrafenib + Trametinib Clinical Significance: Sensitivity

Level: A – Validated

Evidence statement: Open-label, randomized phase 3 trial with 704 patients with metastatic melanoma with a BRAF V600 mutation. Patients were randomized ...

Gene: BRAF (???) Isoform: ENST00000288602

Variant: V600E (7:140453136-140453136)

Tumor: Melanom; Tissue: Skin

Drug: ???

Clinical Significance: ???

Tier: 1

Evidence statement: ... Various B-Raf inhibitors(Vemurafenib, Dabrafenib) have been FDA approved for melanoma therapy in certain settings.

Variant Interpretation for Cancer Consortium (VICC)

www.cancervariants.org

Identifying Health Information Technology Needs of Oncologists to Facilitate the Adoption of Genomic Medicine:

Key recommendations of the ASCO Omics and Precision Oncology workshop:

- The development of genomic CDS tools is essential as **genomics knowledge is growing beyond human capabilities**.
 - Standards development organizations should rapidly produce generally accepted, **comprehensive standards** for transmitting genomic information and should closely collaborate to avoid discrepancies between competing standards. Naming conventions for genes and genomic abnormalities should be **harmonized and should be accepted by all** except in the most exceptional of circumstances.
 - A software application (app) should be developed by or on behalf of ASCO, to help both community and academic oncologists integrate higher quality genomic data into clinical practice.
 - The **content of all freely available genomic knowledge bases should be made available via APIs**, to ensure that apps can be developed to take advantage of their carefully curated content in an automated manner. Genomic knowledge bases should conform to FDA guidance and should have clinical trial links or pass-throughs to the ClinicalTrials.gov API.

Take-home points

- Genomics will become increasingly relevant to cancer care before, during, and after diagnosis
- Without agreed-upon standards, we will not be able to build large datasets that inform cancer diagnosis, prognosis, and treatment
- Given the vast breadth of knowledge, artificial intelligence and machine learning will be critical to the practice of precision oncology

Acknowledgements

Warner Lab

- Jake Conway
- Krysten Harvey*
- Sandeep Jain
- Andrew Malty
- Matthew Rioth

Vanderbilt-Ingram Cancer Center

- Daniel Carbone*
- Ross Oreto*
- Joey Schneider
- Lucy Wang

Other

- ► Gil Alterovitz (HMS)
- ▶ Malachi Griffith (VICC)

- Obi Griffith (VICC)
- ► Erich Haberman (FMI)
- ▶ Isaac Kohane (HMS)
- David Kreda (HMS)
- Subha Madhavan (GDOC)
- Ken Mandl (HMS)
- Rob Manor (FMI)
- Rich Schilsky (ASCO)
- ▶ Bill Stead (VUMC)
- Heming Yao* (HMS)
- Peter Yang (HemOnc.org)
- Peijin Zhang (HMS)
- ► Shilin Zhu* (HMS)
- Mary Zutter (VUMC)

Past and current funding support: NCATS ULTR000445, NCI P30 CA068485, L30 CA171123, U24 CA184407, U24 CA194215, ONC 90TR0001/01, Robert J. Kleberg, Jr. and Helen C. Kleberg Foundation, T.J. Martell Foundation, and an anonymous foundation