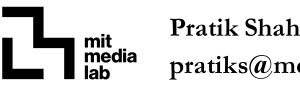
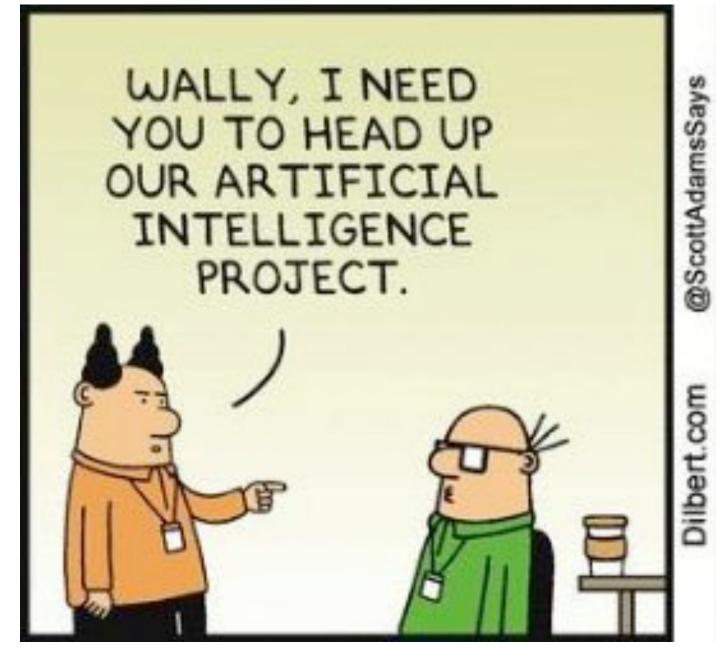
Digital Clinical Trials for Oncology Patients with Novel Machine Learning and AI Architectures

Pratik Shah. Ph.D.
Principal Investigator

Disclosures: none

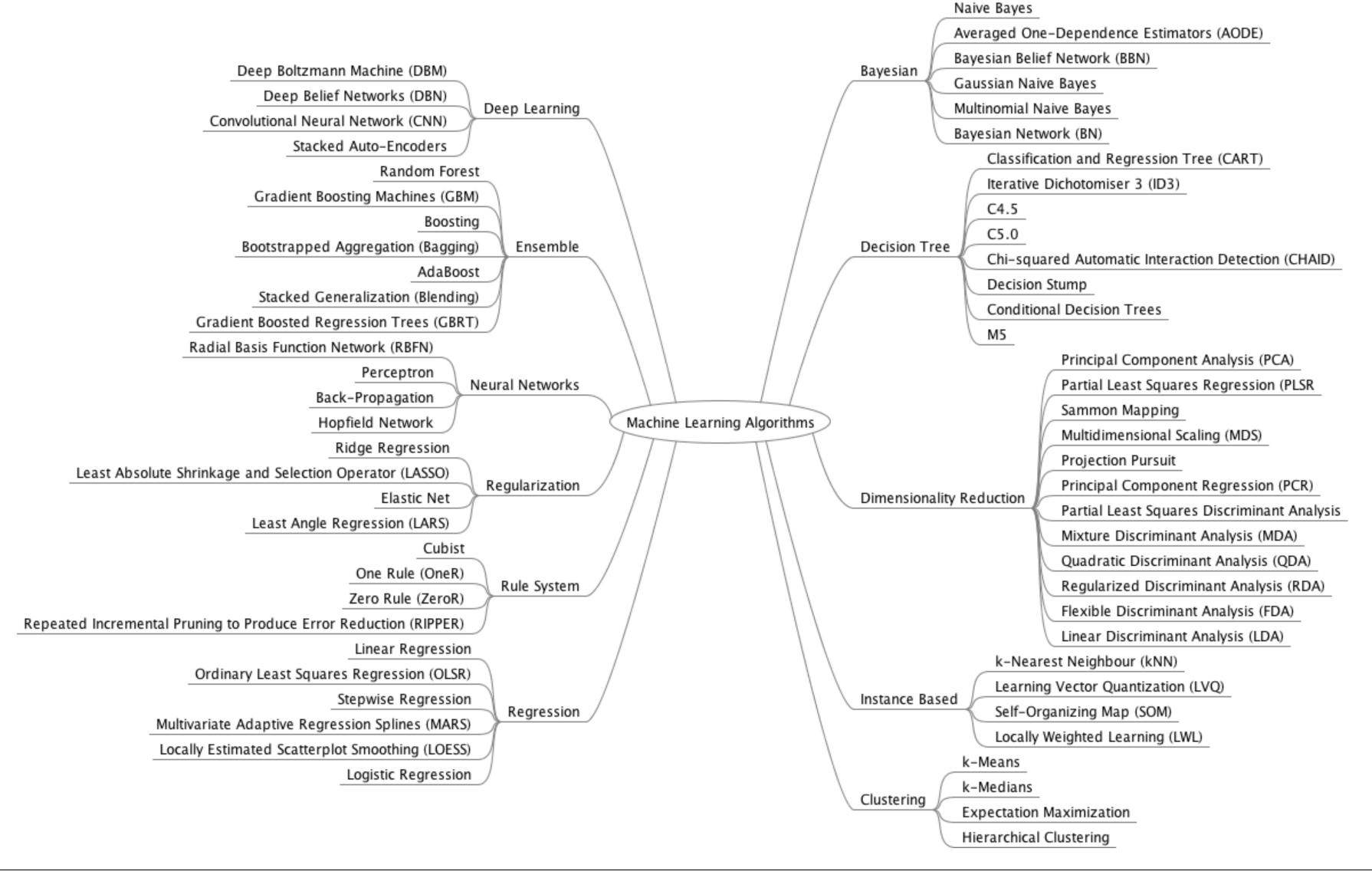




Part 1: Limitations and applications of machine learning (and AI)

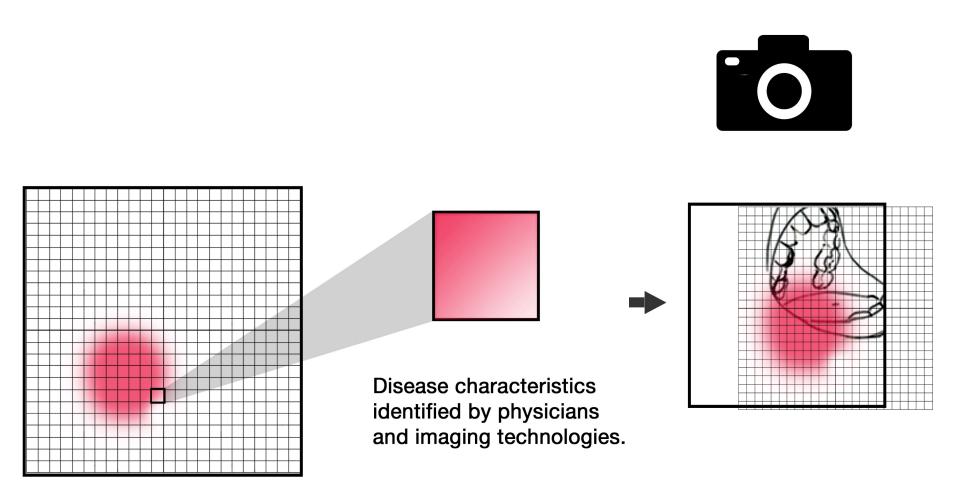
(Automation vs. Knowledge vs. Intelligence)

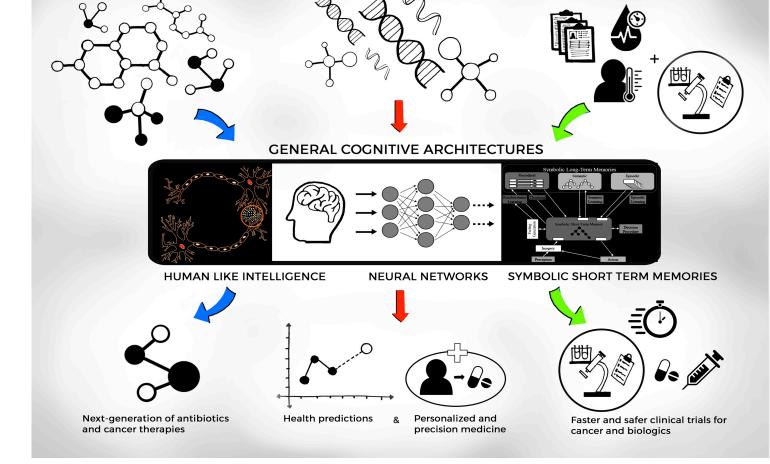
Machine Learning

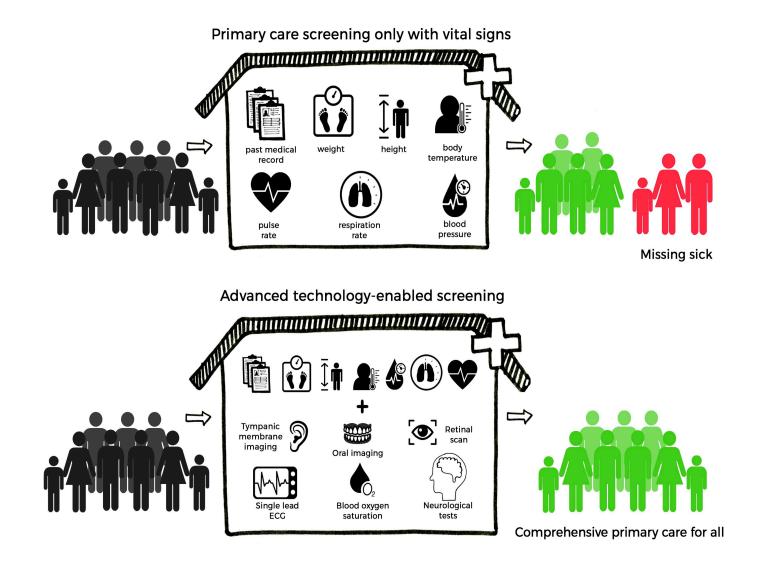


www.machinelearningmastery.com/a-tour-of-machine-learning-algorithms/

Research Areas





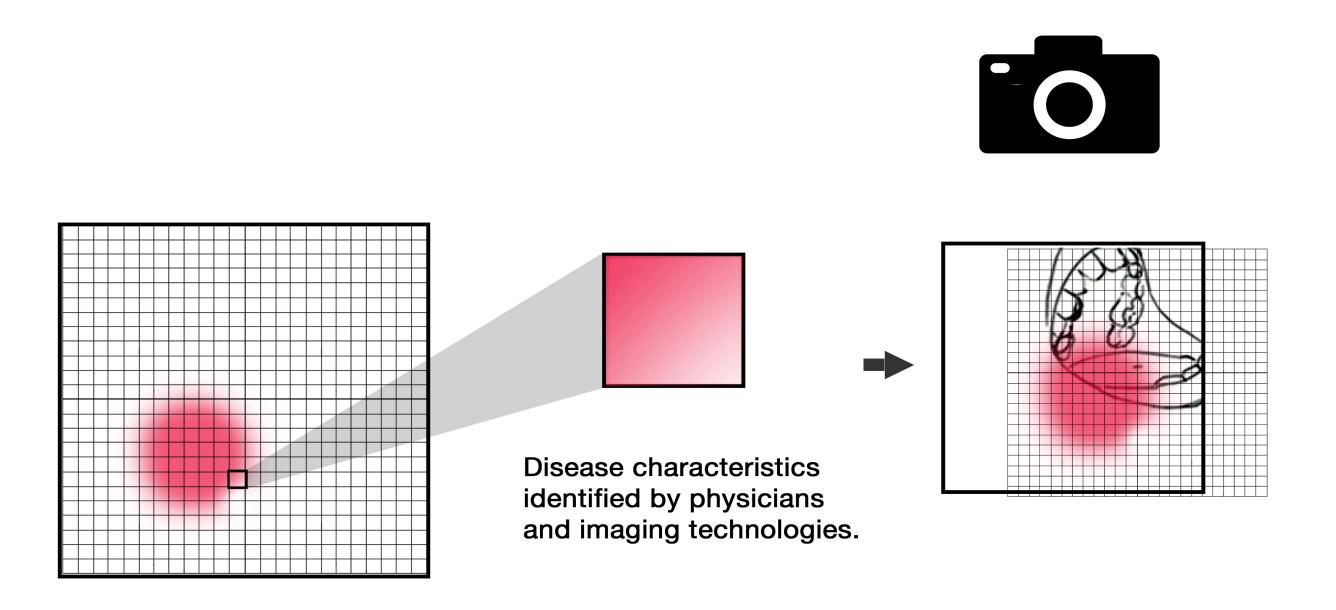


Machine saliency and unorthodox imaging of biomarkers

Novel clinical trial platforms

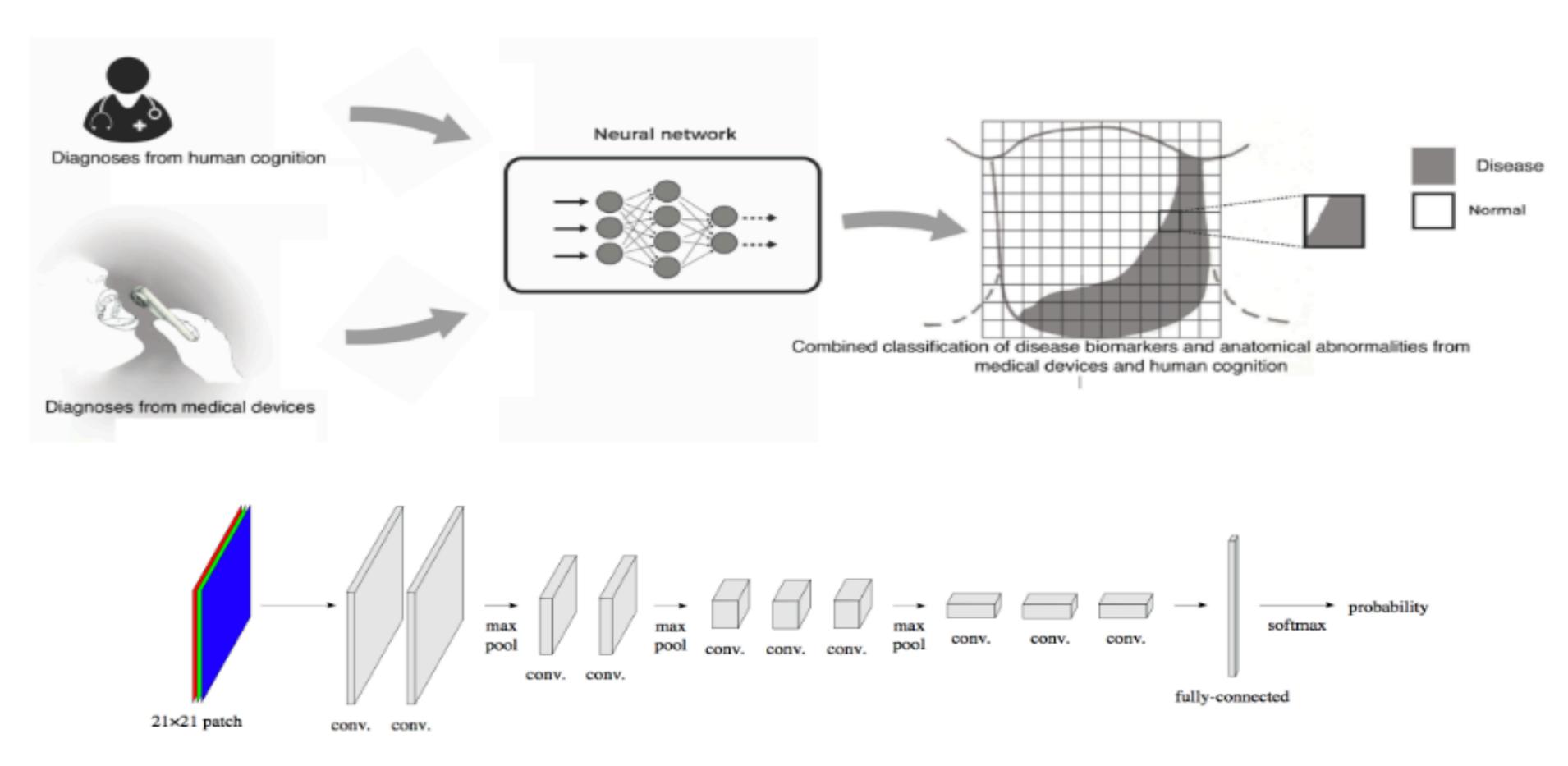
Real world data and evidence

Oral and Prostate Cancer



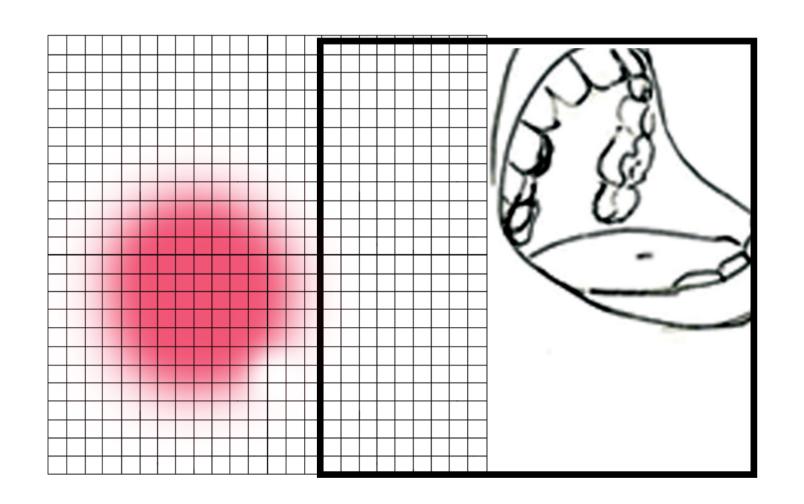
Machine saliency and unorthodox imaging of biomarkers

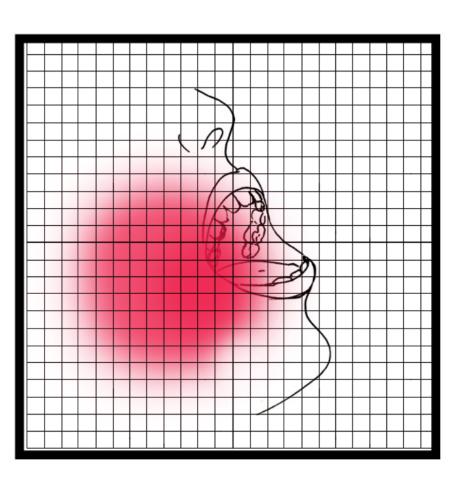
Neural Networks with Human and Device Cognition



Deep learning architecture.

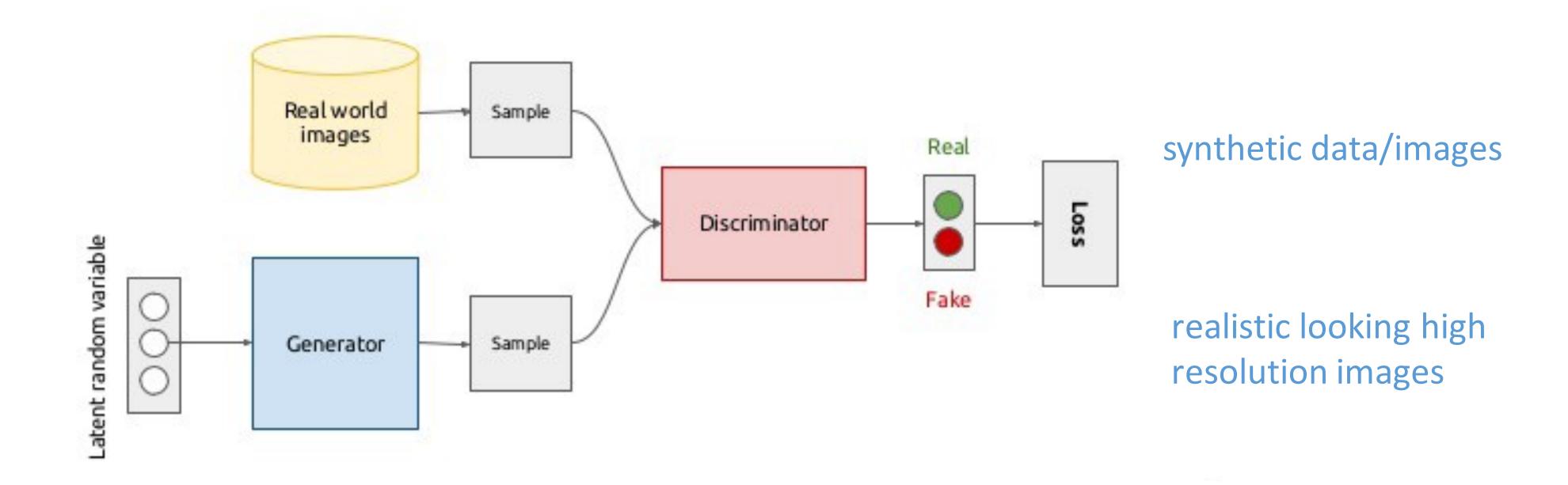
Unorthodox Image Processing and Biomarker Generation





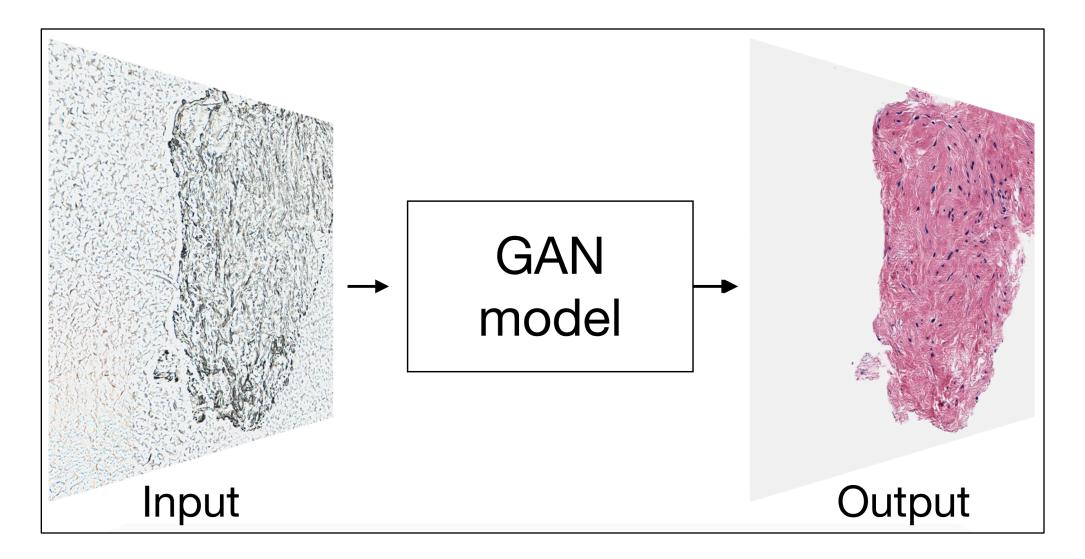
Computational Histological Staining and Destaining of Prostate Core Biopsy RGB Images with Generative Adversarial Neural Networks

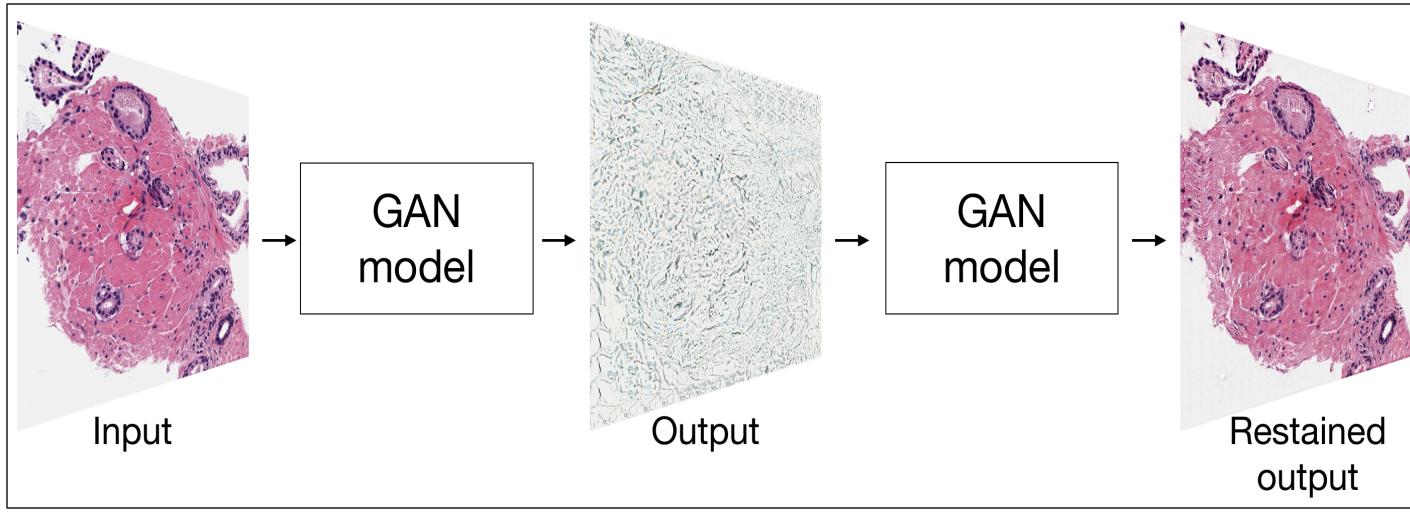
Generative Adversarial Neural Networks for New Medical Knowledge



$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

H & E Staining and Destaining of Prostate Core Biospy Images



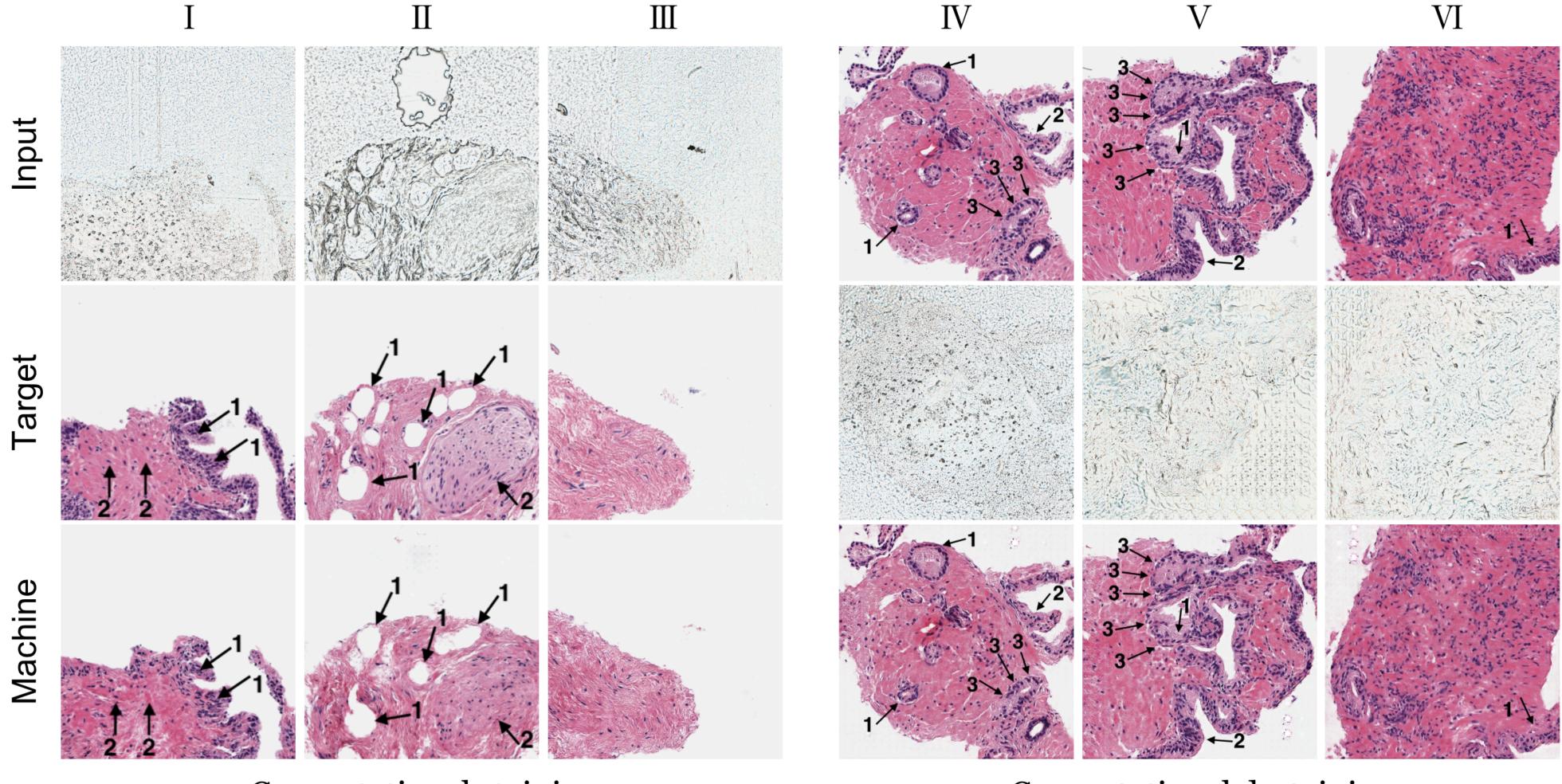


Computational staining

Computational destaining

Collaboration with Brigham and Womens Hospital

Computational Staining and Destaining of Prostate Cancer Biopsy



Computational staining

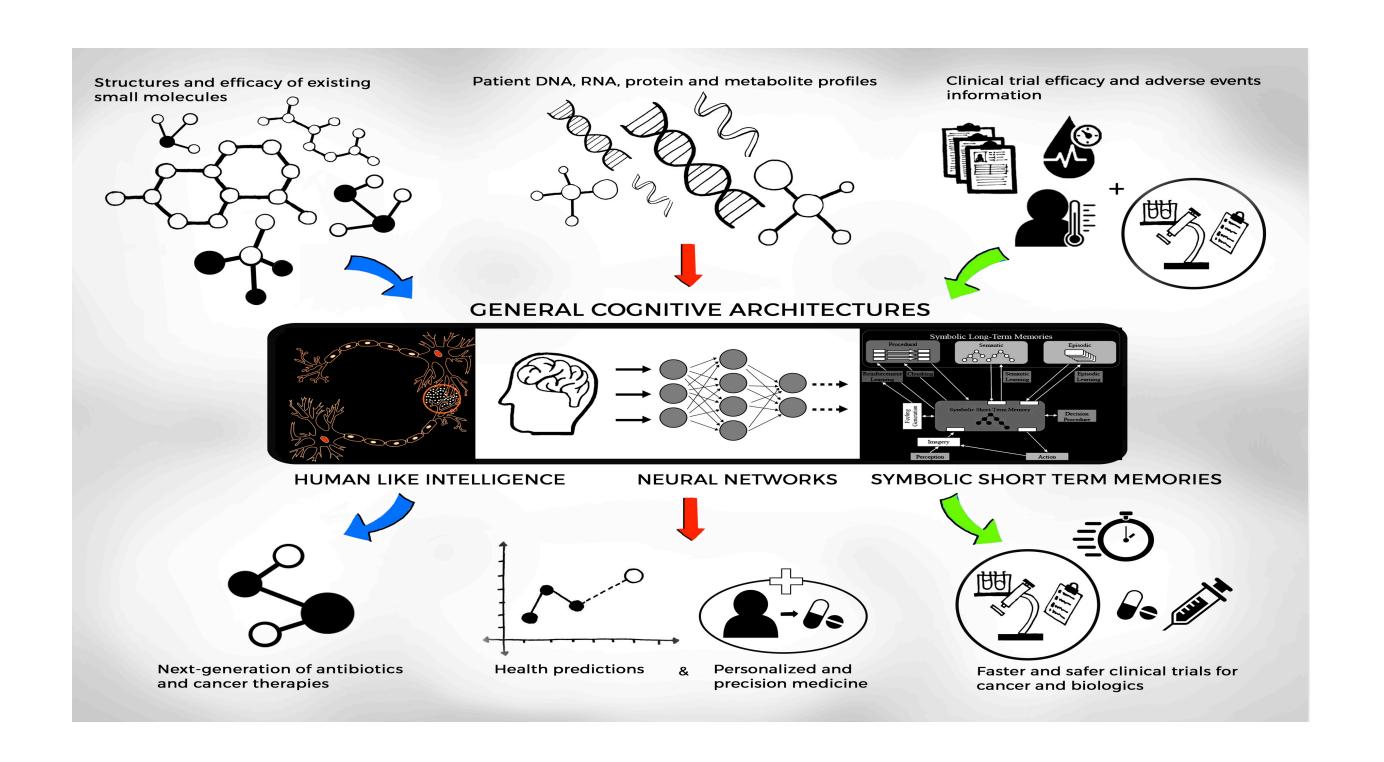
Computational destaining

Collaboration with Brigham and Womens Hospital

Computational histological staining and destaining of prostate core biopsy RGB images with generative adversarial neural networks A. Rana, G. Yauney, A. Lowe and Pratik Shah

Pratik Shah. Ph.D. pratiks@media.mit.edu

Glioblastomas, Prostate, Colorectal and Small Cell Lung Cancer

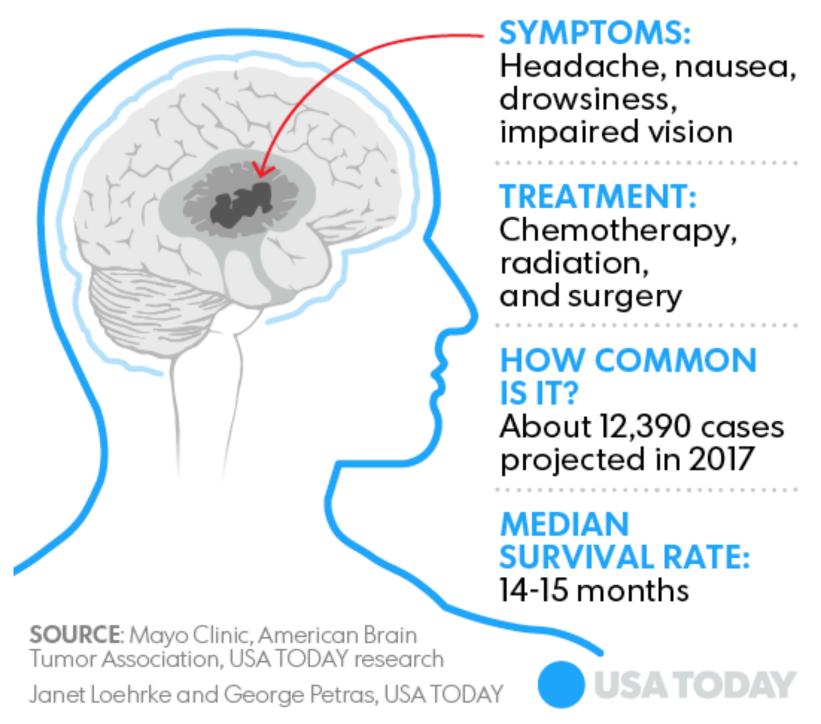


Novel clinical trials

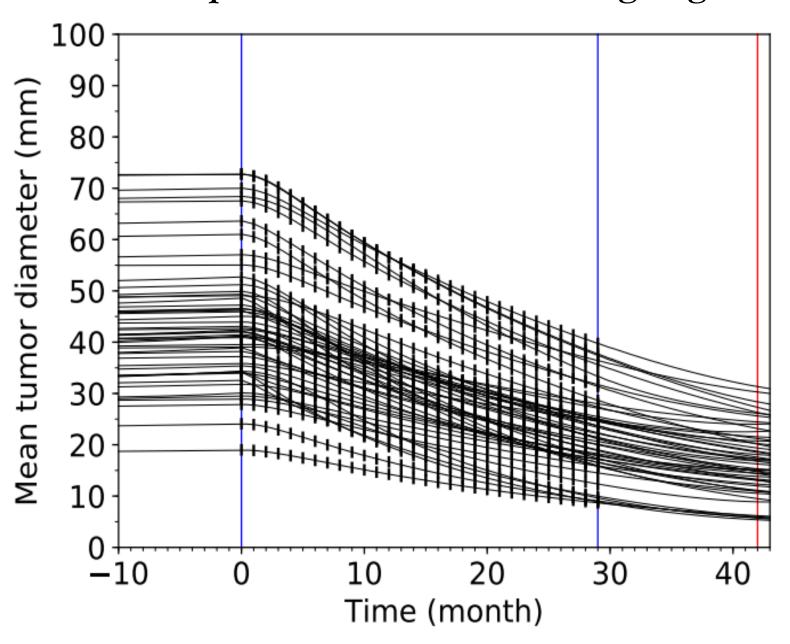
Glioblastoma Treatment and Toxicity with Chemo-and-Radiotherapy

GLIOBLASTOMA

WHAT IT IS: An aggressive type of brain cancer that starts in the glial cells of the brain and spreads rapidly throughout the brain.



Human expert Temozolomide dosing regimen



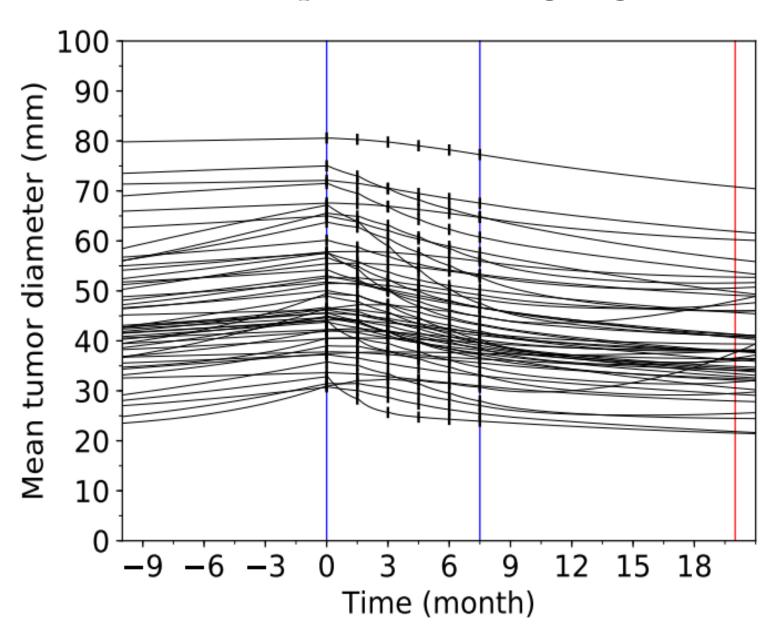
Human expert PCV dosing regimen

Patient tumor size

Dosing bounds

Final observation

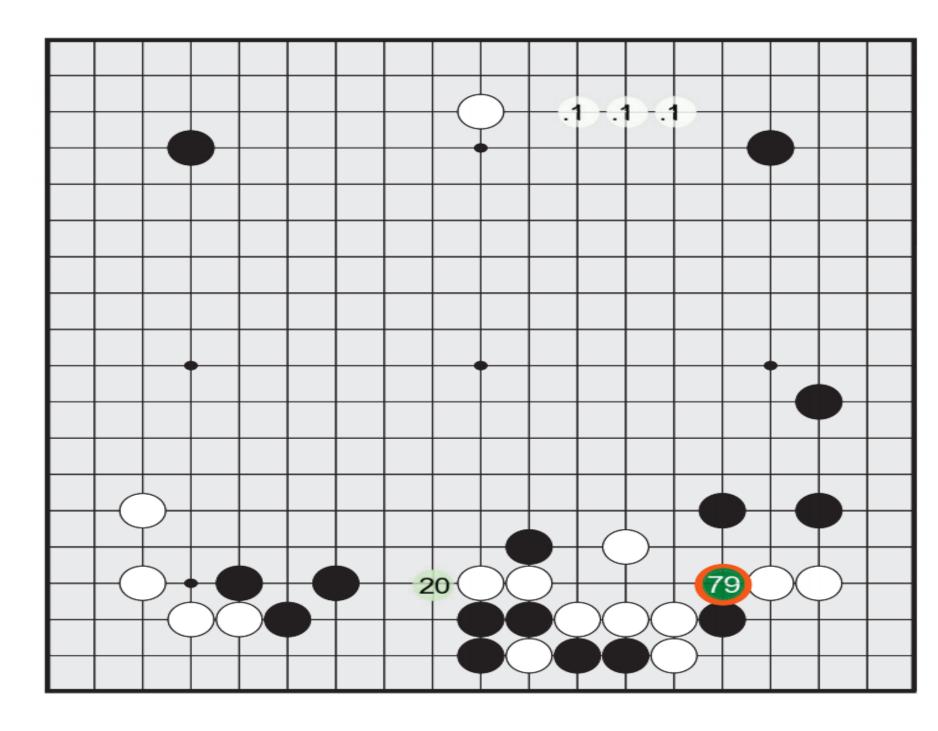
Dose administered



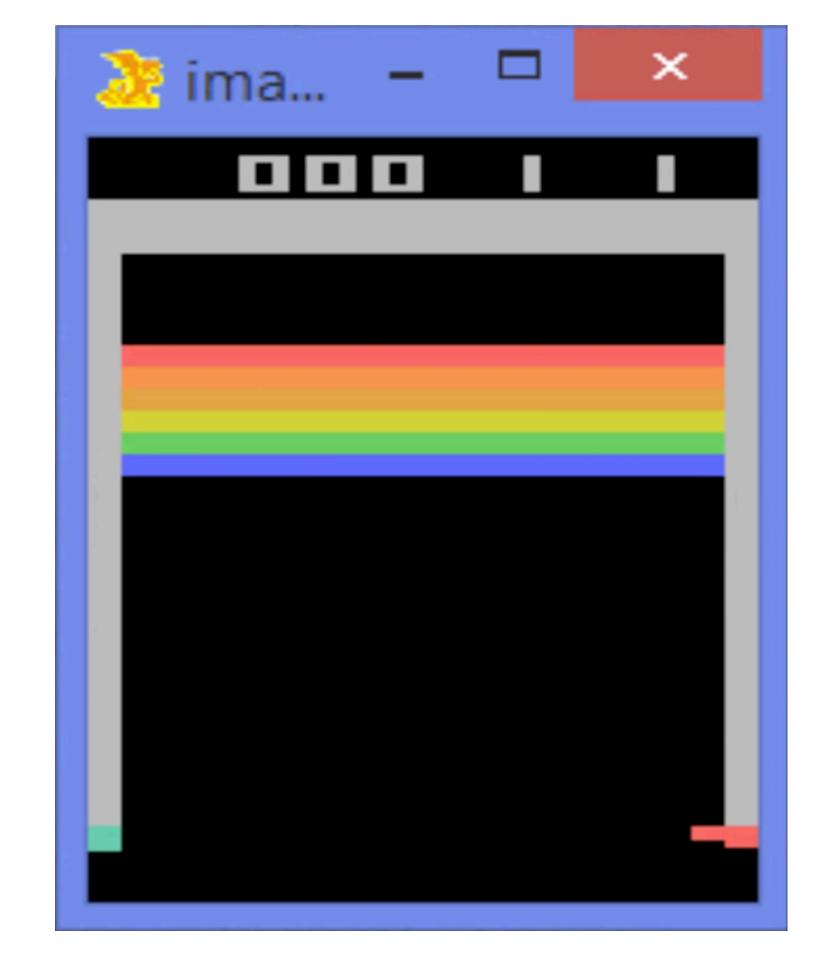
Reinforcement Learning

Formal definition:

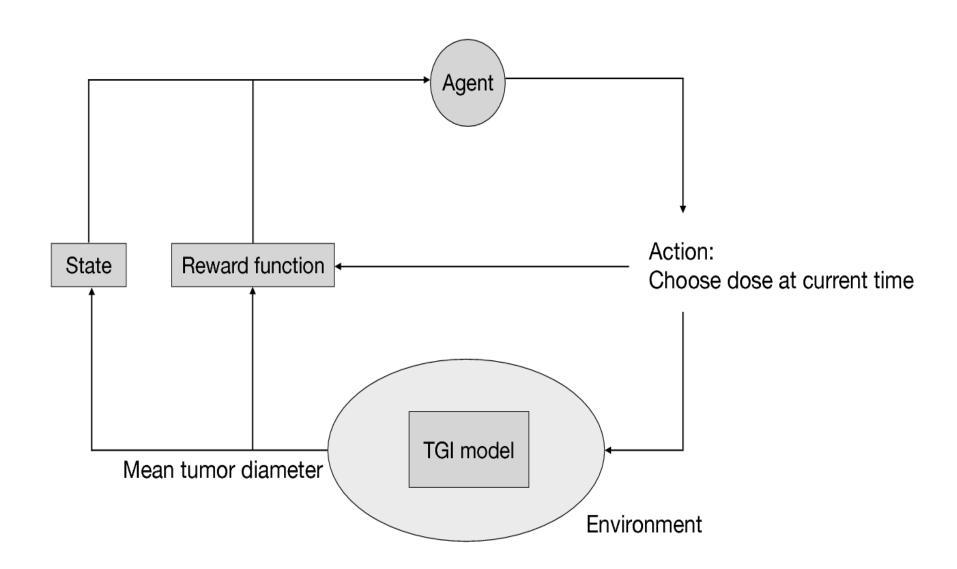
- States
- Actions
- Transition
- Reward
- Discount factor



Silver, David, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian Schrittwieser et al. "Mastering the game of Go with deep neural networks and tree search." *Nature* 529, no. 7587 (2016): 484-489.



Novel Dosing and Clinical Trials with Action-Derived reward policies



The reinforcement learning agent interacts with an environment containing a tumor growth inhibition (TGI) model. The reward is determined in part by the values used for the reinforcement learning model's state and the agent's most recent action.

Off-Policy deep Q learning

$$Q^{\star}(s,a) = R(s,a,s') + \gamma \sum_{s' \in S} T(s,a,s') \max_{a'} Q^{\star}(s',a')$$

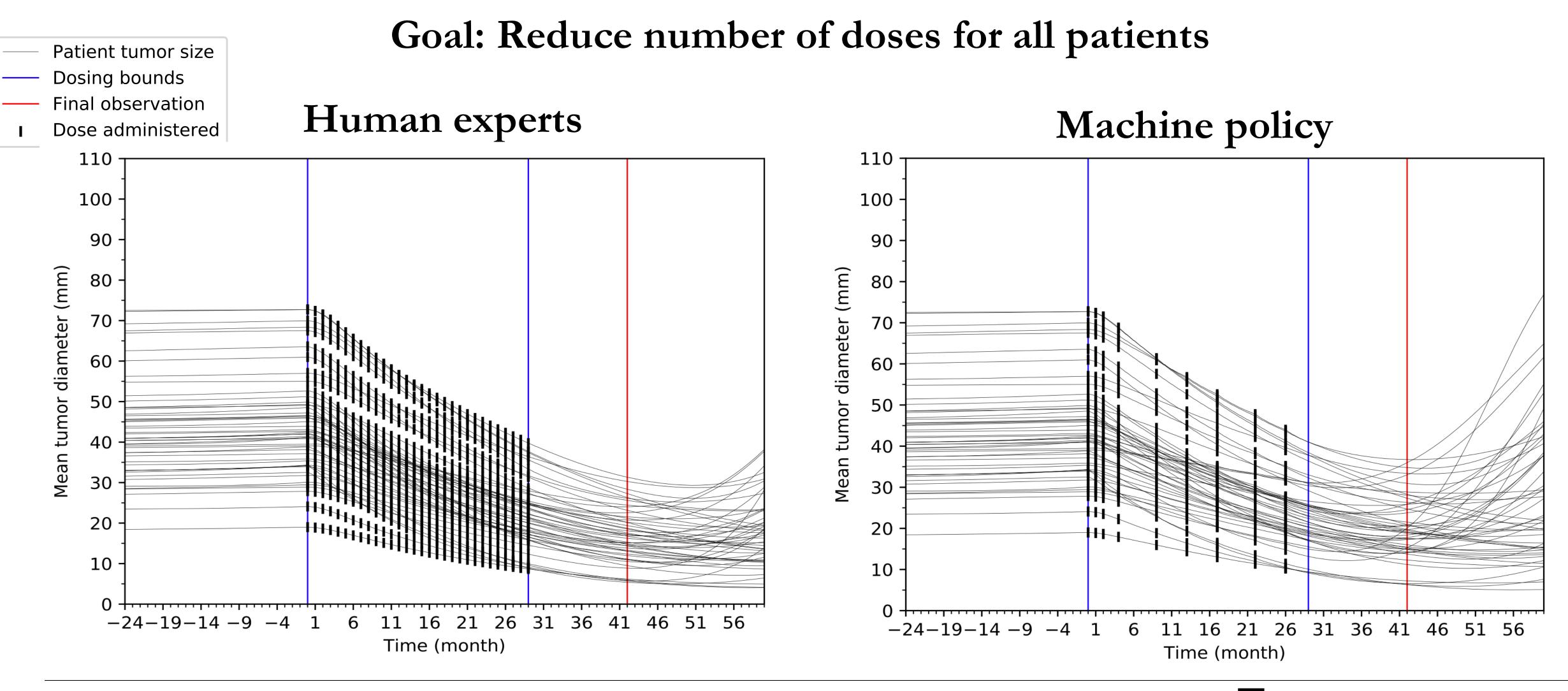
Actions are sampled according to an epsilon-greedy strategy, after which the optimal action from each state can be found:

$$\pi^{\bullet}(s) = \mathrm{argmax}_a Q^{\bullet}(s,a)$$

 $R = c (MTD_t - MTD_{t'}) - penalty . concentration$ $<math>R_{final} = c_{final} (MTD_{initial} - MTD_{final})$

C= 1,
$$C_{final}$$
=10
TMZ penalties= 1 and 5
PCV penalties= 1 and 10

Digital Therapeutics and Algorithmic Design of Clinical Trials



Pratik Shah. Ph.D.

mit media pratiks@media.mit.edu

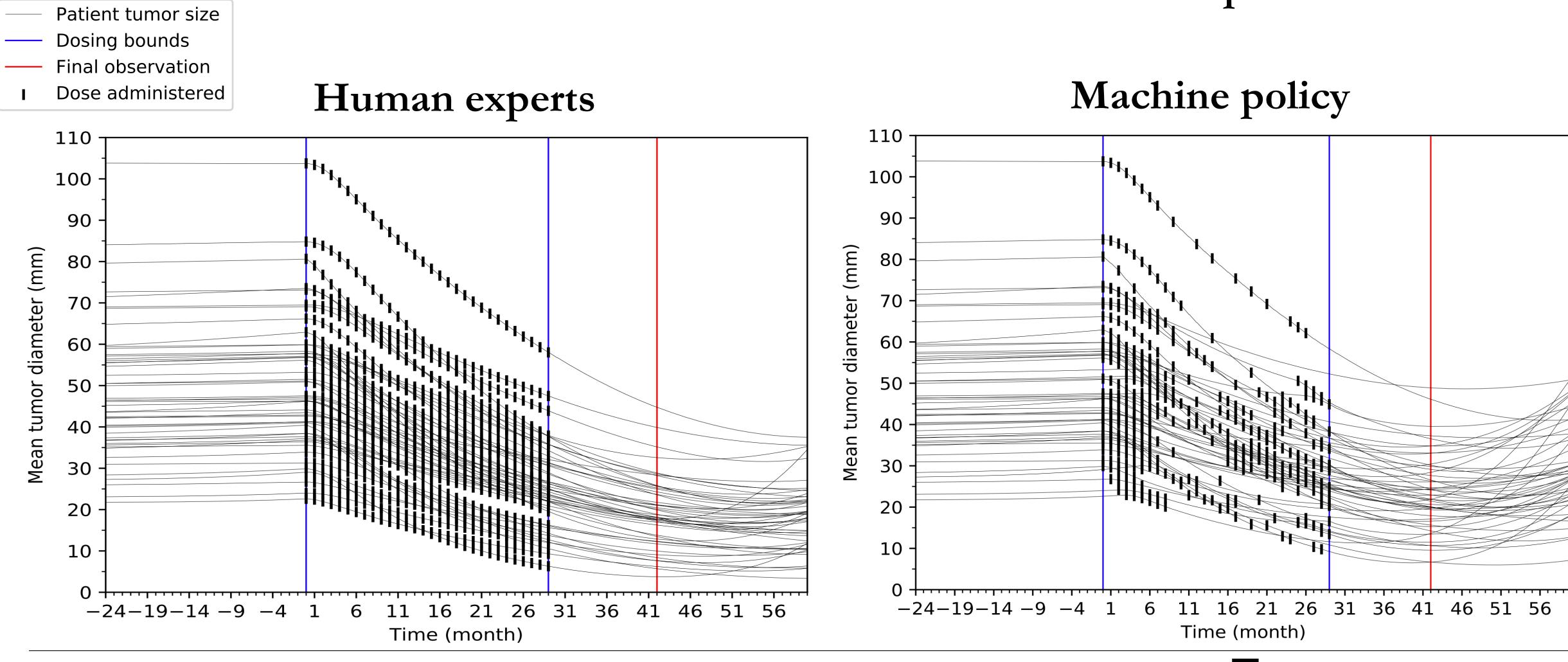
Digital Therapeutics and Algorithmic Design of Clinical Trials

Goal: Reduce number of doses for all patients

														Ν	Ionth	of t	rial													
Dosing regimen	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
Expert	✓	~	✓																											
Machines	✓	~	· •		✓					✓				✓				✓					✓				✓			

Digital Therapeutics and Algorithmic Design of Clinical Trials

Goal: Reduce number of interventions for individual patients



2018- Proceedings of Machine Learning Research-MLHC-2018 G. Yauney and Pratik Shah

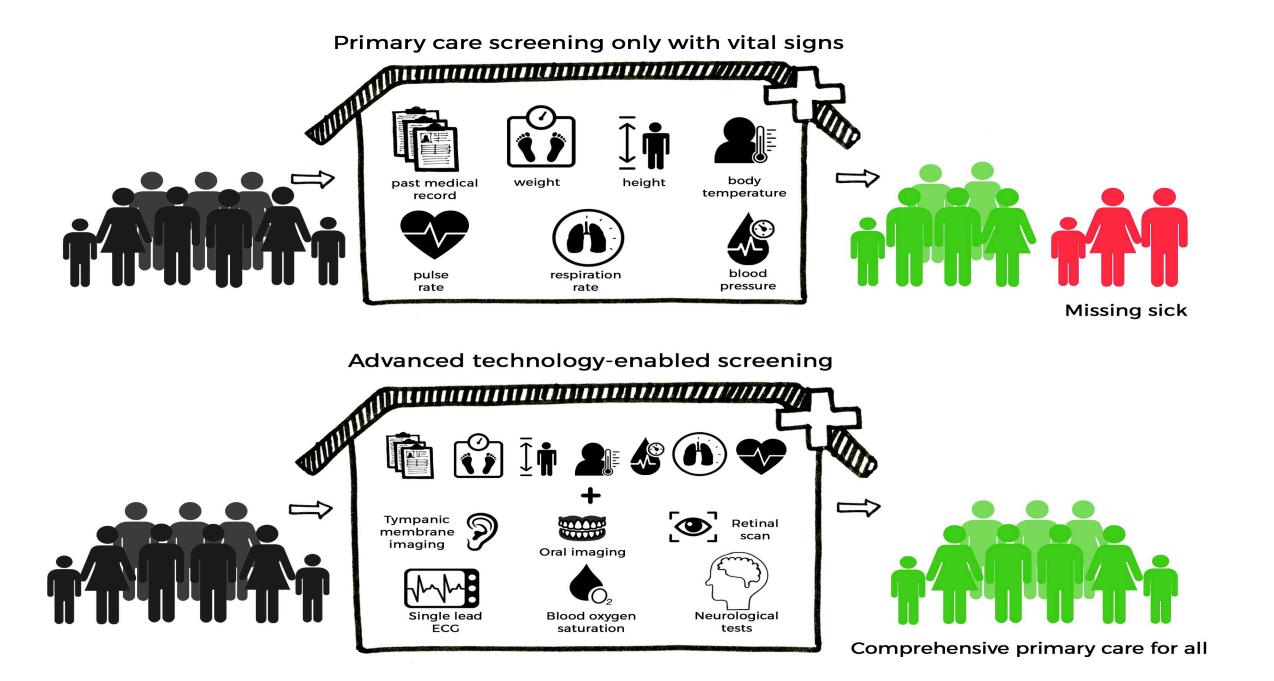
Learned policies with penalties and MTD reductions in TMZ cohort trials

																1	Mont!	h of t	rial													
	Conc.	Penalty	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
A	þ	None	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
В	ixe	Small	1	1	1	0	1	0	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	0	1	0	0	0	1	0	0	0
C	<u>pr</u>	Large	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	1
D	ple	None	1	1	1	1	.25	.75	1	1	.75	.75	.75	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
\mathbf{E}	ria	Small	1	1	.75	.75	0	0	.25	.5	0	.5	0	0	.5	0	.5	0	0	.5	0	0	.5	0	.5	0	0	.25	.5	0	0	.5
\mathbf{F}	8,	Large	1	.5	0	0	0	0	0	0	.25	.25	0	.25	.25	0	.25	0	.25	0	.25	.25	0	.25	0	.25	.25	0	.25	.25	0	.25

Table 2: Learned policies for trial-based TMZ experiments where all simulated patients received the same dose each month. Agents with a fixed concentration could give a unit dose, whereas agents with a variable concentration could give doses at 25%, 50%, 75%, and 100% of the unit dose's concentration. Penalty: size of the dose penalty the agent tried to minimize while maximizing mean tumor diameter reduction. Conc: concentration.

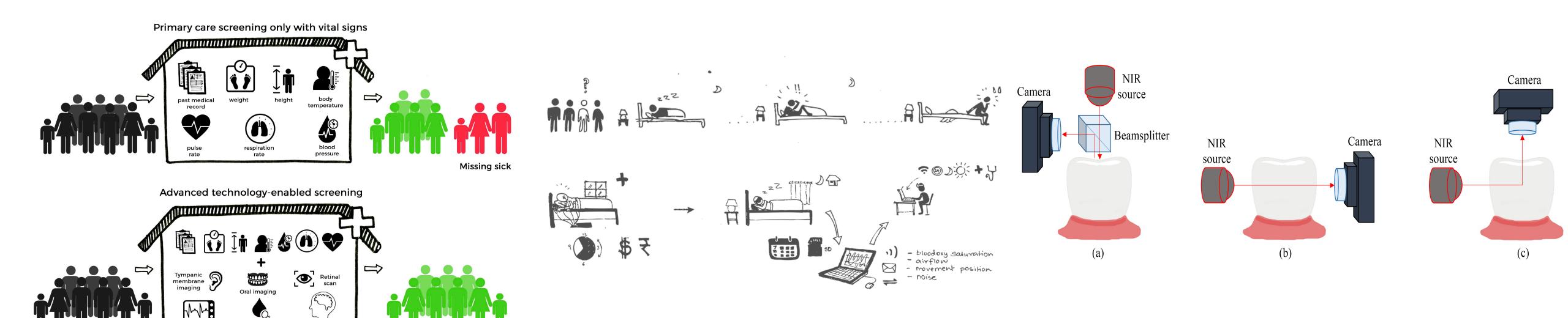
	Tr	rial parame	ters		Average MTD change										
	Treatment	Conc.	Type	Expert policy	No penalty	Small penalty	Large penalty								
A	TMZ	Fixed	Patient	$-61.04\% \pm 11.63\%$	$-60.95\% \pm 11.64\%$	$-51.89\% \pm 15.31\%$	$-35.97\% \pm 17.05\%$								
\mathbf{B}	TMZ	Fixed	Trial	$-62.18\% \pm 10.50\%$	$-62.17\% \pm 10.51\%$	$-54.09\% \pm 14.05\%$	$-46.27\% \pm 17.93\%$								
\mathbf{C}	TMZ	Variable	Patient	$-60.51\% \pm 10.68\%$	$-60.23\% \pm 10.80\%$	$-39.35\% \pm 46.02\%$	$-7.15\% \pm 40.80\%$								
D	TMZ	Variable	Trial	$-62.86\% \pm 11.41\%$	$-62.72\% \pm 11.43\%$	$-54.03\% \pm 15.21\%$	$-45.69\% \pm 18.06\%$								

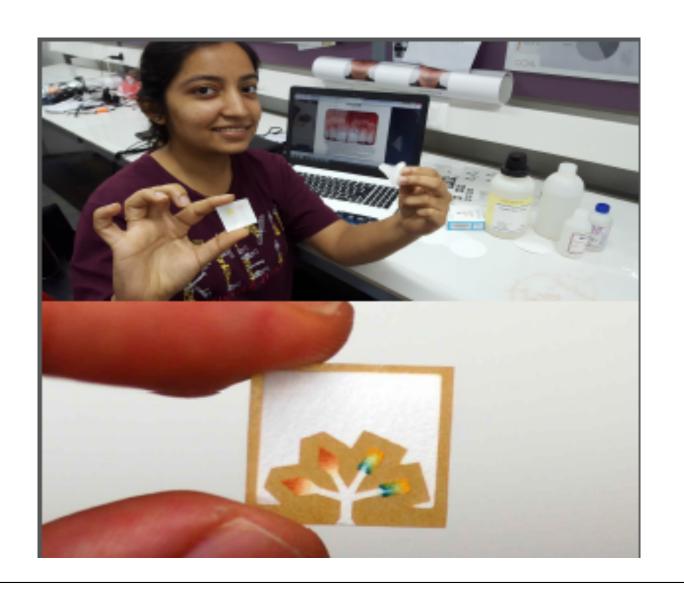
Research topic III

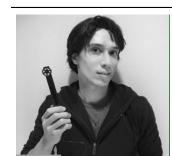


Real world data and evidence

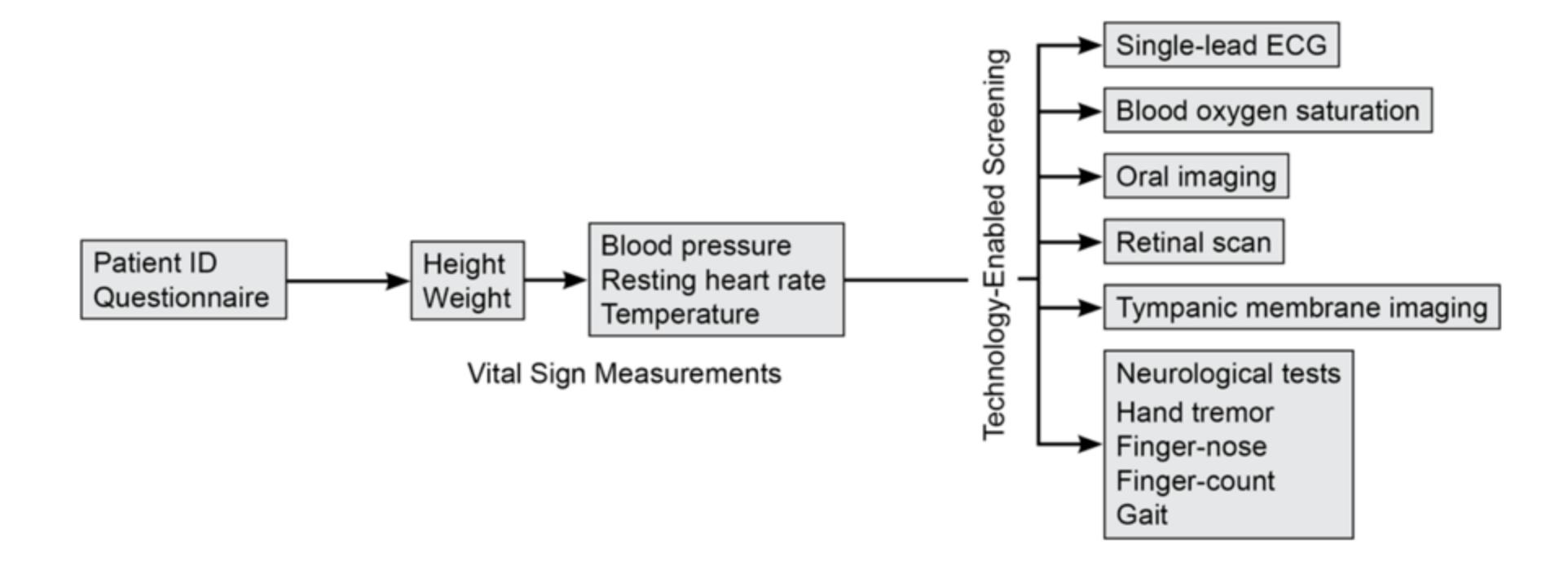
Novel end points and Point of Care Evidence







Real World Data and Evidence using Point-of-Care Devices



Artificial Intelligence in Clinical Development to Improve Public Health: Key recommendations

• Data and research sandbox that addresses key challenges and leverages opportunities to hosts confidential and high value health data and facilitates collaborations;

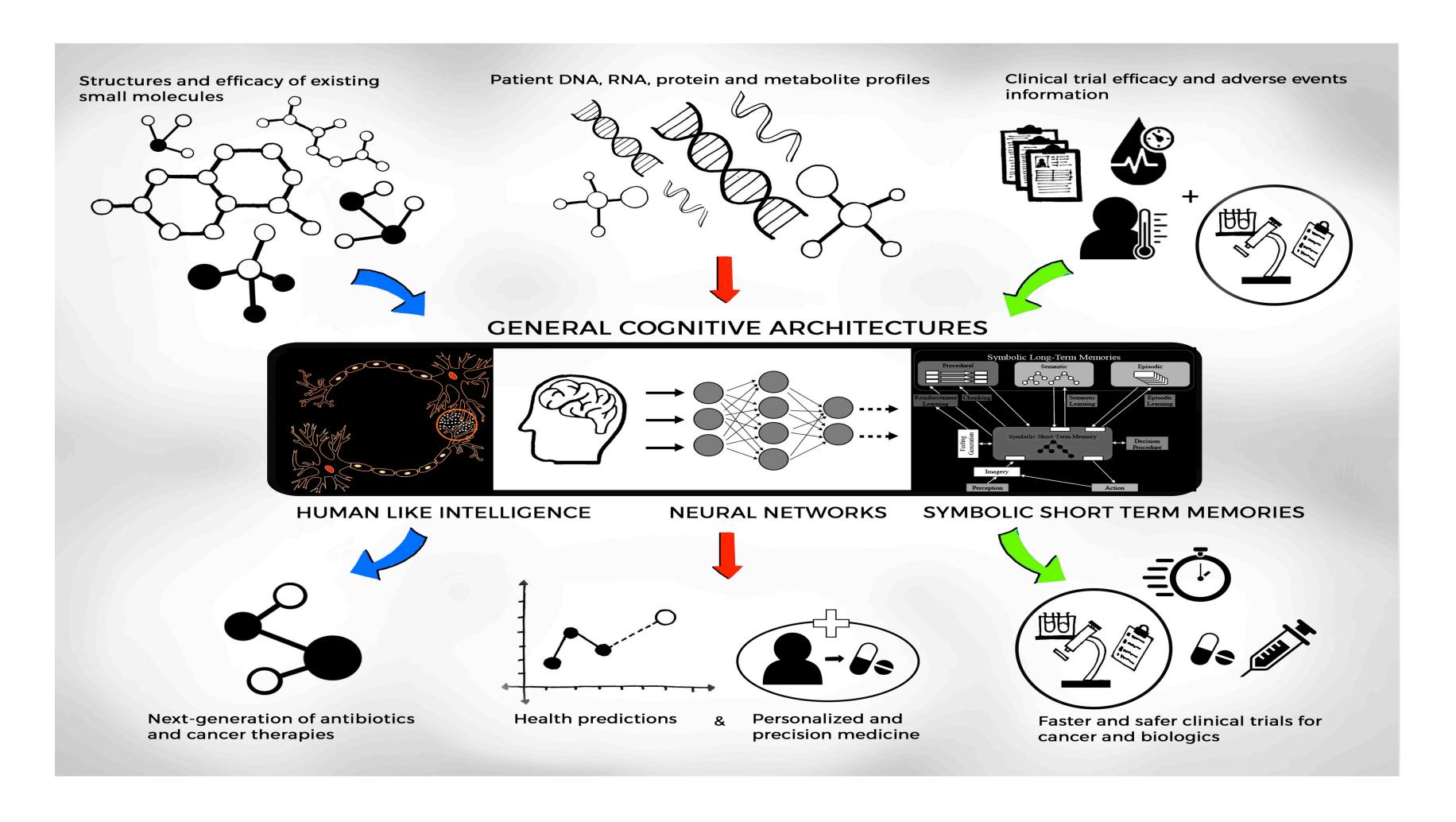
Research collaborations academia, government, life sciences, biotechnology, foundations, universities, and technology corporations

• New models and technologies for health research, early discovery, safer/faster clinical trials, reduced healthcare costs, and digitally empowered researchers, clinicians, regulators, and patients;

Machine Learning Toolbox for Health

	Training with less data	Training with few labels	Learning to learn	Maintaining data Privacy	Prediction of future events
One shot learning					
Transfer learning					
Distributed learning					
Secure learning					
Generative adversarial networks					
Reinforcement learning					

More information: Health 0.0 Research Program



Language and Literacy for Machine Learning Research

- Inclusion and diversity in datasets are key to prevent a biased clinical development process driven by algorithms
- Causal inferences and data standards should be implemented
- Machine learning and humans: synergy not competition
- Black box: Saliency, explicability and explainability is important but not rate-limiting
- Deployment and testing: New clinical trials for algorithms to be piloted
- Regulation and communication with patients and physicians to de-risk technology
- Automation vs. Knowledge vs. Intelligence
- It is a new field. We can do it right together vs. operating in silos