

Genentech A Member of the Roche Group

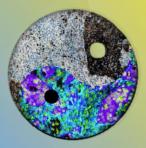
NCPF

Combination Immunotherapy Development

Immunotherapy Regimens

Daniel S. Chen MD PhD

VP, Global Head for Cancer Immunotherapy Development


Product Development, Genentech/Roche

Kathie Winson

Global Regulatory Franchise Head, Lung

Product Development Regulatory, Genentech/Roche

July 16th, 2018

Combination Development Differs from Traditional Single-Agent Development

Challenges

Clinical Development

Regulatory

Established guidelines available in US & EU regarding NME combinations; translation to other novel combinations

Unclear Clinical Trial designs

Defining optimal dose & schedule is critical for both safety and efficacy Novel approaches and designs may be explored (e.g. adaptive design)

Biomarker Development

Increased complexity with multiple biomarkers

Operational Execution

Collaboration in reporting

Safety reporting, IB, and many other aspects need to be agreed on with multiple novel molecules

Sponsor Decision-Making

Complexity for combining molecules internally and externally (with partner involved) Execution

Efficient execution of multiple combination studies in parallel with the right data collection to support decision-making

Key Questions for Development of CIT Combinations

What are the unique regulatory challenges for PD-1/PD-L1 combination therapies?

How can the impact of a second drug be assessed when combined with an existing effective drug; is there a threshold that the combination needs to meet?

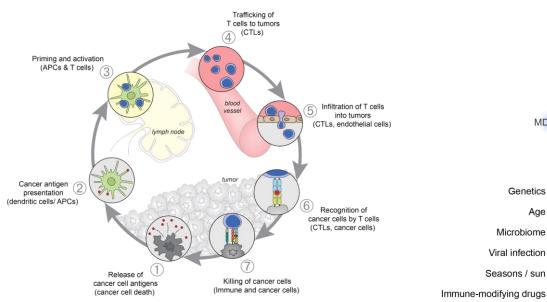
How do the information needs and decision-making differ from strategies for developing novel/novel combinations?

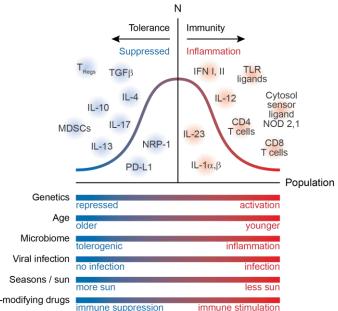
Exploring CIT Combinations

What are the unique regulatory challenges for PD-1/PD-L1 combination therapies?

Broadly Active

Complex Biology


Massive amount of orthogonal in pathway


data

A complex set of tumor, host and environmental factors govern strength and timing of anti-cancer immune responses

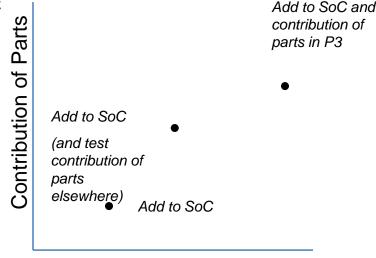
Immune Set Point: $\int (F_{stim}) - \int (F_{inhib}) \ge 1/\sum_{n=1, y} (TCR_{affinity} \times frequency)$

Chen and Mellman. Immunity 2013

Chen and Mellman. Nature 2017

Combination Therapy Approaches

- Combination with SoC
 - Chemotherapy in 1L NSCLC
 - Chemotherapy + bevacizumab in 1L NSCLC
- Combination with an established in-class therapeutic
 - bevacizumab in 1L RCC
 - bevacizumab in 1L HCC
- Combination with established agent but in an indication where it is not established (investigational)
 - bevacizumab in melanoma
- Combination with new molecular entity (new indication)
 - aCEA-CD3 bispecific in CRC

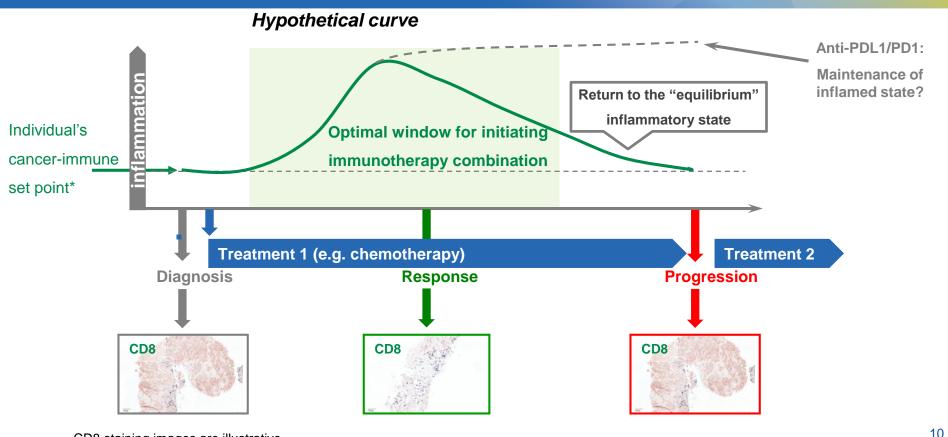

Considerations for combinations with PDL1/PD1

- PDL1/PD1 inhibitors are broadly active
- Efficacy can be measured as
 - ORR only
 - ORR, PFS, OS
 - ORR, OS only
 - PFS, OS only
 - PFS only
 - OS only
- Indication (1L vs 2L vs adjuvant)
- Subsets (eg PDL1+, TMB high, MSI high)
- Strength of SoC (eg R-CHOP in 1L DLBCL)
- Complex regimen (3 or more biologic regimen)

Clinical Study Design Options for Combination Therapies

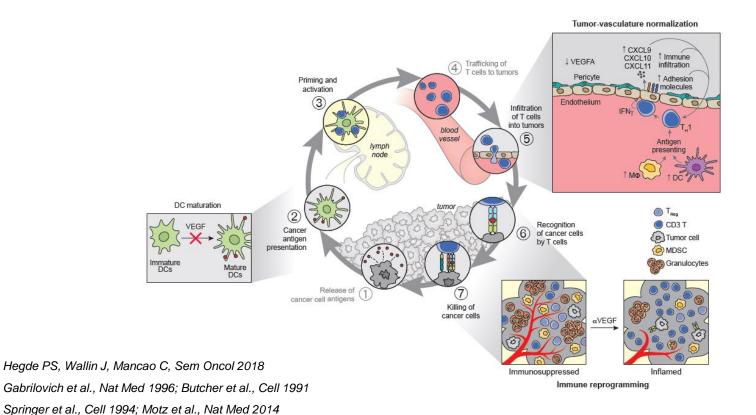
- Add to SoC
 - Chemotherapy+bevacizumab±atezolizumab in 1L NSCLC
- Add to SoC and test contribution of parts
 - Chemotherapy±bevacizumab±atezolizumab in 1L NSCLC
 - Sunitinib vs atezolizumab±bevacizumab in 1L RCC
- Replace SoC with regimen
 - Sunitinib vs Nivolumab+ipilimumab

Patient #, Time, Cost representative graph



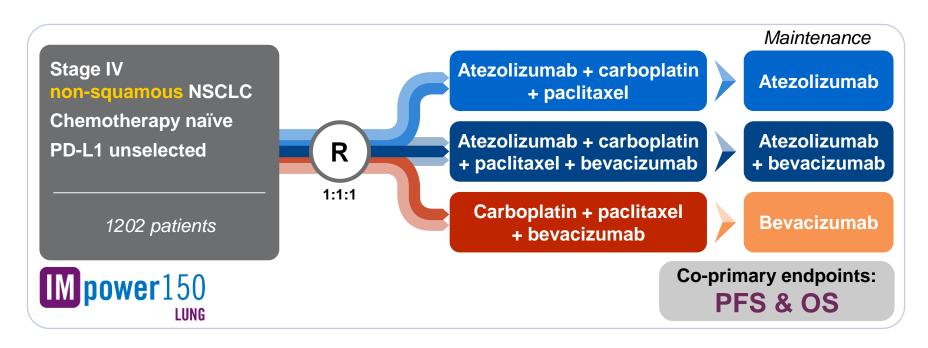
Case Study: IMPower150

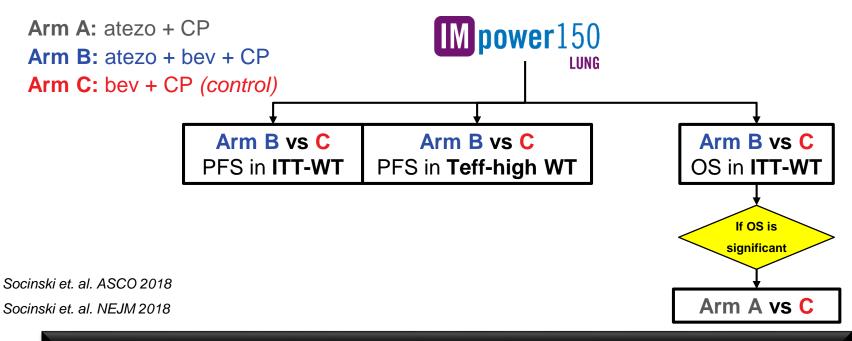
Atezolizumab + bevacizumab + carboplatin + paclitaxel
Addition of atezo to a SoC
Chemo+2 biologics
First 1L NSCLC combo cancer immunotherapy
P3 readout


Combination of immunotherapy with chemotherapy

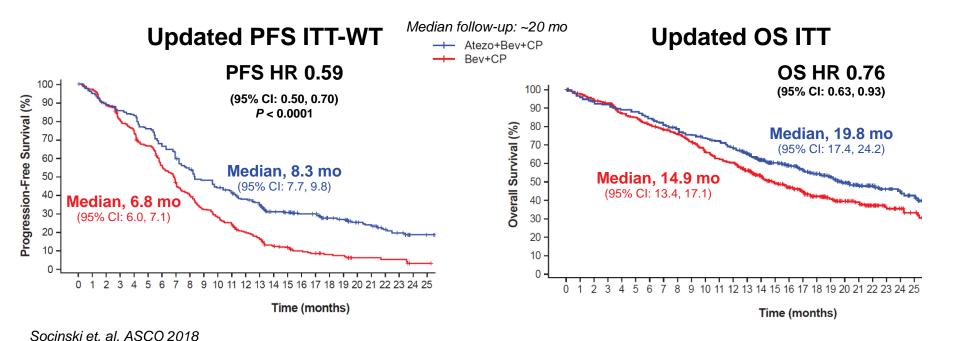
CANCER

VEGF inhibition As Immunotherapy

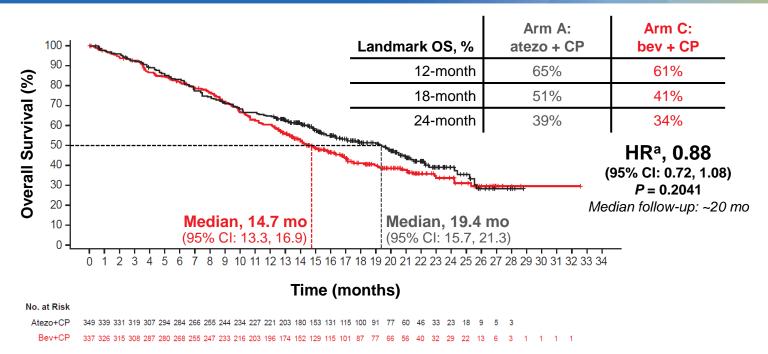

Hodi et al., Canc. Immunol Res 2014; Kim and Chen, Annals of Onc, 2016


IMpower150 is an ongoing phase III study of atezolizumab plus chemotherapy and bevacizumab

Adding chemotherapy with or without anti-VEGF therapy to PD-L1 inhibition may further enhance the immune response

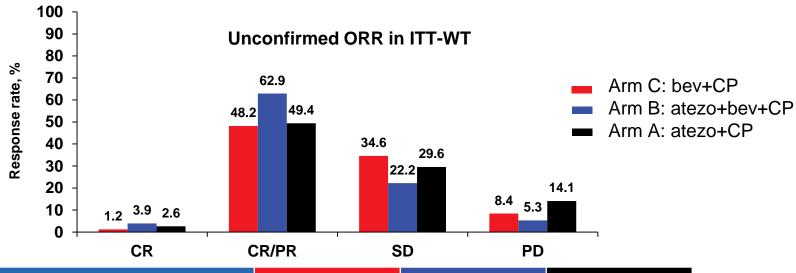

Statistical Testing Plan for the Co-primary Endpoints in IMpower150

This presentation focuses on the interim OS data for IMpower150 in all study arms in the primary study population and in key patient subgroups



IMpower150 1L NSCLC NSQ

OS in the ITT-WT (Arm A vs Arm C)

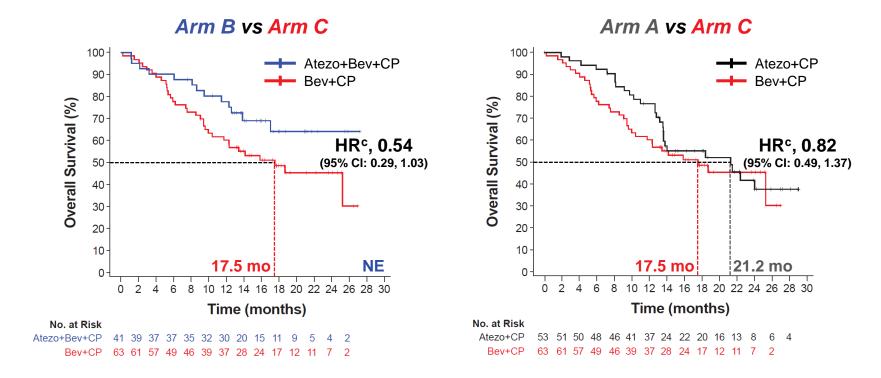


A trend toward OS benefit was observed with atezolizumab + chemotherapy vs bevacizumab + chemotherapy,
 but the efficacy boundary has not yet been crossed and will be tested again at the time of the final analysis

Data cutoff: January 22, 2018

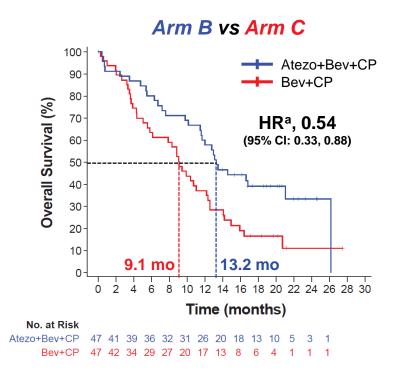
a Stratified HR.

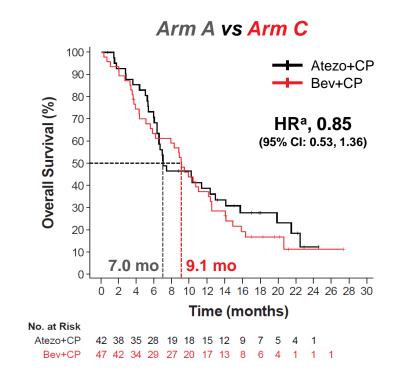
IMpower150: INV-assessed ORR in ITT-WT



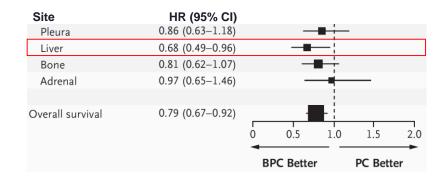
Confirmed responses	Bev+CP (C)	Atezo+Bev+CP (B)	Atezo+CP (A)
ITT-WT	n=134	n=197	n=146
ORR (%)	40.4	55.3	41.9
CR rate (%)	0.6	2.5	2.0
SD rate (%)	40.1	28.9	36.2
Median DOR (95% CI), mo	6.4 (5.7, 7)	11.5 (8.9, 16.2)	9.2 (7.4, 13.9)
No. of ongoing responses, n (%)	18 (13.4%)	77 (39.1%)	53 (36.3%)

CCOD: 22 January 2018 Tecentriq Lung Team



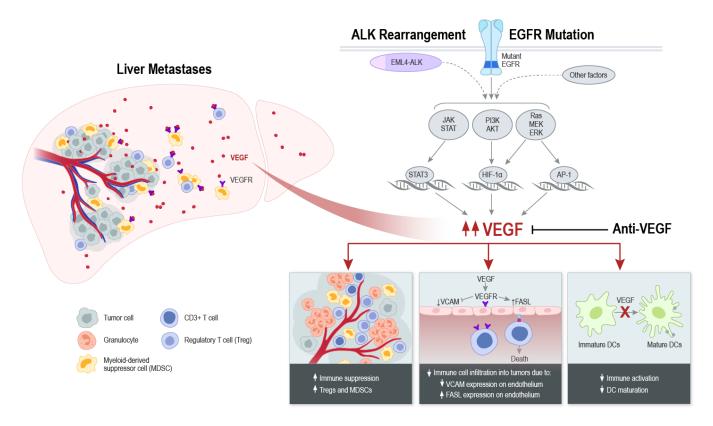

Addition of Bevacizumab to Atezolizumab and Chemotherapy Prolongs Survival of EGFR/ALK+ Patients

Addition of Bevacizumab to Atezolizumab and Chemotherapy Prolongs Survival of Patients With Liver Metastases in the ITT-WT



Historical data for the benefit of bevacizumab in key clinical subgroups

JO25567: PFS benefit with bevacizumab + erlotinib vs erlotinib alone in patients with EGFR Mut+ NSCLC¹



E4599: OS benefit with bevacizumab + carbo + pac vs carbo + pac in patients with liver metastases²

^{1.} Seto, et al. Lancet Oncol 2014; 2. Sandler, et al. N Engl J Med 2006

VEGF suppresses anti-cancer immunity

Safety

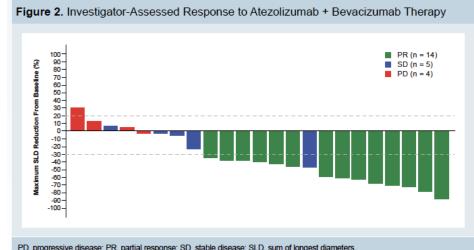
Incidence, n (%)	atezo	n A:) + CP	atezo + l	n B: bev + CP	bev	control): + CP
Median desceracived (range) n	(n =	400)	(n =	393)	(n =	394)
Median doses received (range), n	40 (4 40)	40 (4 44		1 A
Atezolizumab	,	1-43)	,	1-44)		IA .
Bevacizumab		IA		1-44)		-38)
Treatment-related AE ^a	377 ((94%)	370 ((94%)	377 ((96%)
Grade 3-4	172 ((43%)	223 ((57%)	191 ((49%)
Grade 5 ^b	4 (1%)	11 (3%)	9 (2%)
Serious AE	157 ((39%)	174 ((44%)	135 ((34%)
AE leading to withdrawal from any treatment	53 (13%)		133 (34%)		98 (25%)	
Immune-related AEs ^c in > 5 patients in any arm	All grade	Grade 3-4	All grade	Grade 3-4	All grade	Grade 3-4
Rash	119 (30%)	14 (4%)	117 (30%)	9 (2%)	53 (14%)	2 (1%)
Hepatitis ^d	42 (11%)	12 (3%)	54 (14%)	20 (5%)	29 (7%)	3 (1%)
Laboratory abnormalities	36 (9%)	10 (3%)	48 (12%)	18 (5%)	29 (7%)	3 (1%)
Hypothyroidism	34 (9%)	1 (<1%)	56 (14%)	1 (<1%)	18 (5%)	0
Pneumonitis ^d	23 (6%)	8 (2%)	13 (3%)	6 (2%)	5 (1%)	2 (1%)
Hyperthyroidism	11 (3%)	0	16 (4%)	1 (<1%)	5 (1%)	0
Colitis	3 (1%)	2 (1%)	11 (3%)	7 (2%)	2 (1%)	2 (1%)

The safety profiles of ABCP and ACP were similar to A, B and C+P individually; no new safety signals were identified with the combinations

^a Related to any study treatment. ^b Including fatal hemorrhagic AEs: Arm A: 2; Arm B: 6; Arm C: 3. ^c Immune-related AEs were defined using MedDRA Preferred Terms that included both diagnosed immune conditions and signs and symptoms potentially representative of immune-related events, regardless of investigator-assessed causality. ^d In Arm A, 1 patient had grade 5 acute hepatitis and 1 patient had grade 5 interstitial lung disease. Data cutoff: January 22, 2018

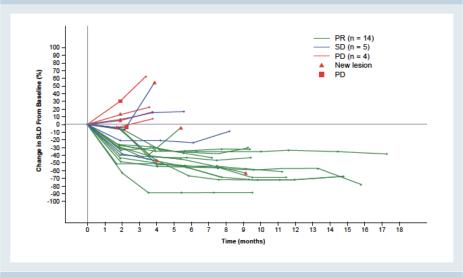
Challenges with CIT Combination Development in the Future

agent


How do the information needs and decision-making differ from strategies for developing novel/novel combinations?

combination of novel regimen in an indication combination including a completely novel

1L HCC Phase Ib of Tecentriq + Avastin:


known regimen, known pathways in disease, unapproved in indication

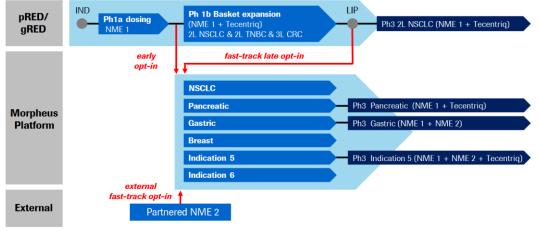
PD, progressive disease; PR, partial response; SD, stable disease; SLD, sum of longest diameters.

Table 4. Best Overall Response (BOR)					
BOR	INV-Assessed per RECIST v1.1 (n = 23)	IRF-Assessed per RECIST v1.1 (n = 23)			
ORR, n (%)	14 (61%)	15 (65%)			
CR	0	1 (4%)			
PR	14 (61%)	14 (61%)			
SD	5 (22%)	7 (30%)			
PD	4 (17%)	1 (4%)			

Figure 3. Investigator-Assessed Change in Tumor Burden Over Time and Response Duration per RECIST v1.1

PD, progressive disease; PR, partial response; SD, stable disease; SLD, sum of longest diameters.

CEA-CD3 T cell engager + atezolizumab in MSS mCRC: novel therapeutic and PDL1 inhibitor atezolizumab


Confirmed best overall response	Study 1: CEA-TCB monotherapy	Study 2: CEA-TCB + atezolizumab		
(RECIST v1.1), n (%)	n = 31, 60-600 mg MSS, n = 28 (90%) ^b	n = 25, 5-160 mg MSS, n = 23 (92%) ^c	n = 11, 80 or 160 mg^a MSS, n = 11 (100%)	
Partial response	2 (6%)	3 (12%) ^d	2 (18%) ^d	
Stable disease	12 (39%)	10 (40%)	7 (64%)	
Disease control	14 (45%)	13 (52%)	9 (82%)	
Progressive disease	16 (52%)	12 (48%)	2 (18%)	
Non-evaluable	1 (3%)	-	-	

Data reported by investigators, cutoff: March 3, 2017. ^a Sub-group of the column to the left (n = 25 CEA-TCB + atezolizumab patients, treated at doses 5-160 mg). ^b MMR status unknown for 3 patients. ^c Two patients were MSI-high. ^d One patient had the confirmatory CT scan on March 23, 2017.

Rapidly prioritize and Accelerate Transformative Combination Therapies

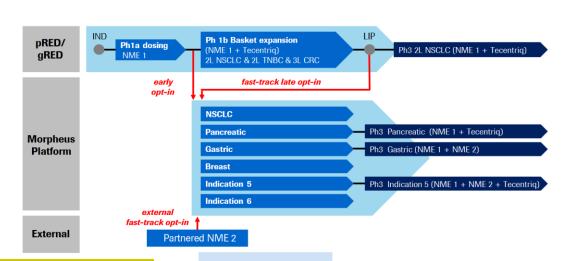
Multi-indication
Indication specific
umbrella protocol
with SOC
control arm

Multi-basket
Biomarker defined
subgroups for
personalized
healthcare

Randomized
Faster and more
confident decisions;
potential for
accelerated approval

Longitudinal
At disease
progression patients
can reenter other
combinations

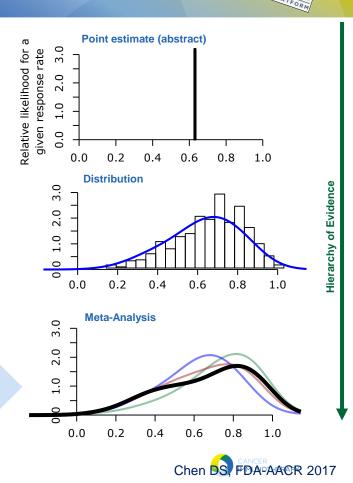
Fast-track opt-in for external and internal late-stage NMEs


Adaptable

2017 launch in 4 indications including 11 molecules and 22 first-in-disease combinations

CIT=cancer immunotherapy; IND=new investigational drug application; NME=new molecular entity; LIP=late-stage investment point; SOC=standard of care

Rapid and reliable estimation of benefit over SOC



*Real World Data

- Create a synthetic control arm based on RWD using similar inclusion/exclusion criteria as RCT, with patients treated by the SOC
- Outcomes from RWD cohort can complement or replace those from the CT SOC arm

Contempory randomized Control Arm

- +individual patient characteristics
- +individual patient biomarker data
- +Real world data* linked to NGS

Discussion

- There are a multitude of scenarios in which CIT drugs can be developed in combination with other products (SOC, investigational drug[s], novel combinations)
- Individual contribution of each component of the combination could be leveraged from historical studies, demonstrated in Phase Ib/II, or demonstrated in a multi-arm randomized Phase III study.

Outstanding Questions:

- Can real world data be leveraged to demonstrate individual contribution of a component or SOC?
- Given level of existing data on PD-1/PD-L1 drugs, what is the level of evidence needed to establish B/R of new CIT in NME + CIT combinations?
- What are additional considerations when developing novel-novel CIT combinations?

Acknowledgements

Gregg Fine

Alan Sandler

Amreen Husain

Marjorie Green

Daniel Waterkamp

Marcella Fasso

Carol O'Hear

Marcus Ballinger

Roel Funke

Hila Barak

Jing Yi

Ed Cha

Aney Vasisht

Cathi Ahearn

Robin Taylor

Priti Hegde

Marcin Kowanetz

Sanjeev Mariathasan

Luciana Molinero

Meghna Das Thakur

Mahrukh Huseni

Sami Mahrus

Mahesh Yadav

Dustin Smith

Richard Bourgon

Wei Zou

Craig Cummings

Lukas Amler

Ira Mellman

Shannon Turley

Matthew Albert

Jane Grogan

Lelia Delamarre

Scott Holden

Stuart Lutzker

Friedrich Graf-Finkenstein

Jose Saro

Vaios Karanikas

Fabien Giere

Pablo Umana

William Pao

Weilan Ye

Alex Ritter

Wei Lin

Wayne Chu

Herb Hurwitz

Daniel Waterkamp

Domink Ruettinger

Christian Rommel

Christian Klein Marina Bacac

Jerry Hsu

Mark Arundine

Geri Jermy

Mark Velligan

Hartmut Koeppen

Mika Derynck

Sandra Horning

CITC

Tecentria Teams

gRED CIT Teams

pRED CIT Teams

PD Oncology LT

Disease Franchises & JOLT

Steve Hodi

Jedd Wolchok

Gordon Freeman

Josep Tabernero

Omid Hamid

Tom Powles

Naiyer Rizvi

Ignacio Melero

George Coukos

Scott Gettinger

Matthew Hellmann

Roy Herbst

Toni Ribas

Genentech/Roche investigators

Patients and their

families

