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What are the goals for testing PD-1/PD-L1 combination therapies?

= Enhance the efficacy of single agent PD-1/PD-L1 blocking
agents in “inflammed or hot” tumors
Presumes existing T cells available for activation
Enhance numbers, quality, and activation state of existing T cells

Prevent T cell exhaustion

» |ncrease the number of patients with less “inflammed or cold”
tumors to respond to I-O agents
Presumes lack of good quality T cells

Will require T cell induction followed by activation and T cell
exhaustion prevention

= Achieve more durable responses in all patients responding to
[-O agents
Increase the rate of responses as well



What types of PD-1/PD-L1 combination therapies are
currently in clinical trials?

PD-1/PD-L1 blockade with other checkpoint and targeted
blocking agents

CTLA-4, Lag-3, Tim-3, IDO1, CSFR1, TIGIT, IL-8 blockade
Daratumumab, (CD38) Brentuximab (CD30),

Cabozantinib, Sunitinib, Bevacivumab

PARP, PI3K, and MEK inhibitors

PD-1/PD-L1 blockade with epigenetic agents
HDACI and demethylating agents

PD-1/PD-L1 blockade with agonist antibodies
OX-40, CD137, or CD40

PD-1/PD-L1 blockade with vaccines
PD-1/PD-L1 blockade with chemotherapy or radiation



Best Endpoints: Durable tumor responses and longer survival

= Tumor response measured by radiographic changes is best
measure but these come In different flavors

Quick regression
Pseudo-progression followed by regression
True progression followed by regression

= |n inflammed or “hot” tumors this can usually be observed
quickly in weeks due to existing T cells that require activation

= |n non-inflammed or "cold” tumors this can take months

T cell induction is preceded by checkpoint activation and takes
time to get adequate numbers of effective T cells



RECIST does not provide adequate assessment of
Immunotherapeutics

= Anti-tumor response takes longer when compared to
chemotherapy

= Clinical responses to Immunotherapies can occur after
conventional progression on CAT scan - pseudoprogression

=" |[mmune-related response criteria (iIrRC) is a newer method
that allows for insignificant progressive disease (slight
Increase in some lesions while others respond on CAT scan)

= Durable stable disease may represent an antitumor immune
response

Wolchek, et al, Clin Ca Res, 2009



How can we design and measure the best PD-
1/PD-L1 combinations?

= Biomarkers are needed to determine early response

= Best biomarkers for determining response to combinations
should take into account the mechanisms of action of the
contributing therapeutics

= Biomarkers that assess the interaction of the targeted
combination pathways can be used to optimize sequence
and dosing



More science is needed to design the best combinations!

= Science needs to drive the rationale for PD-1/PD-L1
combinations

Knowledge of inhibitory pathways that are co-expressed or
upregulated in response to PD-1/PD-L1 blockade

Knowledge of primary and adaptive resistance to PD-1/PD-L1
blockade

Knowledge of the specific suppressive populations within the TME

Knowledge of the agonist signals that may enhance T cell
activation, prevent exhaustion, induce memory

= Uncovering the pathways will lead to biomarkers for
optimizing combinations
Biomarkers that can predict synergistic activity
Biomarkers that can optimize dosing and sequencing



T cell activation is the
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activating and

Inhibitory signals

APC

Tumor Cell

Antigen-presenting cell T cell
PDL1 or PDL2 +—» e

PDL1 or PDL2 aﬂh PDl @
CD80 or CD86 =) ==mllD (D28 ——@D—>

CD80or CD86 =) CTAY — >

B7RP1 _ﬂh ICOS e @
B7-H3 g=$>as ? _
B7-H4 @F ? O

HVEM BIA  ——p
—_—O—
Peptide rn- KIR
MHC class | or ; TCR  =—fSignal T—>
LAGS e @
CD137L CD137 e

OX40L ﬁh OX40 = @—>
CD70 + o —

(A CD40 + CD40L

GALY ¢ §> > TIM3 e @

Adenosine s

Nature Reviews | Cancer



e et Mioraeestariddem ek aseranithi et gralingppattieragiso
ffeS LS PRSI O VBRI SRAFRERIME LI AT SR RRG RICEBM NIt

) 6/0/60
oh O %,
pre . - Ys,.
we ! . %,
g /N S
9 Denditic cell Cé;)’
bl NK cell M h
. acrophage .
- B cell -
T cell o Myeloid-derived
- Suppressor cell
Tumor
Cancer-Associated
Fibroblast
e Cytokine
* & Chemokine
Blood
Endothelium

Cui Y, et al. Int. J. Mol. Sci. 2016.



Optimizing PD-1/PD-L1 combinations requires a better
understanding of T cells and TME

= The optimal signals for activating and maintaining quality T
cells

= T cell resistance — multiple mechanisms are at play including
exhaustion, inactivation/apoptosis

How do we best prevent resistance
How do we know when specific mechanisms are likely to occur

= Signaling within the tumor microenvironment is a dynamic process

Shaped by the constantly evolving genetic, epigenetic and
Inflammatory processes

Likely differs between tumors in the same patient at different sites
Adaptive resistance occurs with T cell infiltration



Technologies are rapidly developing to assist with
better understanding these complexities

= Multiplex assays can define immune cell composition and
delineate their function within the TME and peripheral blood

Multiplex immunohistochemistry with computational analyses
Single cell and bulk RNAseq and Nanostring
Multiplex flow cytometry/mass cytometry

* TCR sequencing has shown promise in predicting
responders to both PD-1/PD-L1 and CTLA-4 blockade

PD-1 blockade increases the clonality of activated T cells

CTLA-4 blockade increases the diversity of naive T cells
undergoing activation

This biomarker could assist with sequencing of some combinations

= Molecular imaging of specific iImmune signals and T cells is
making progress

= Liquid biopsies are emerging for detecting immune signals



What are we learning from these technologies?



Example: Multiplex analysis provides evidence for successful
combination of vaccine and anti-PD-1 blockade

= Neo-adjuvant GM-CSF secreting whole tumor cell vaccine
turns uninflammed pancreatic cancers into inflammed tumors

Multiplex-IHC identifies predictors of response

= Same vaccine in combination with anti-PD-1 blockade
Induces PRs in metastatic patients

Multiplex-IHC shows invigorated T cell infiltration in regressing
tumor



Lymphoid Aggregates found in 2 location patterns
In vaccinated patients 2 weeks after a single vaccine

Pre—-vaccination Post—=vaccination intratumoral T cells



Multiplex Immunohistochemistry Approach
To Interrogate The TME

Sequential cycles of IHC

surgical

Primary Ab Ab stripping

Staining Stripping

Iterative
cycles

Detection Chromogen
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Scanning

Chromogenic reaction
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Modified from
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Multiplex IHC enables detection of 12-different epitopes in a

single FFPE section
Sequential IHC @ Visualization

Lymphoid biomarker panel
Nuclei PD-1 CD3 RORgT CD56 CD8 Thet GATA3 Foxp3 PD-L1 CD20 CD45 pi16

Myeloid biomarker panel
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Functional biomarker panel
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Image Co-registration
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Tsujikawa T, et al. Cell Reports, 2017



Image cytometry enables quantification of 16-different cell lineages

Lymphoid biomarker panel Myeloid biomarker panel
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Low versus High Myeloid Content in CD45* inflammed” Areas
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Neoadjuvant GVAX therapy is associated with PD-L1 upregulation in

myeloid cell lineages correlating with prognosis
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GVAX + CRS-207 Heterologous Prime Boost Vaccination
with Programmed Death-1 (PD-1) Blockade

Baseline Week 10 Week 30



Multiplex IHC depicts evidence of T cell reinvigoration
with GVAX/CRS207 + nivolumab
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Example Mass Cytometry

Systemic Immunity Is Required for Effective Cancer Immunotherapy
Spitzer MH, Carmi Y, Reticker-Flynn NE, Kwek SS, Madhireddy D, Martins MM, Gherardini PF,
Prestwood TR, Chabon J, Bendall SC, Fong L, Nolan GP, Engleman EG.

Cell, 2017

Used Mass Cytometry which
enables evaluation of over 50
parameters to be quantified by
replacing fluorophores with
mass tags

High throughput - 50 Parameters
used to study a single cell among
tens of thousands within a tumor

Evaluated immune responses
in multiple tissues

Immune cell proliferation is not
maintained in the TME

Requires systemic proliferation to
maintain an antitumor response
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PD-L1 blockade +
Anti-tumor antibody
Enables distal tumor
rejection
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Example: TCR Sequencing of PBL Reflects Tumors and
Suggests Mechanism for Combining CTLA-4 with PD-1/PD-L1

Responders had significantly more expanded clones than
non-responders only in the anti-CTLA4 study
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Alex Hopkins
JCI Insights, 2018
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Kaplan Meier survival curves based on TCR
clonality status or number of expanded clones

Clonality Expanded Clone #

anti-CTLA4 anti-CTLA4

— Diverse

Anti-CTLA4 281

Anti-PD-1 .

>100 expanded clones
Hopkins, et al., JCI Insights, 2018 <100 expanded clones



Evolving TCRseq Methods: ImmunoMAP

Sidhom et al, Cancer Immunology Research 2017

= |mproves on standard TCRseq by taking into account
sequence similarity or relatedness instead of identity alone

= Technigue uses clustering of CDR3 sequences based on
similarities and creates structural diversity metrics for whole
TCR repertoires

= Assesses similarities between TCR sequences that
recognize the same antigen while also evaluating the scope
of diversity among different repertoires



ImmunMAP

A Weighted repertoire dendogram

Sequence relatedness

within repertoires )
+frequency of CDR3 <=
aasequences (|

B Dominant motif analysis

Clusters homologous
sequences and selects for
clusters that respond

===y N\

‘ é\}\Qg :

- Compares repertoires

A

C Singular clone analysis

/ Singular clone
Defines sequences that expand . q »

significantly over all other %\;\ W
homologous sequences N AT
E———— | ‘ iy §

T oy

D Novel clone analysis

from different samples

\ Novel Clone



Diversity of dominant motifs predicts response to PD-1 blockade

A Week 0 Week 4 Week 24
Pretherapy biopsy On therapy biopsy Follow-up

initiation of therapy
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Example Imaging:
Anti-CD8 immunoPET 0of89Zr-malDFo0-169 CDb in mice with
colorectal cancer treated with anti-PD-L1
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Example Imaging:
Anti-PD-L1 immunoPET with in mice with 111In anti-PD-L1
Monoclonal Ab in human lung cancer xenografts

Chatterjee et al, Oncotarget 2016



Cautionary Note:
Factors Limiting Biomarker Assessment: Spatial Heterogeneity
And tumor site heterogeneity —where best to sample?

EI1L3N antibody SP142 antibody
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Knowledge is Immune Power!

= Sclence needs to drive the rationale for PD-1/PD-L1
combinations

= Current approaches are mixed — often combining two agents
because both showed some activity as single agent

= We need to develop the right biomarkers to study
combinations

= New technologies are providing the opportunity to study
combinations but we need to take into account each agent’s
mechanism

= |ess invasive methods will provide the best opportunities for
repetitive assessment and combination optimization



THANK YOU!



