Overview of Biomarker Development for Immune PD-1/L1 Checkpoint Blockade

David L. Rimm MD-PhD

Professor

Departments of Pathology and Medicine (Oncology)

Director, Yale Pathology Tissue Services

Disclosures for David L. Rimm MD-PhD

- In the last 12 months I have been engaged in the following relationships:
- I am a Consultant/Advisor to Astra Zeneca, Biocept, BMS, Cell Signaling Technology, Merck, Novartis, PAIGE, Perkin Elmer and Ultivue
- Astra Zeneca, Cepheid, NavigateBP, NextCure, Lilly, Perkin Elmer, and Ultivue fund research in my lab.

Overview of Biomarker Development for Immune PD-1/L1 Checkpoint Blockade

- Companion vs Complementary Diagnostic Tests
- Immunohistochemistry
- Genomic testing (targeted and TMB)
- Expression (mRNA) signatures
- Multiplex Fluorescence
- cfDNA and other circulating markers (NLR, LIPI)

PD-L1 Assay Terminology:

- Companion Diagnostic Test (Cdx)
 - Test result required for prescription of the drug.
 - Specified on the Drug Label
 - Often, this category is typically used when the test is an inclusion criteria for the trial (but not always – see gastro-esophageal)
- Complementary Diagnostic Test
 - Test result is predictive, but not required for prescription of the drug
 - Nice to have, but not need to have No clear message on reimbursement
 - Term attributed to Liz Mansfield when she was at the FDA
 - Mostly, this category is used when the assay is integrated into the trial, but not used for inclusion criteria (All-comers trials)

FDA Cleared or Approved Companion Dx's (protein)

Test	Scoring System	Indication	Drug	Date of Decision or Notice
PD-L1 IHC 22c3 PharmDx	TPS (0, 1-49, >50)	Lung Cancer	Pembrolizumab	10/24/2016
PD-L1 IHC 22c3 PharmDx	CPS (<1, >1)	Gastroesophageal/GEJ adenoca	Pembrolizumab	10/23/2017
PD-L1 IHC 22c3 PharmDx	CPS (<1, >1)	Cervical Cancer	Pembrolizumab	6/12/2018
Ventana ALK D5F3 CDx	+/-	Lung Cancer	Ceritinib or Crizotinib	6/12/2015
Dako EGFR PharmDx Kit	+/-	Colorectal Cancer	Cetuximab or panatumumab	9/27/2006
Dako C-Kit PharmDx	+/-	GIST	Imatinib	11/02/2012
Pathway Anti-HER2 (4B5)	0-3+	Breast Cancer	trastuzumab	4/9/2014
Bond Oracle HER2 IHC system	0-3+	Breast Cancer	trastuzumab	4/18/2012
Herceptest (Dako)	0-3+	Breast Cancer	Trastuzumab, pertuzumab and adotrastuzumab emtansine	9/25/1998

Current Companion Dx for PD-L1

Test	Scoring System	Indication	Drug	Date of Decision or Notice
PD-L1 IHC 22c3 PharmDx	TPS	Lung Cancer	Pembrolizumab	10/24/2016
PD-L1 IHC 22c3 PharmDx	CPS	Gastroesophageal/GEJ adenoca	Pembrolizumab	10/23/2017
PD-L1 IHC 22c3 PharmDx	CPS	Cervical Cancer	Pembrolizumab	6/12/2018

Overview of Biomarker Development for Immune PD-1/L1 Checkpoint Blockade

- Companion vs Complementary Diagnostic Tests
- Immunohistochemistry
- Genomic testing (targeted and TMB)
- Expression (mRNA) signatures
- Multiplex Fluorescence
- cfDNA and other circulating markers (NLR, LIPI)

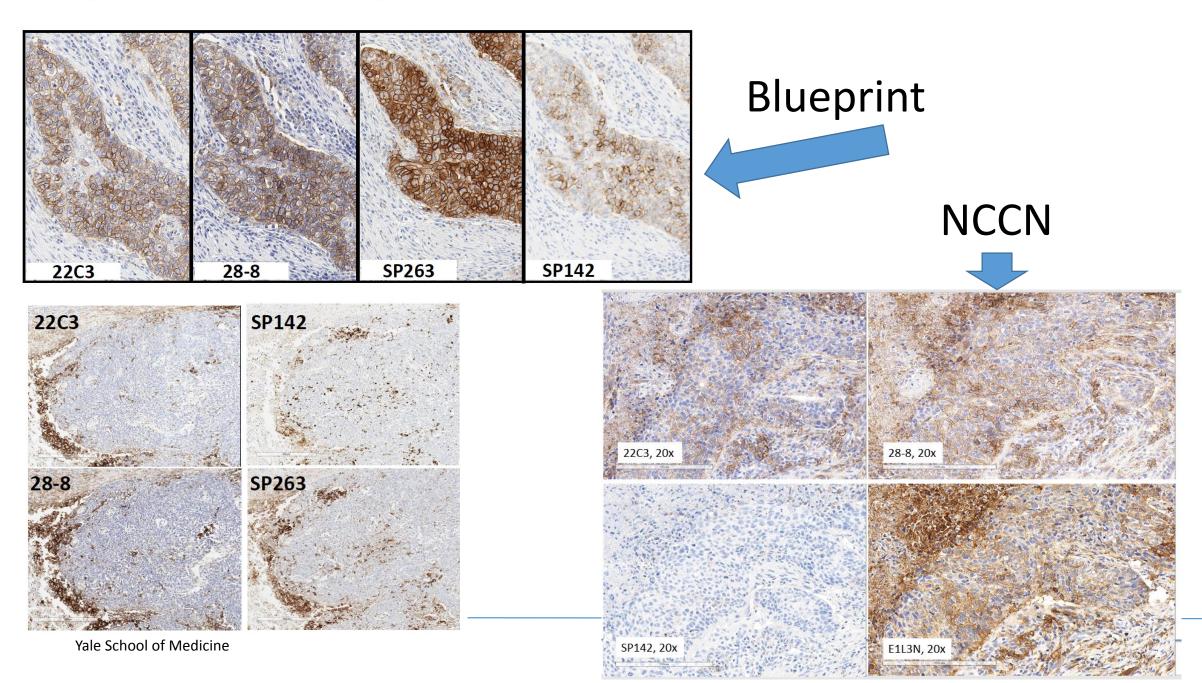
Assay Comparison Literature:

Journal of Thoracic Oncology Vol. 12 No. 2: 208-222

ORIGINAL ARTICLE

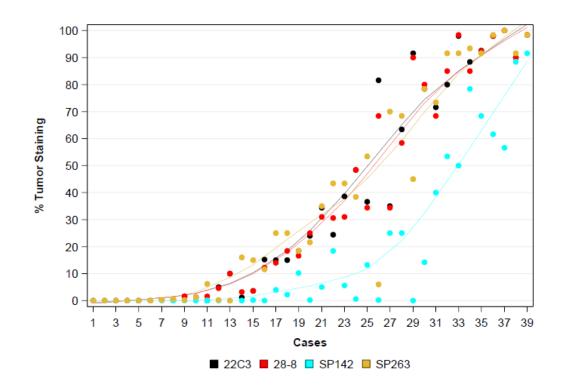
PD-L1 Immunohistochemistry Assays for Lung Cancer: (a) CrossMark Results from Phase 1 of the Blueprint PD-L1 IHC Assay Comparison Project

Fred R. Hirsch, MD, PhD, a,b,* Abigail McElhinny, PhD, Dave Stanforth, MBA, d James Ranger-Moore, PhD, Malinka Jansson, MA, Karina Kulangara, PhD, d William Richardson, BA, Penny Towne, BS, MBA, Debra Hanks, MD, d Bharathi Vennapusa, MD, Amita Mistry, MD, Rasika Kalamegham, PhD, PhD, PhD, Ph Steve Averbuch, MD, h James Novotny, PhD, h Eric Rubin, MD, i Kenneth Emancipator, MD, Ian McCaffery, PhD, J, Andrew Williams, PhD, I Jill Walker, PhD, John Longshore, PhD, Ming Sound Tsao, MD, D Keith M. Kerr, MB, FRCPath^o

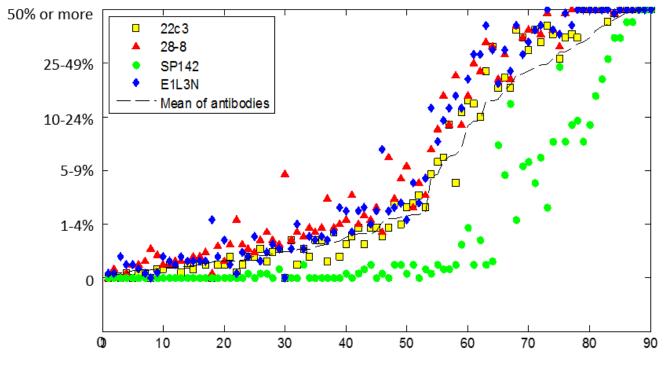

JAMA Oncology | Original Investigation

A Prospective, Multi-institutional, Pathologist-Based Assessment of 4 Immunohistochemistry Assays for PD-L1 Expression in Non-Small Cell Lung Cancer

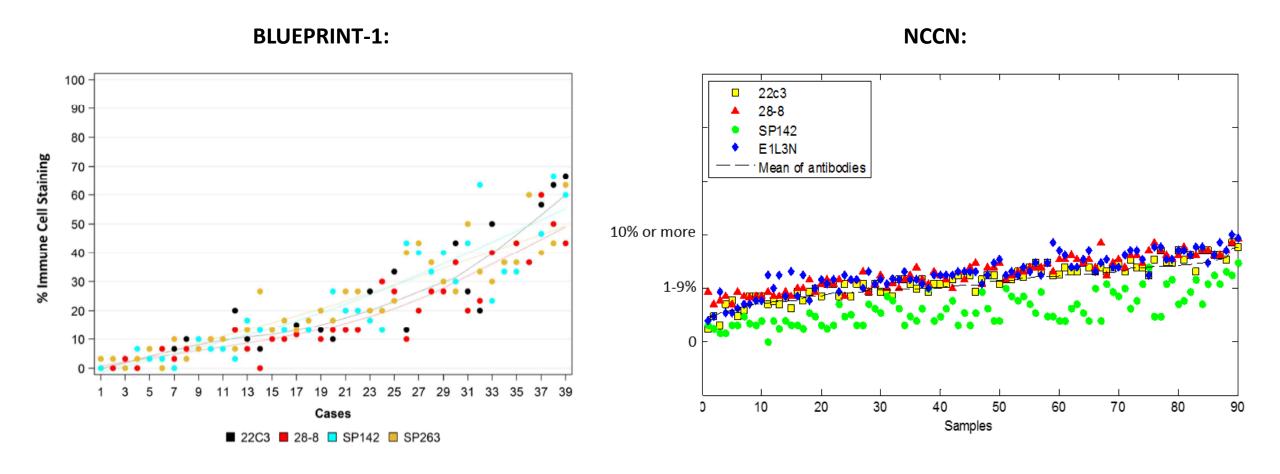
David L. Rimm, MD, PhD; Gang Han, PhD; Janis M. Taube, MD; Eunhee S. Yi, MD; Julia A. Bridge, MD; Douglas B. Flieder, MD; Robert Homer, MD, PhD; William W. West, MD; Hong Wu, MD; Anja C. Roden, MD; Junya Fujimoto, MD; Hui Yu, MD; Robert Anders, MD; Ashley Kowalewski, MS; Christopher Rivard, PhD; Jamaal Rehman, MD; Cory Batenchuk, PhD; Virginia Burns, PhD; Fred R. Hirsch, MD, PhD; Ignacio I. Wistuba, MD, PhD


JAMA Oncol. doi:10.1001/jamaoncol.2017.0013 Published online March 9, 2017.

Example of PD-L1 Tumor Expression


BLUEPRINT-1:

- 39 Cases no outcome data
- 3 pathologists from Dako and Ventana
- 4 Assays FDA/IUO
- Not statistically powered
- By agreement of 6 companies (BMS, Merck, Genentech, AZ, Dako, Ventana)



NCCN:

- 90 Cases- no outcome data
- 13 pathologists from 7 academic sites
- 4 Assays 3FDA/IUO and 1 LDT (E1L3N on Leica Bond)
- Prescribed, powered, statistical protocol for ICC between pathologists, assays and localization.
- Led by NCCN, sponsored by BMS

Comparison of Immune Cell Scores

15 countries

Blueprint Phase 2 Team Members

5 continents

- M. S. Tsao (Toronto)
- M.-B. Beasley (New York)
- A. Borczuk (New York)
- A. Moreira (New York)
- J. Sauter (New York)
- W. D. Travis (New York)
- L. Chirieac (Boston)
- M. Mino-Kenudson (Boston)
- S. Dacic (Pittsburgh)
- I. Wistuba (Houston)
- F. R. Hirsch (Denver)
- H. Yu (Denver)
- M. Wynes (Denver)
- C. Poleri (Buenos Aires)

STATISTICS: M. Pintilie (Toronto)

- Y. Yatabe (Nagoya)
- M. Noguchi (Tokyo)
- K. M. Kerr (Aberdeen)
- A. G. Nicholson (London)
- S. Lantuejoul (Lyon)
- G. Pelosi (Milan)
- L. Bubendorf (Basel)
- J. Botling (Uppsula)
- E. Thunnissen (Amsterdam)
- M. Kockx (Antwerp)
- J.-H. Chung (Seoul)
- G. Chen (Shanghai)
- T.-Y. Chou (Taipei)
- P. Russell (Melbourne)

25 pathologists reading 81 cases (including some cytology specimens) after a 1.5 day training course

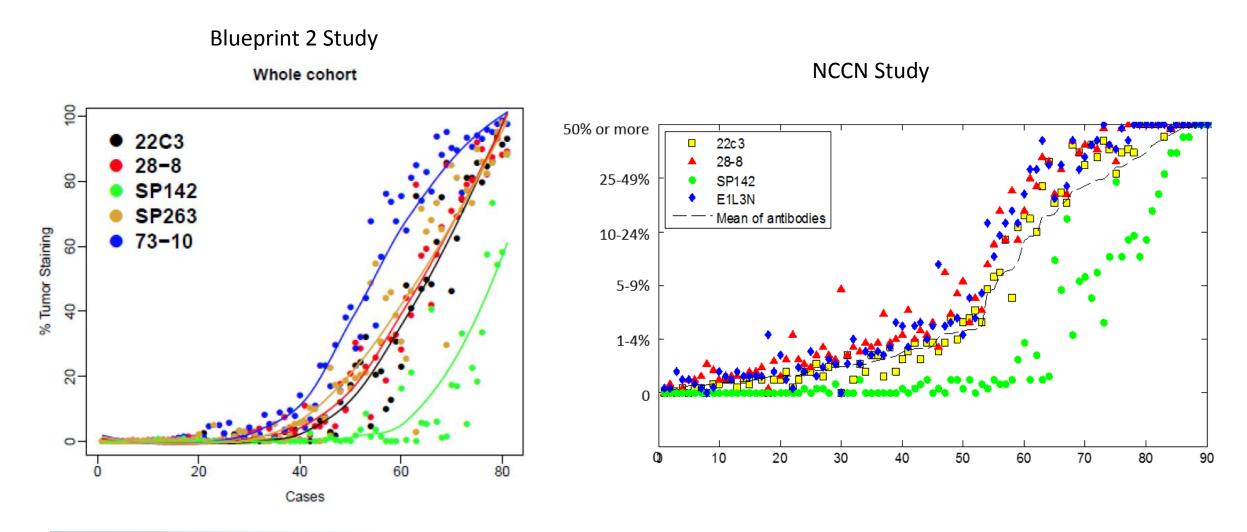
PD-L1 immunohistochemistry (IHC) assays

Drug	PD-L1 IHC Assay	PD-L1 scoring	Cut-offs reported in clinical trials	FDA Diagnostic Status
Nivolumab	28-8	Tumor cells	1%, 5%, 10%	Complementary
Pembrolizumab	22C3	Tumor cells (TPS)	1%, 50%	Companion
Atezolizumab	SP142	Tumor cells (TC)	1%, 5%, 50%	Complementary
Atezonzumas	01 142	Immune cells (IC)	1%, 5%, 10%	Complementary
Durvalumab	SP263	Tumor cells	25%	Unknown
Avelumab	73-10	Tumor cells	1%, 50%, 80%	Unknown

TPS: tumor proportional score; TC: staining on tumor cell; IC: staining on immune cells

Strong reliability among all pathologists on tumor cell scoring

DIGITAL					
	All NSCLC Cytology cases tissue only only				
22C3	0.91	0.91	0.91		
28-8	0.86	0.88	0.77		
SP-142	0.81	0.85	0.76		
SP-263	0.90	0.93	0.82		
73-10	0.89	0.91	0.82		
All assays	0.91	0.93	0.84		


ICC:	>0.90	excel	lent
ICC:	-0.50	excei	lent

GLASS SLIDE						
	All NSCLC Cytology cases tissue only only					
22C3	0.89	0.87	0.88			
28-8	0.92	0.94	0.87			
SP-142	0.86	0.84	0.90			
SP-263	0.86	0.89	0.79			
73-10	0.93	0.93	0.84			
All assays	0.86	0.89	0.77			

0.75-0.9: good

Koo TK & Li MY. J Chiropr Med 2016:15:155-63

Blueprint 2 results similar to NCCN study

Poor reliability among all pathologists on immune cell scoring

DIGITAL				
	All cases	NSCLC tissue only		
22C3	0.28	0.23		
28-8	0.19	0.14		
SP-142	0.36	0.28		
SP-263	0.25	0.13		
73-10	0.17	0.10		
All assays	0.19	0.11		

GLASS SLIDE			
	All NSCLC cases tissue only		
22C3	0.27	0.19	
28-8	0.29	0.19	
SP-142	0.33	0.25	
SP-263	0.17	0.10	
73-10	0.17	0.11	
All assays	0.21	0.13	

Fleiss Kappa statistics:

0.40-0.59: weak

0.20-0.39: minimal

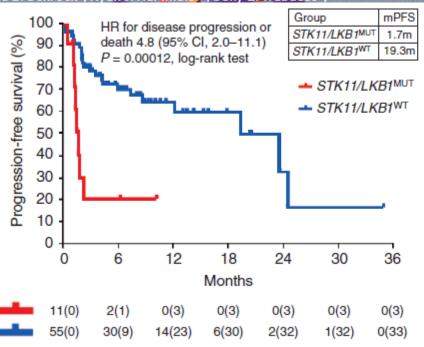
<0.01-0.20: slight/none

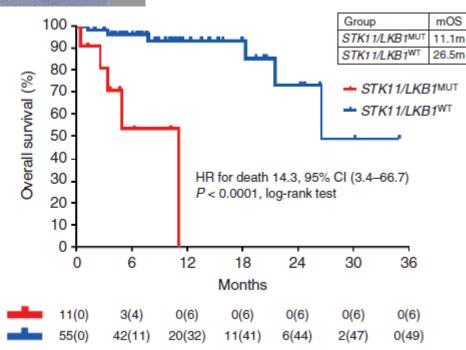
Summary:

Two statistically powered, multi-institutional studies (NCCN and Blueprint 2) and a number of smaller studies have shown

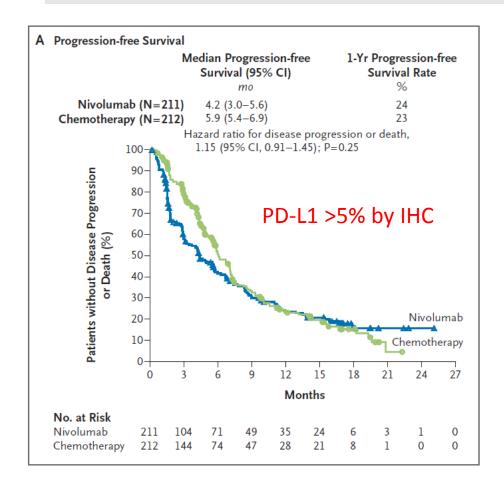
- 1. The 22c3, 28-8 and SP263 assays are practically equivalent, while the SP142 assay shows uniformly lower scores for both tumor cells and immune cells
- 2. Cytology specimens, although not included in the label for the FDA approved assay, are practically equivalent to surgical biopsy specimens although there is just slightly lower concordance in the TPS scoring.
- 3. Pathologist can read TPS (tumor proportion scores) with high concordance, but even with training, are not concordant in reading of immune cell scores.
- 4. ICC is higher when assessing higher percentages of cells

Overview of Biomarker Development for Immune PD-1/L1 Checkpoint Blockade

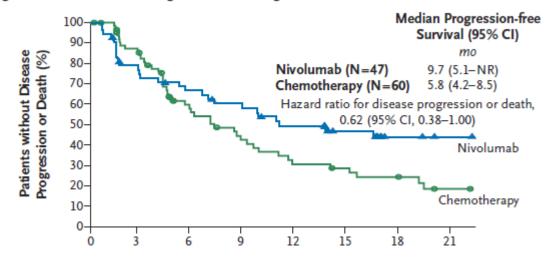

- Companion vs Complementary Diagnostic Tests
- Immunohistochemistry
- Genomic testing (targeted and TMB)
- Expression (mRNA) signatures
- Multiplex Fluorescence
- cfDNA and other circulating markers (NLR, LIPI)


RESEARCH ARTICLE

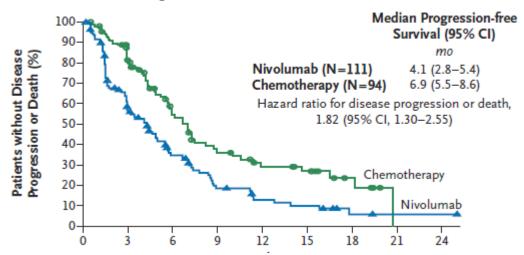
STK11/LKB1 Mutations and PD-1 Inhibitor Resistance in KRAS-Mutant Lung Adenocarcinoma № 🚇


Ferdinandos Skoulidis¹, Michael E. Goldberg², Danielle M. Greenawalt³, Matthew D. Hellmann⁴, Mark M. Awad⁵, Justin F. Gainor⁶, Alexa B. Schrock², Ryan J. Hartmaier², Sally E. Trabucco².

Laurie Gay², Siraj M. Ali², Julia A. Elvir Han Chang³, Ariella Sasson³ Sujaya S Robin Edwards³, Jose A. Bufill⁷, Neele Hira Rizvi⁴, Elizabeth Jimenez Aguilar Andrew J. Plodkowski¹⁴, Niamh M. Lor Haifa Hamdi¹, Taghreed Hirz¹, Pan Tor Edwin R. Parra¹⁷, Neda Kalhor¹⁸, Lyne Mari Mino-Kenudson²¹, Roxana Azimi Kwok-Kin Wong²⁴, J. Jack Lee²³, Vassil Garrett M. Frampton², Jedd D. Wolcho Charles M. Rudin⁴, William J. Geese³, I



Checkmate 26 – the most promising TMB data



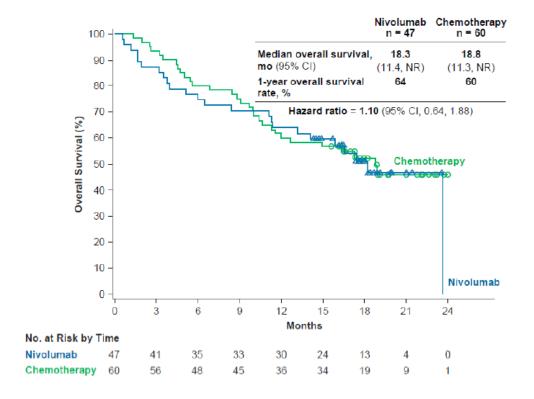
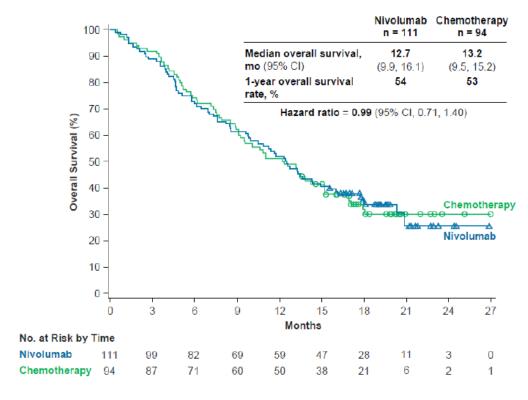
Carbone et al, NEJM 2017

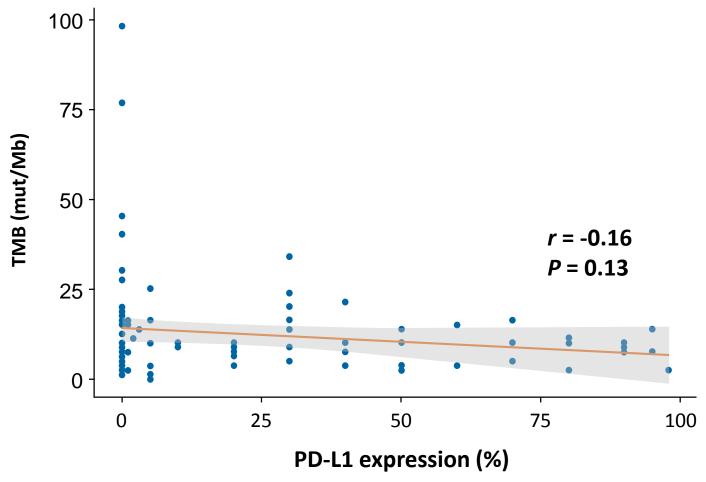
C Progression-free Survival among Patients with High Tumor-Mutation Burden

D Progression-free Survival among Patients with Low or Medium Tumor-Mutation Burden

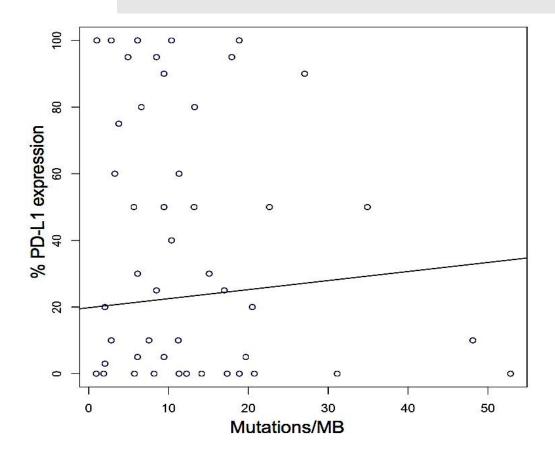
TMB does not predict Overall Survival

Figure S8. Kaplan-Meier Plot Overall Survival in Evaluable Patients with High Tumor Mutation Burden.


Figure S9. Kaplan-Meier Plot of Overall Survival in Evaluable Patients with Low or Medium Tumor Mutation Burden.

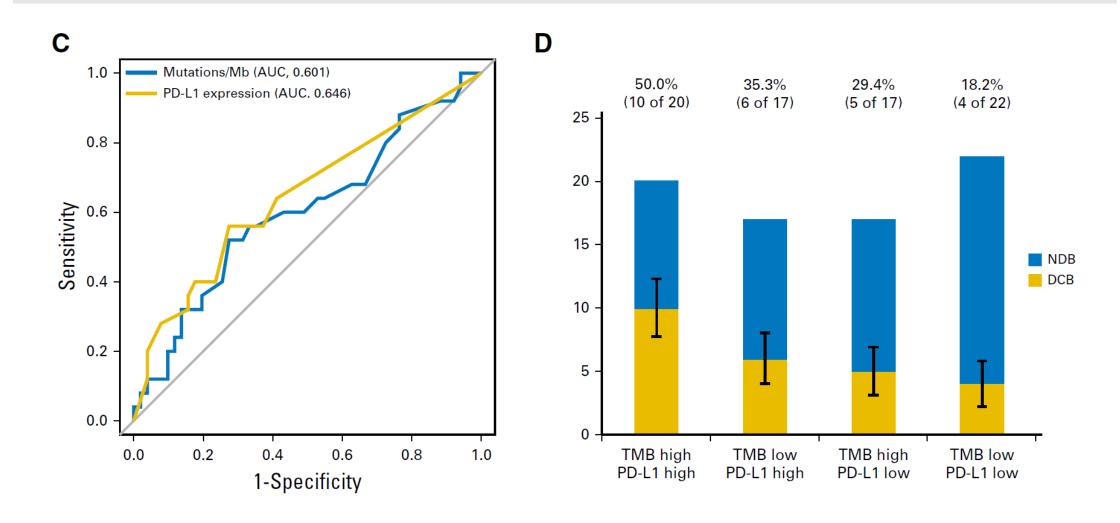
Supplementary Appendix


This appendix has been provided by the authors to give readers additional information about their work.

In BMS 568 TMB and PD-L1 Identify Distinct and Independent Populations of NSCLC

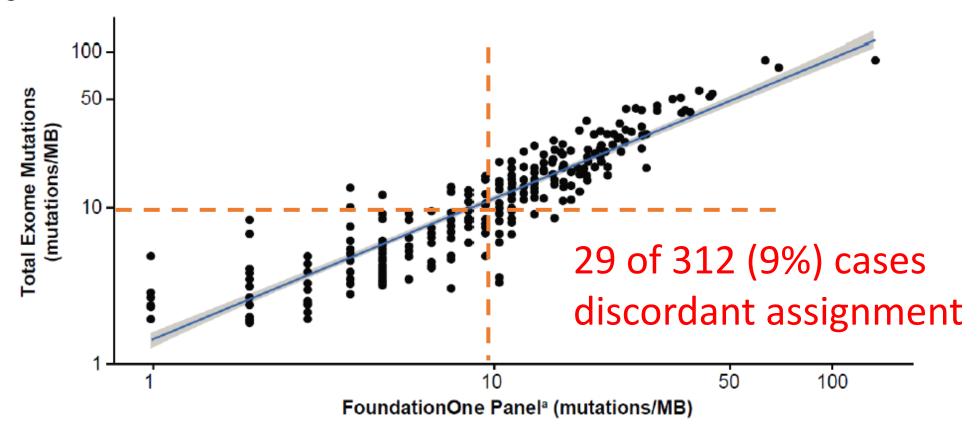
No association between PD-L1 expression and TMB levels was observed

Inverse Relationship between PD-L1 and TMB in the literature



1007 PD-L1 expression (%) **80-**60-40-20 400 800 5000 10000 **Number of mutations**

86 NSCLC cases analyzed with MSK-IMPACT panel (341-468 genes)
Rizvi H. et al., 2017, JCO


49 NSCLC cases analyzed with whole exome sequencing Gettinger. et al., 2018, Nat Comm (in press)

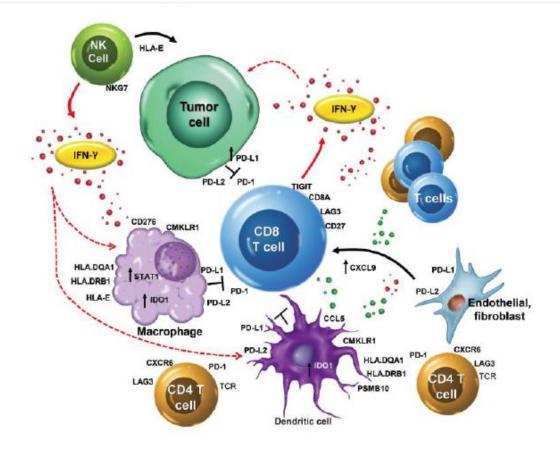
PD-L1 Expression and TMB are complementary

From Checkmate 26

Figure S5. Total Exome Mutations Versus Genes in FoundationOne Panela

^aBased on in silico analysis filtering on 315 genes in FoundationOne comprehensive genomic profile (Foundation Medicine, Inc, Cambridge, MA, USA)⁴

Supplementary Appendix


Summary:

- 1. TMB is a biomarker for immunotherapy and it is complementary to PD-L1
- 2. TMB is PREDICTIVE for outcome
- 3. TMB testing is NOT standardized (<u>Biggest Challenge for TMB</u>)
- 4. TMB may be associated with PFS but not OS
- 5. Sensitivity and Specificity (AUC) no better than existing tests
- 6. TMB costs about 5-10X IHC (actual cost, not charge) and uses 10x as much tissue

Overview of Biomarker Development for Immune PD-1/L1 Checkpoint Blockade

- Companion vs Complementary Diagnostic Tests
- Immunohistochemistry
- Genomic testing (targeted and TMB)
- Expression (mRNA) signatures
- Multiplex Fluorescence
- cfDNA and other circulating markers (NLR, LIPI)

Four Areas of Immune Biology are Represented in the Tissue Inflammation Signature

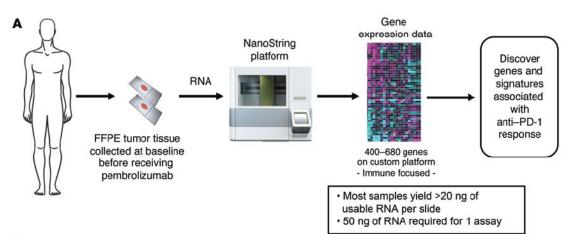
IFNγ Biology	T Cell Exhaustion
CCL5	TIGIT
CXCL9	CD8A
CD27	LAG3
CXCR6	PD-L1
IDO1	PD-L2
STAT1	CD276

T Cell/NK Signature	Antigen Presenting Cell Signature
HLA-E	PSMB10
NKG7	HLA-DQA1
CMKLR1	HLA-DRB1

ASCO 2016; Poster #1536

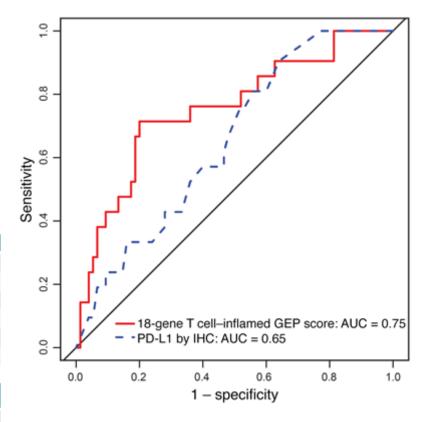
TIS has been clinically verified in HNSCC, gastric, TNBC, urothelial, anal, biliary, colorectal, esophageal, and ovarian cancer

An RNA-based Signature?


RESEARCH ARTICLE

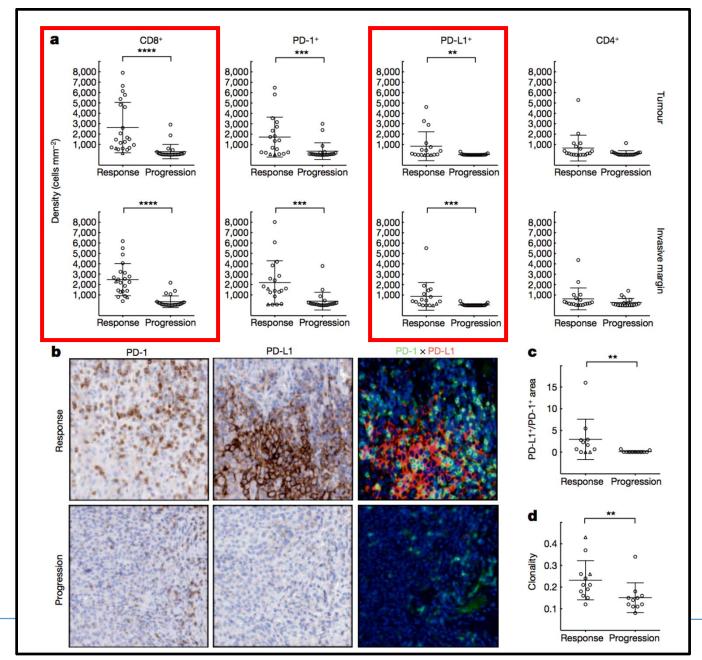
The Journal of Clinical Investigation

IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade

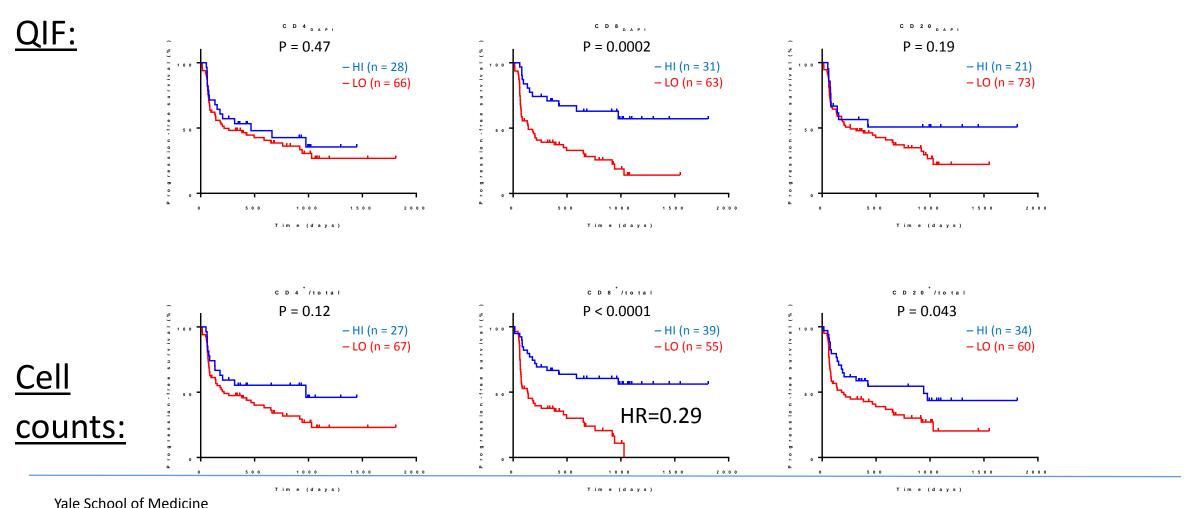

Mark Ayers,¹ Jared Lunceford,¹ Michael Nebozhyn,¹ Erin Murphy,¹ Andrey Loboda,¹ David R. Kaufman,¹ Andrew Albright,¹ Jonathan D. Cheng,¹ S. Peter Kang,¹ Veena Shankaran,² Sarina A. Piha-Paul,³ Jennifer Yearley,¹ Tanguy Y. Seiwert,⁴ Antoni Ribas,⁵ and Terrill K. McClanahan¹

¹Merck & Co. Inc., Kenilworth, New Jersey, USA. ²University of Washington, Seattle, Washington, USA. ³University of Texas MD Anderson Cancer Center, Houston, Texas, USA. ⁴University of Chicago, Chicago, Chicago, Illinois, USA. ⁵UCLA, Los Angeles, California, USA.

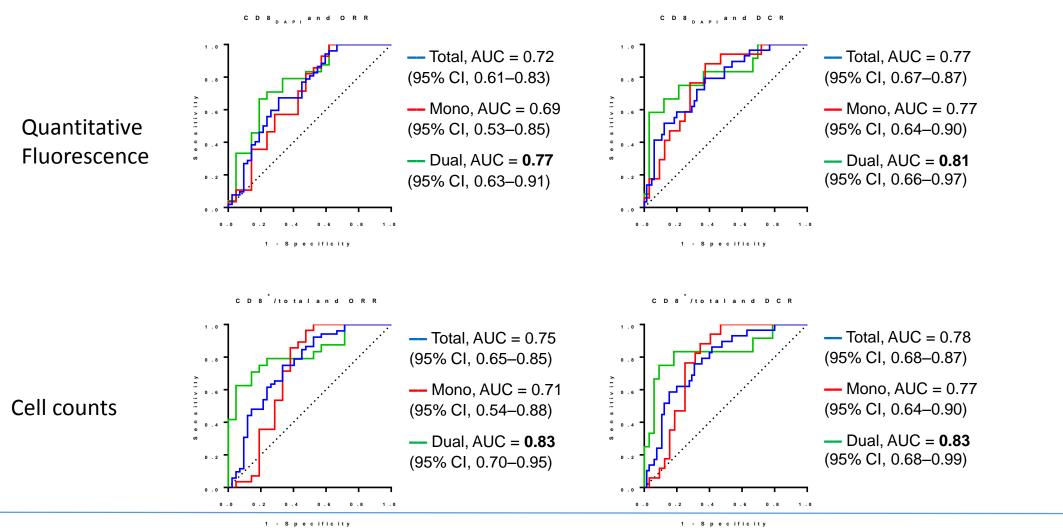
IFNγ Biology	T Cell Exhaustion
CCL5	TIGIT
CXCL9	CD8A
CD27	LAG3
CXCR6	PD-L1
IDO1	PD-L2
STAT1	CD276


T Cell/NK Signature	Antigen Presenting Cell Signature
HLA-E	PSMB10
NKG7	HLA-DQA1
CMKLR1	HLA-DRB1

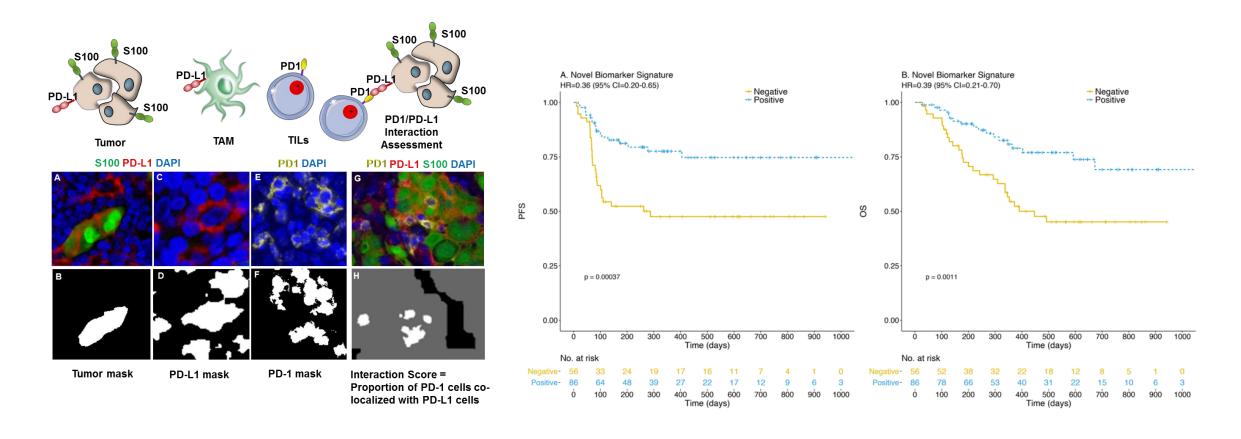
Overview of Biomarker Development for Immune PD-1/L1 Checkpoint Blockade


- Companion vs Complementary Diagnostic Tests
- Immunohistochemistry
- Genomic testing (targeted and TMB)
- Expression (mRNA) signatures
- Multiplex Fluorescence
- cfDNA and other circulating markers (NLR, LIPI)

Association between TILs and Response to PD-1 blockade



Tumeh et al., 2014 Nature


Testing CD4, CD8 and CD20 for Prediction for Response to Immunotherapy in Melanoma

Predictive performance of CD8 evaluated by receiver operating characteristic (ROC) curves in Melanoma

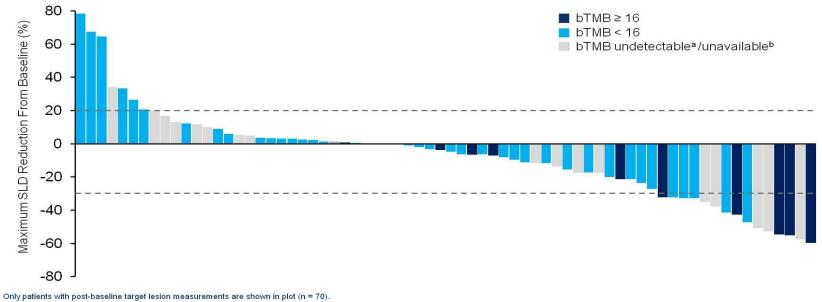
PD-L1/PD-1 interaction to predict response

Johnson, Bordeaux...Dakappagari, AACR 2016 and CCR in press

Overview of Biomarker Development for Immune PD-1/L1 Checkpoint Blockade

- Companion vs Complementary Diagnostic Tests
- Immunohistochemistry
- Genomic testing (targeted and TMB)
- Expression (mRNA) signatures
- Multiplex Fluorescence
- cfDNA and other circulating markers (LIPI)

Prospective Clinical Evaluation of Blood-Based Tumor Mutational Burden (bTMB) as a Predictive Biomarker for Atezolizumab in 1L NSCLC: Interim B-F1RST Results


Vamsidhar Velcheti. 1 Edv Phillip Stella,⁵ Vincent Sh Cindy Y

Maximum SLD Reduction From Baseline by bTMB Subgroup in the Interim Analysis Population

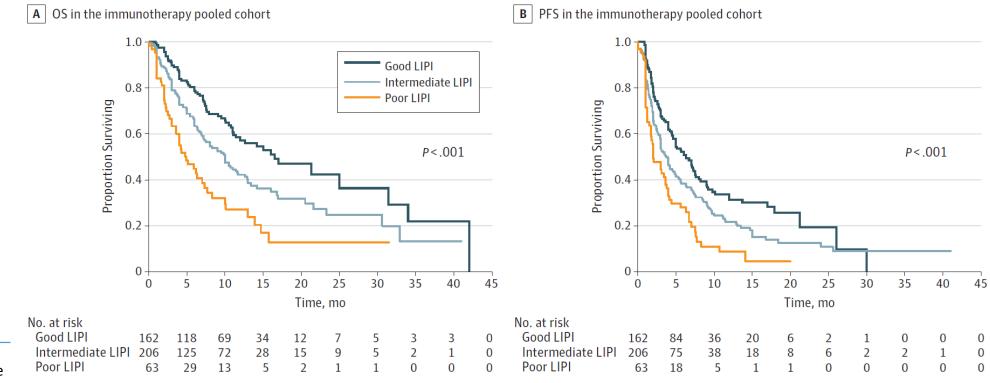
¹Taussig Cancer Institute, Cleveland Clir ³Florida Hospital Cancer In ⁵St. Joseph Mercy Hospital

Slides are the property of the author

a 15 patients had MSAF < 1%; b 4 patients without valid sample

Data cutoff: December 7, 2017.

JAMA Oncology | Original Investigation


Association of the Lung Immune Prognostic Index With Immune Checkpoint Inhibitor Outcomes in Patients With Advanced Non-Small Cell Lung Cancer

Laura Mezquita, MD; Edouard Auclin, MD; Roberto Ferrara, MD; Melinda Charrier, PharmD, PhD;

Jordi Remon, MD; David Planchard, MD; PhD; Santiago Ponce, MD; Luis Paz Ares, MD; PhD; Laura Leroy, MD;

Clarisse Audigier-Valette, MD; Enriquet Pilar Garrido, MD, PhD; Solenn Brossea Caroline Caramela, MD; Jihene Lahmar, Jean Charles Soria, MD, PhD; Benjamin

Figure. Overall Survival (OS) and Progression-Free Survival (PFS) According to Lung Immune Prognostic Index (LIPI) Groups, in the Immunotherapy Pooled Cohort and in the Chemotherapy Cohort

Questions – during panel discussion