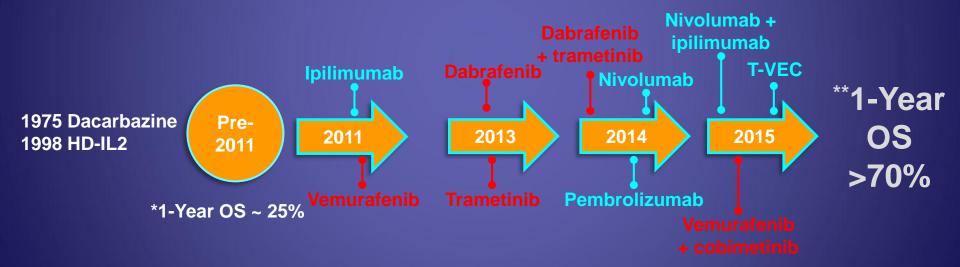
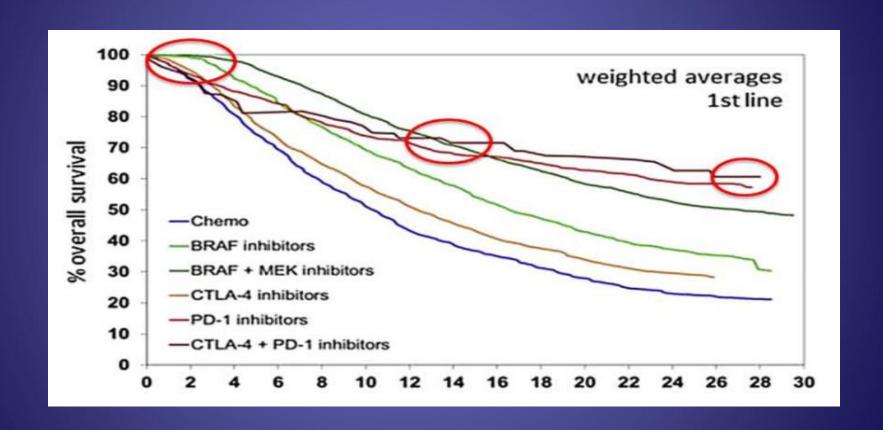
## Master Protocols for Immunotherapy Combinations

#### Ahmad Tarhini, MD, PhD

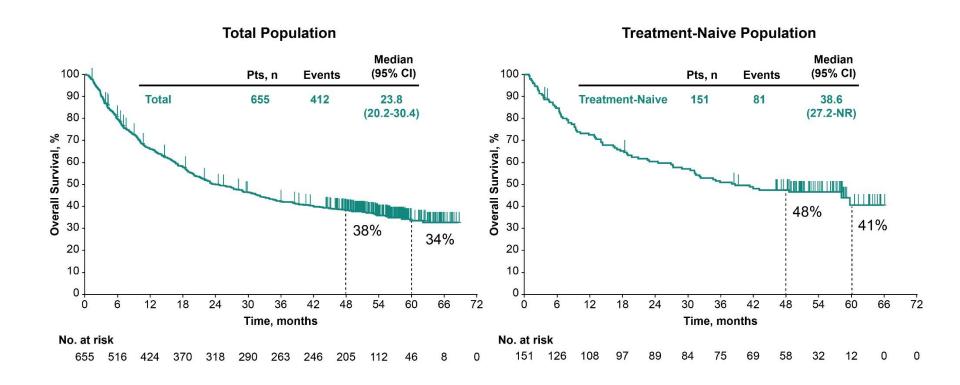
Professor of Medicine, CCLCM, CWRU
Director, Melanoma and Skin Cancer Program
Director, Center for Immuno-Oncology Research
Cleveland Clinic Taussig Cancer Institute
Case Comprehensive Cancer Center




#### **Disclosures**

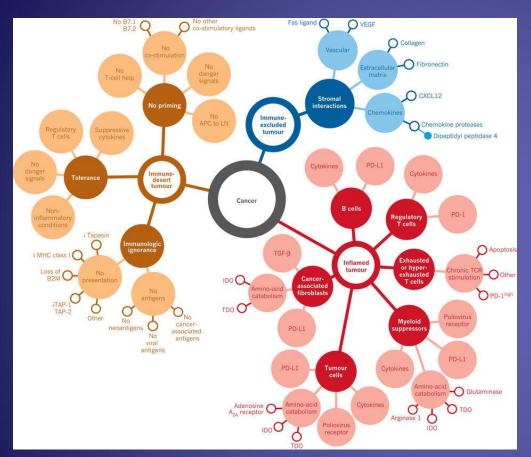

- Consultant: Bristol Myers Squibb, Merck, Incyte, NewLink Genetics, Novartis, Huya, Regeneron, Array Biopharma
- Research Grant: Amgen, Bristol Myers Squibb, Merck, Novartis, Prometheus, Incyte, Roche-Genentech

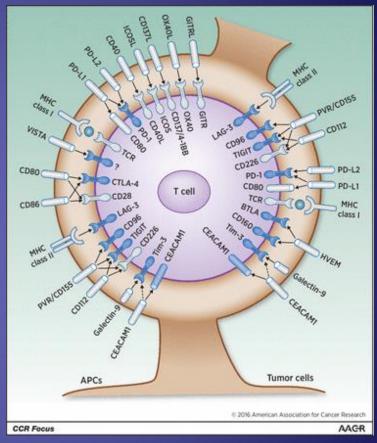
## Stage IV Melanoma: FDA Approvals


#### 2011-2015: 10 approvals



## Currently Reported Long-term Survival Outcomes for Stage IV Melanoma





#### **KEYNOTE-001 - Overall Survival**



### **Cancer Immune Phenotypes**

## Coinhibitory & Costimulatory Receptors





# Immunotherapy Combination Strategies

- Immunotherapy + Immunotherapy
- Immunotherapy + Targeted therapy
- Immunotherapy + Chemotherapy
- Immunotherapy + Radiotherapy

# Challenges Facing I-O Drug Development

- Series of clinical trials, testing 1 or 2 questions at a time in a single disease
- Time
- Cost
- Competing trials
- Unselected patient populations
- Screen failures
- Rare genetic/other subtypes
- Identifying truly predictive biomarkers

# Need to Accelerate Cancer I-O Drug Development

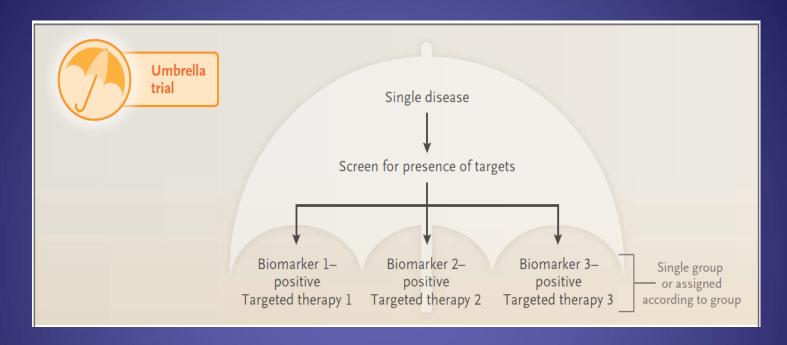
- New more efficient strategies are essential that can test more approaches, more efficiently, in less time
- Master Protocols can be a major methodologic innovation over the traditional approach of a series of clinical trials
  - Overall systematic approach to a disease
  - More efficient screening
  - Increasing the speed of drug development and approvals

## Opportunities for Master Protocols for Immunotherapy

- Improved genomic and immunologic understanding of cancers
  - Incorporation of precision medicine approaches
  - Mechanism-based trials
    - Eligibility based on mechanistic criteria (e.g., MSI-H, biomarker signatures, ...)
  - Allowing target and agent prioritization
- Timely assessment of safety and clinical activity of multiple agents in parallel or rapid sequences

## **Opportunities for Master Protocols**

- NCI sponsored cooperative groups could play a major role
  - Robust clinical trial infrastructure
  - Allowing multi-sponsor trials
  - Multi-stakeholder decision-making body


## **Types of Master Protocols**

| Umbrella | To study multiple therapies in the context of a single disease ("the umbrella")                                                                                                  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Basket   | To study a single therapy in the context of multiple diseases or disease subtypes ("the basket")                                                                                 |
| Platform | To study multiple therapies in the context of a single disease in a perpetual manner, with therapies allowed to enter or leave the platform on the basis of a decision algorithm |

## Types of Master Protocols

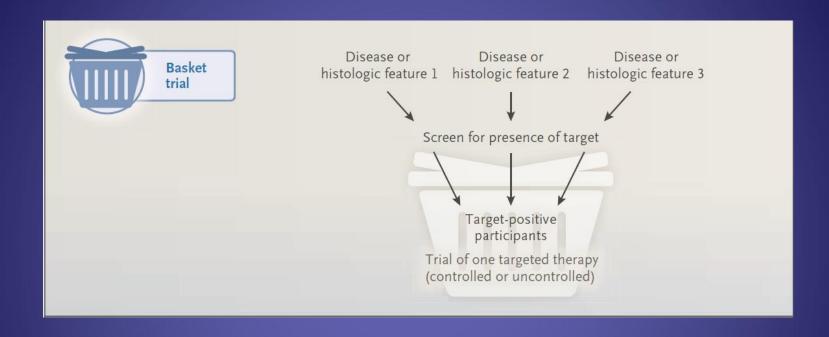
| Umbrella | To study multiple therapies in the context of a single disease ("the umbrella")                                                                                                  |  |  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Basket   | To study a single therapy in the context of multiple diseases or disease subtypes ("the basket")                                                                                 |  |  |
| Platform | To study multiple therapies in the context of a single disease in a perpetual manner, with therapies allowed to enter or leave the platform on the basis of a decision algorithm |  |  |

#### **Umbrella Trial**



- Evaluates various subgroups within a conventionally defined disease
  - Subgroups often biomarker-defined
- Patients screened for the presence of a biomarker/other characteristic and assigned a stratum
- Multiple drugs are studied in the various strata
- Design may be randomized or may use external controls

#### **NCI-Match**


- Umbrella trial to determine whether treating cancers according to molecular abnormalities is effective
- Advanced solid tumor, lymphoma, myeloma (each, a separate "umbrella" within a "basket")
- DNA sequencing for actionable mutations
- Multiple treatments that target gene abnormalities
- Exploratory, multicenter, non-comparative
- Endpoints: Tumor response (primary) and PFS
- Size: 35 patients per sub-study

We might envision an anti-PD1/PD-L1 backbone trial in a certain disease ("umbrella") where patients are screened based on the presence of biomarker(s) (e.g., PD-L1, CD8, MSI-H, mutational burden, other specific markers, ...) and allocated to certain strata (combinations)

## **Types of Master Protocols**

| Umbrella | To study multiple therapies in the context of a single disease ("the umbrella")                                                                                                  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Basket   | To study a single therapy in the context of multiple diseases or disease subtypes ("the basket")                                                                                 |
| Platform | To study multiple therapies in the context of a single disease in a perpetual manner, with therapies allowed to enter or leave the platform on the basis of a decision algorithm |

#### **Basket Trial**

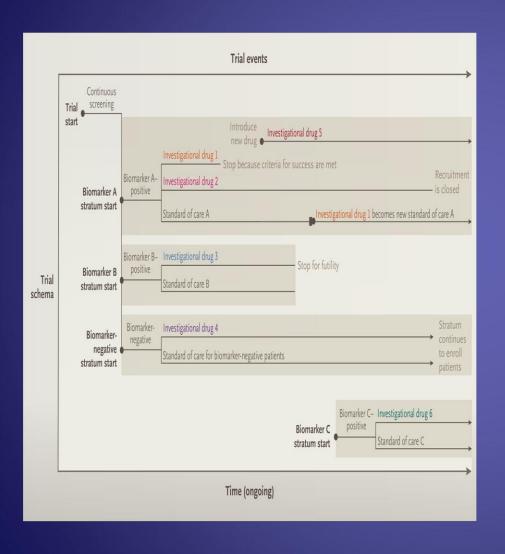


- Involves multiple diseases or histologic features
- Participants screened for the presence of a target & entered
- Could contain multiple strata that test various biomarker—drug pairs.

#### BRAF V600

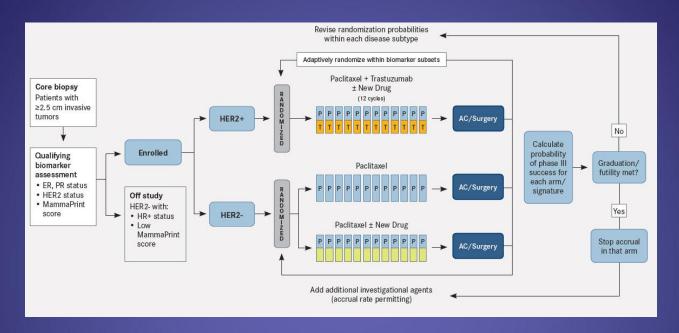
- Basket trial to evaluate the efficacy of vemurafenib
- Multiple non-melanoma caners with BRAF V600 mutations
- Phase 2, non-comparative, adaptive trial using Simon 2-stage
- Response rate

#### **ECHO-202 / KEYNOTE-037**


- Phase 2 Study
- Exploring efficacy of pembrolizumab and epacadostat
- ORR by modified RECIST v1.1
- Selected solid tumors and DLBCL
- Sample size 25 42 subjects

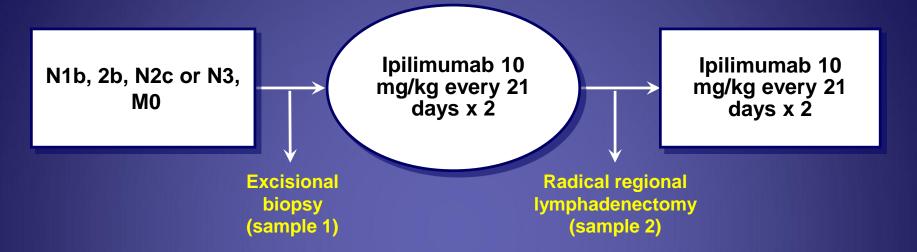
ClinicalTrials.gov: NCT02178722

## **Types of Master Protocols**


| Umbrella | To study multiple therapies in the context of a single disease ("the umbrella")                                                                                                  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Basket   | To study a single therapy in the context of multiple diseases or disease subtypes ("the basket")                                                                                 |
| Platform | To study multiple therapies in the context of a single disease in a perpetual manner, with therapies allowed to enter or leave the platform on the basis of a decision algorithm |

#### Potential Design of a Platform Trial Involving a Single Disease.




- Platform trial ongoing over time, with no fixed stopping date, and governed by a master protocol that envisions adding and dropping strata
- Other types of adaptive designs are possible, including adaptive randomization, as are the use of other criteria for early stopping

#### I-SPY 2



- Adaptive platform Phase 2 rtandomized trial
- Locally advanced breast cancer in the context of neoadjuvant therapy on the basis of biomarker signatures
- Biomarkers: hormone-receptor status, HER2 status, and MammaPrint risk score - define eight genetic sub-groups
- Primary endpoint: Pathological complete response

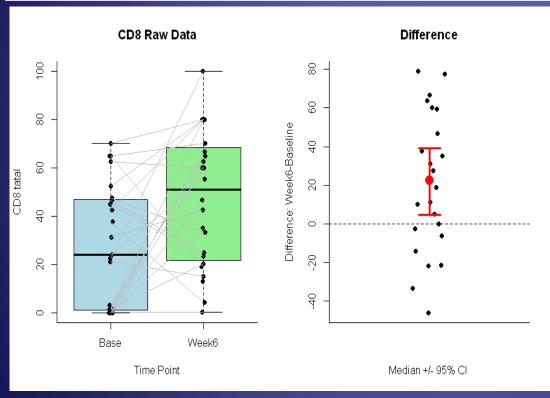
## Neoadjuvant Ipilimumab in N1b, 2b, N2c, N3 Melanoma

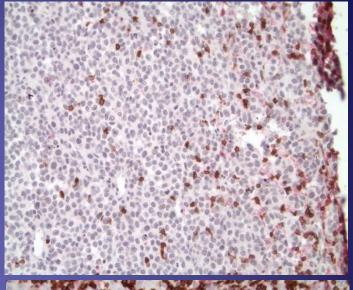


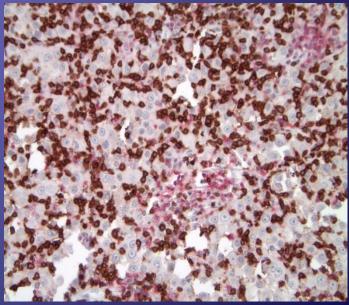
#### **Advantages of Neoadjuvant Therapy**

#### Clinically,

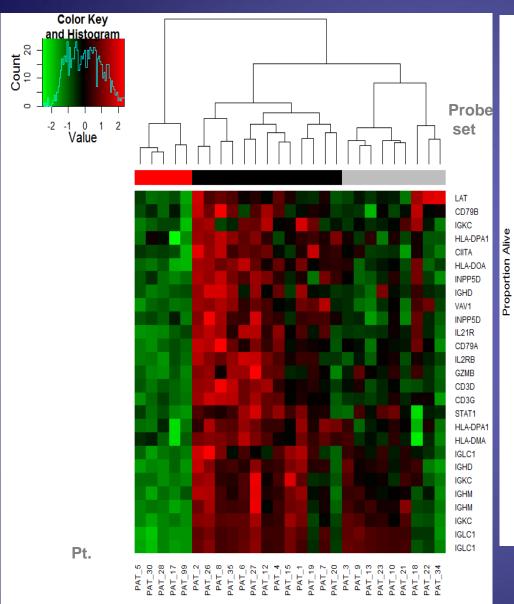
Improved clinical outcome

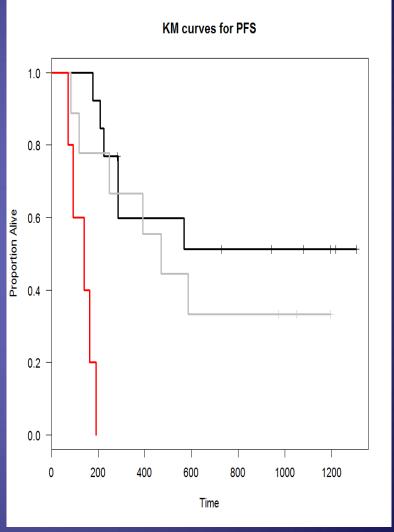

#### Experimentally,


- Evaluate clinical/radiologic as well as pathologic responses
- Access to tumor & blood before & after
  - Investigation of antitumor mechanisms of action
  - Biomarker studies

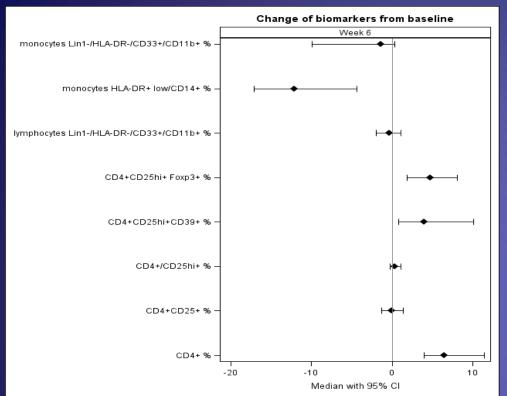

## Tumor TIL by IHC (N=24): CD8+ T Cells

| TIL          | Median Δ (Wk6 – Baseline)<br>with 95%Cl | P-value |
|--------------|-----------------------------------------|---------|
| CD8+ T Cells | 19 (4.79,39.25)                         | 0.019   |


#### Significant increase in cytotoxic CD8+ TIL after Ipi

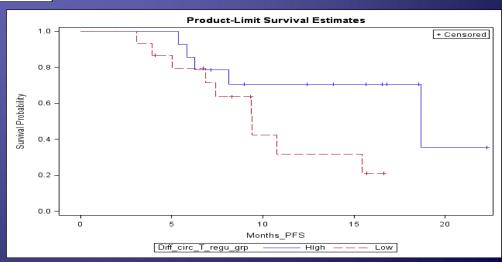




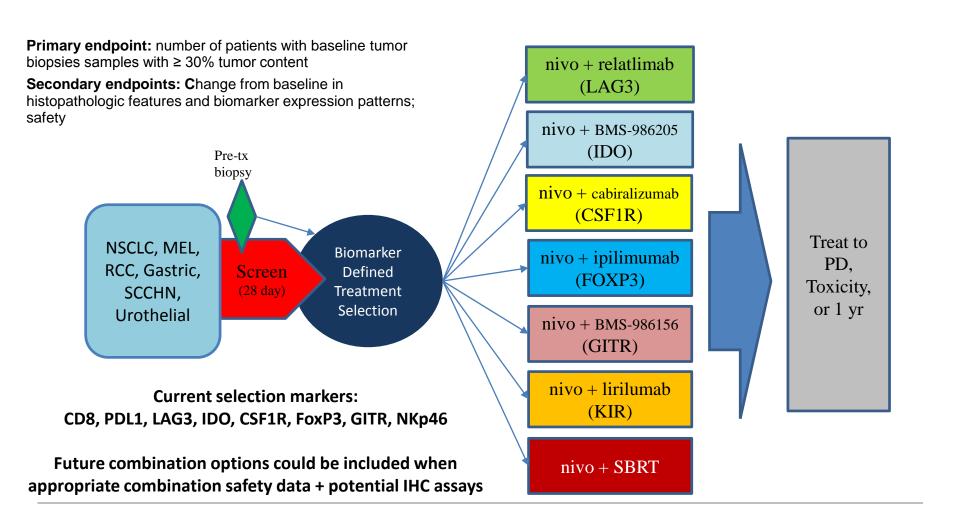

## RFS by Baseline Expression Level






#### Neoadjuvant Ipi: Circulating MDSC and T-reg by Flow (N=27)




| Summary of most significant changes (%) at week 6 |              |                       |         |  |  |
|---------------------------------------------------|--------------|-----------------------|---------|--|--|
|                                                   | Δ at<br>Wk 6 | Sd Dev of<br>Δ at Wk6 | P-value |  |  |
| T-Regs                                            |              |                       |         |  |  |
| CD4+ %                                            | +6.79        | 9.09                  | <0.0001 |  |  |
| CD4+CD25hi+CD3                                    |              |                       |         |  |  |
| 9+ %                                              | +5.39        | 8.63                  | 0.001   |  |  |
| CD4+CD25hi+                                       |              |                       |         |  |  |
| Foxp3+ %                                          | +4.05        | 8.13                  | 0.02    |  |  |
| Conclusion: ↑ in CD4+ T-Cells is mostly accounted |              |                       |         |  |  |
| for by the ↑ in Tregs                             |              |                       |         |  |  |
| MDSC                                              |              |                       |         |  |  |
| % lymphocytes                                     |              |                       |         |  |  |
| Lin1-/HLA-DR-                                     |              |                       |         |  |  |
| /CD33+/CD11b+                                     | -0.72        | 3.19                  | 0.34    |  |  |
| % monocytes HLA-                                  |              |                       |         |  |  |
| DR+ low/CD14+                                     | -12.84       | 12.06                 | <0.0001 |  |  |
| % monocytes Lin1-                                 |              |                       |         |  |  |
| /HLA-DR-                                          |              |                       |         |  |  |
| /CD33+/CD11b+                                     | -2.99        | 16.18                 | 0.19    |  |  |

Greater ↑ in circulating T-reg associate with improved RFS (p=0.034; HR=0.57)



Tarhini et al. PLOS One 2014

## BMS CA028-001: ADaptiVe Biomarker Trial that InformS Evolution of therapy after nivolumab (ADVISE)



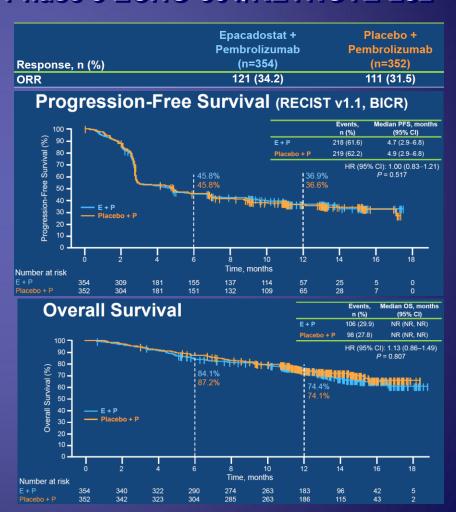
## Considerations for Master Protocols Clinical Trial Design

- Histology specific (certain tumor type) or histology agnostic (various tumor types)
- Study Endpoints
  - RR (PR, CR), PFS
  - pCR (Neoadjuvant)
- Randomized versus historical controls

## Considerations for Master Protocols Clinical Trial Design

- Eligibility Criteria
- Interim Analyses and Stopping Rules
- Biomarker and Enrichment Strategies
  - o PD-L1 status
  - Microsatellite instability high (MSI-H)
  - Tumor mutation burden (TMB)
  - o Immune related mRNA signatures
- Statistical Analysis Plans
- Registrational Intent

# Challenges for Master Protocols in I-O and Potential Disadvantages


- Meaningful short-term study endpoints that may allow adaptive designs
- The right biomarkers that may allow adaptive designs
- Collaborations across competing pharmaceutical companies
- Logistical and Operational Considerations
- Funding & Cost

#### **Epacadostat + Pembrolizumab in Melanoma**

#### **ECHO-202 / KEYNOTE-037**

#### Treatment-Naive Melanoma Phase 1/2 (n=54) 100 Epacadostat 100 mg BID + ORR = 55%Pembrolizumab 200 mg Q3W s e Other Epacadostat doses + 5 0 Pembrolizumab 200 mg Q3W В - 50 O Patients

#### Phase 3 ECHO-301/KEYNOTE-252



## What went wrong?

- RR as the primary endpoint
  - ? Central review ...
- Single arm/historical control prior to Phase III
  - ? Randomization
- Eligibility / representative population
  - ? Mandating evaluation of low & high risk
- Right dose
  - ? Careful PK/PD
- Biomarker, pCR, ...
  - ? Neoadjuvant evaluation

#### Recommendations

- Unique designs for unique questions
- Study arms that may provide options for "Screen Failures"
- The importance of obtaining tumor tissues in I-O clinical trials to investigate biomarkers & resistance pathways
- Standardized biospecimen acquisition and storage
- Consider neoadjuvant evaluation
- Collaboration & coordination between the pharmaceutical industry,
   NCI, FDA, academia, community oncology programs
- Taking advantage of NCI sponsored cooperative group infrastructure
- Guidance to community sites to allow broader participation
- Patient & health care provider education
- Reward participation and team work