

# Leveraging Organizational Culture and Leadership to Promote Change

Howard A Burris, III, MD Chief Medical Officer, Sarah Cannon

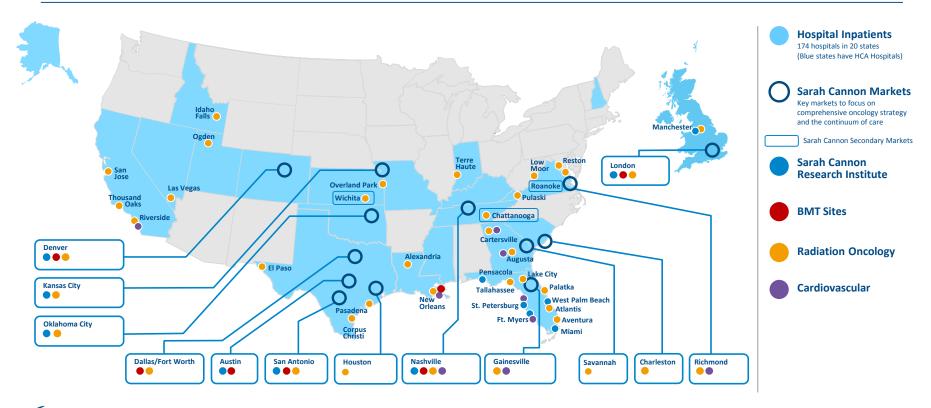
### DISCLOSURES

- I have no personal conflicts of interest to disclose.
- Sarah Cannon, the Institution that employs Dr. Burris, has been paid for consulting/advisory roles from the following companies: Mersana, AstraZeneca, FORMA Therapeutics, Janssen, Novartis, Roche/Genentech, TG Therapeutics, MedImmune, and Bristol-Myers Squibb.
- Sarah Cannon, the Institution that employs Dr. Burris, has conducted research projects funded by the following companies: Roche/Genentech, Bristol-Myers Squibb, Incyte, Tarveda, Mersana, AstraZeneca, MedImmune, Macrogenics, Novartis, Boehringer Ingelheim, Lilly, Seattle Genetics, Abbvie, Bayer, Celldex, Merck, Celgene, Agios, Jounce, Moderna Therapeutics, CytomX Therapeutics, GlaxoSmithKline, Verastem, Tesaro, Immunocore, Takeda, Millennium, BioMed Valley Discoveries, Pfizer, PTC Therapeutics, TG Therapeutics, Loxo, Vertex, eFFECTOR Therapeutics, Janssen, Gilead Sciences, Valent Technologies, BioAtla, CicloMed, Harpoon Therapeutics, Jiangsu Hengrui Medicine, Daiichi SAnkyo, H3 Biomedicine, Neon Therapeutics, OncoMed, Regeneron, and Sanofi.



### REQUIREMENTS FOR LEVERAGING CARE AND THE CAREFORCE

- Technology Patient ID, NAVQUE
- Personnel Navigators, APP's
- Processes Pathways, Molecular Cancer Conferences




### LEVERAGING CARE AND THE CAREFORCE

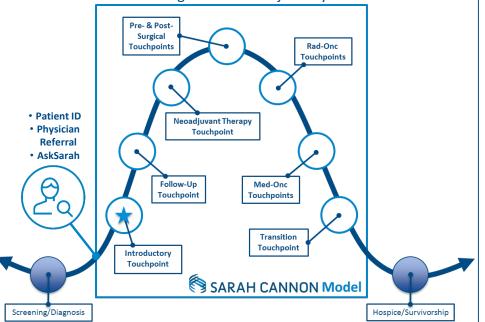
- Improve speed and quality
- Reduce redundancy and waste
- Increase patient satisfaction



### **HCA/SARAH CANNON ASSET OVERVIEW**






# **NAVIGATION WITH PATIENT ID AND NAVQUE**



### **NAVIGATION WORKFLOW & MISSION**

Navigation focuses on the critical period of vulnerability between **diagnosis** and **definitive treatment**;

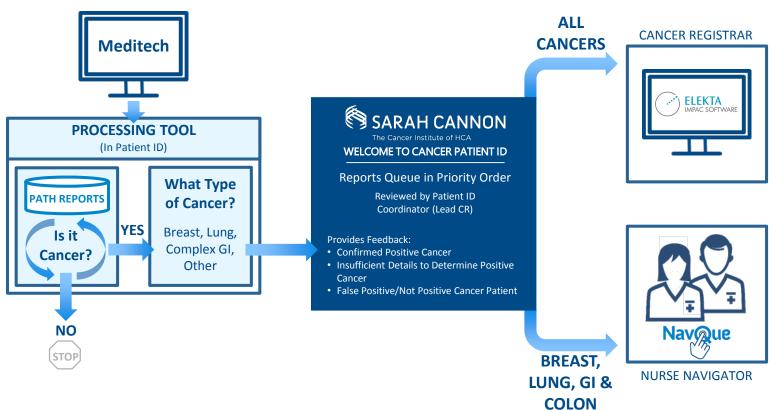
Navigators continue to engage patients at critical transitions through their cancer journey.



**MISSION:** Navigators care for cancer patients by ensuring compliance to the treatment plan through removal of barriers to care

**Develop** trust with the physicians and patients through multidisciplinary care coordination

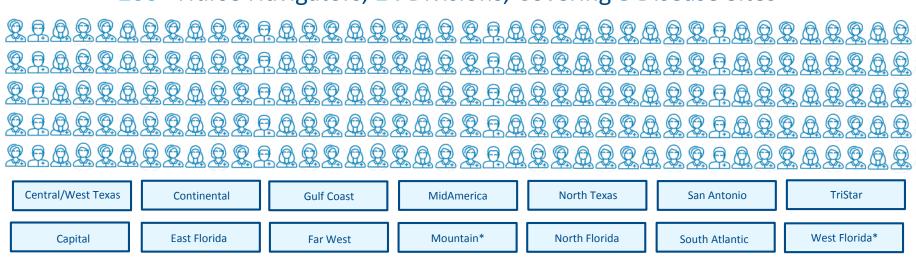
**Assist** in educating patients about their cancer so they can make informed decisions about their care


**Provide** emotional support to the patient, family and caregivers

**Improve** access and utilization of HCA partnered resources

**Advocate** for the patient's voice in development of the treatment plan




### PATIENT ID PROCESS OVERVIEW





### SARAH CANNON NURSE NAVIGATION

### 200+ Nurse Navigators, 14 Divisions, Covering 8 Disease Sites

















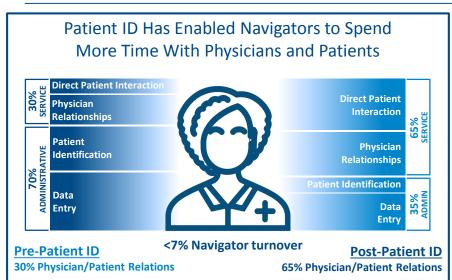


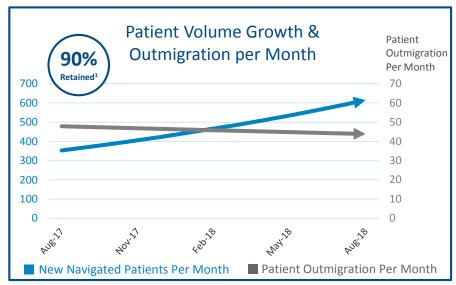
GI

**COLON** 

**GYN** 

**HEME** 


**LUNG** 


**NEURO** 

**SARCOMA** 



#### **NAVIGATION OUTCOMES**





+35% Increase in navigator time spent with patients and physicians

+59%
Increase in
navigated patients
growth YTD 2018
vs 2017<sup>1</sup>

75% Maintained Press
Ganey top box patient
satisfaction for overall
navigation experience after
introducing virtual navigation

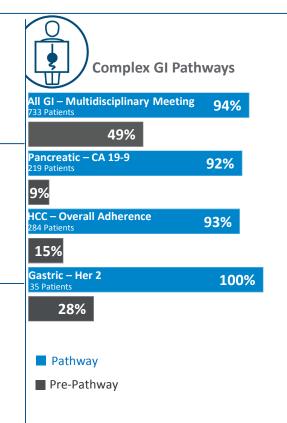
- QUALITY
- 30 Days From first treatment to diagnosis;
Maintained timeliness of

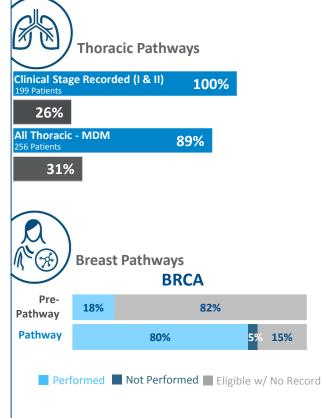
PRODUCTIVITY
96% Met
productivity target
with an increased
benchmark from 175
to 200/year/navigator¹

SARAH CANNON
Fighting Cancer Together\*

care<sup>1</sup> Source: ¹iNavigate

### NAVIGATION + PATHWAYS = IMPROVED PATIENT CARE


3,392+ Patients on Pathway


110+

Engaged Physicians across 9 Markets

50+

Navigators utilizing **20 pathways** 







# Leveraging High-Quality Pathways to Measure Resource Use

- A fair and appropriate methodology for measuring Resource Use for oncologists is critical
- Pathways feasible alternative to episodes of care:
  - Can assess measure adherence to clinically appropriate course of care
  - Provides a mechanism to assess the quality and cost of care provided
  - Already being used by payers—and many practices



# PERSONALIZED MEDICINE



### NGS Testing - In the News





### Next-Generation Sequencing Proves Cost-Effective in Metastatic NSCLC

5/17/18

An economic model comparing different types of genetic testing in metastatic non-small cell lung cancer (NSCLC) showed that next-generation sequencing (NGS) is more cost-





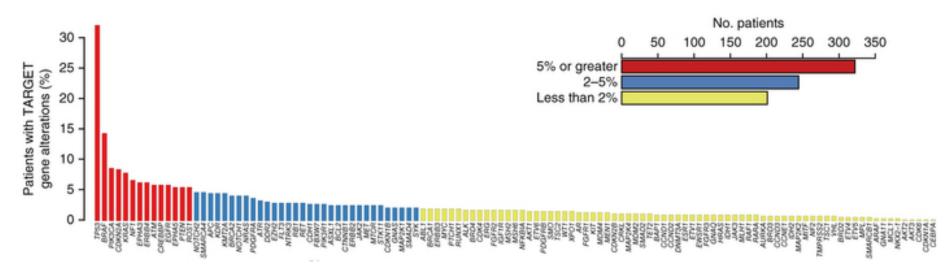
### Next-Generation Sequencing for Metastatic NSCLC Associated With Substantial Cost Savings

Angelica Welch Published Online:5:05 PM, W

### **Forbes**

MAR 6, 2018 @ 10:30 AM 9,474 ®

### All Cancer Patients Should Have Access To Genomic Testing


Days after Thanksgiving, the FDA approved Foundation Medicine's comprehensive genetic test for evaluating cancer. The idea—and practice—of testing tumors for specific DNA or protein abnormalities is not new. Previously, the agency listed several dozen approved companion diagnostic tests; these earlier tools check one or a few molecules to inform the cancer subtype, prognosis, and likelihood of response to treatments.



Generation Sequencing for cancer patients

The Centers for Medicare and Medicaid Services has finalized coverage of Next

### THE CHALLENGE OF PRECISION MEDICINE



Van Allen et al. Nature Medicine 2014;20:682-688

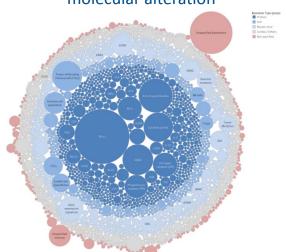


### **ASCO ADVANCE OF THE YEAR 2019**

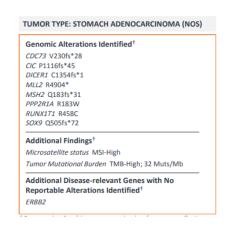


ADVANCE OF THE YEAR

## **Progress in Treating Rare Cancers**



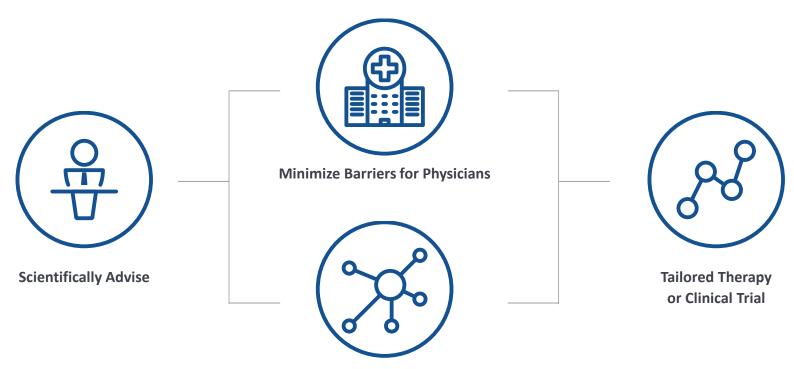

### **OPPORTUNITY**


As new data and technologies emerge, clinicians are required to interpret and act upon increasingly complex

| information                                                                                                                     |                 |             |               |              |                         |          |                 |         |                 |
|---------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------|---------------|--------------|-------------------------|----------|-----------------|---------|-----------------|
| DNA Gene List: Entire Coding Sequence for the Detection of Base Substitutions, Insertion/Deletions, and Copy Number Alterations |                 |             |               |              |                         |          |                 |         |                 |
| ABL1                                                                                                                            | ABL2            | ACVR1B      | AKT1          | AKT2         | AKT3                    | ALK      | AMER1 (FAM1238) | APC     | AR              |
| ARAF                                                                                                                            | ARFRP1          | ARID1A      | ARID18        | ARID2        | ASXLI                   | ATM      | ATR             | ATRX    | AURKA           |
| AURKB                                                                                                                           | AXIV1           | AXL         | BAP1          | BARD1        | BCL2                    | BCL2L1   | BCL2L2          | BCL6    | BCOR            |
| BCORL1                                                                                                                          | BLM             | BRAF        | BRCAI         | BRCA2        | BRD4                    | BRIP1    | 8TG1            | BTK     | C11orf30 (EMSY) |
| CARD11                                                                                                                          | CBFB            | CBL         | CCND1         | CCND2        | CCND3                   | CCNE1    | CD274           | CD794   | CD798           |
| CDC73                                                                                                                           | CDH1            | CDK12       | CDK4          | CDK6         | CDK8                    | CDKNIA   | CDKN1B          | CDKN2A  | CDKN28          |
| CDKN2C                                                                                                                          | CEBPA           | CHD2        | CHD4          | CHEK1        | CHEK2                   | CIC      | CREBBP          | CRKL    | CRLF2           |
| CSF1R                                                                                                                           | CTCF            | CTNNA1      | CTNNB1        | CUL3         | CYLD                    | DAXX     | DDR2            | DICER1  | DNMT3A          |
| DOT1L                                                                                                                           | EGFR            | EP300       | EPHA3         | EPHA5        | EPHA7                   | EPH81    | ERB82           | ERBB3   | ER884           |
| ERG                                                                                                                             | ERRF11          | ESR1        | EZH2          | FAM46C       | FANCA                   | FANCC    | FANCD2          | FANCE   | FANCE           |
| FANCG                                                                                                                           | FANCL           | FAS         | FAT1          | FBXW7        | FGF10                   | FGF14    | FGF19           | FGF23   | FGF3            |
| FGF4                                                                                                                            | FGF6            | FGFR1       | FGFR2         | FGFR3        | FGFR4                   | FH       | FLCN            | FLT1    | FLT3            |
| FLT4                                                                                                                            | FOXL2           | FOXP1       | FRS2          | FUBP1        | GABRA6                  | GATA1    | GATA2           | GATA3   | GATA4           |
| GATA6                                                                                                                           | GID4 (C17orf39) | GLII        | GNAII         | GNA13        | GNAQ                    | GNAS     | GPR124          | GRIN2A  | GRM3            |
| GSK3B                                                                                                                           | H3F3A           | HGF         | HNF1A         | HRAS         | HSD3B1                  | HSP90AAI | IDH1            | IDH2    | IGF1R           |
| IGF2                                                                                                                            | IKBKE           | IKZF2       | ILTR          | INHBA        | INPP4B                  | IRF2     | IRF4            | IRS2    | JAKI            |
| JAK2                                                                                                                            | JAK3            | JUN         | KATGA (MYST3) | KDMSA        | KDMSC                   | KDM64    | KDR             | KEAP1   | KEL             |
| KIT                                                                                                                             | KLHL6           | KMT2A (MLL) | KMT2C (MLL3)  | KMT2D (MLL2) | KRAS                    | LMO1     | LRP1B           | LYN     | LZTR1           |
| M4GI2                                                                                                                           | MAP2K1          | MAP2K2      | MAP2K4        | MAP3K1       | MCL1                    | MDM2     | MDM4            | MED12   | MEF2B           |
| MEN1                                                                                                                            | MET             | MITF        | MLH1          | MPL          | MRE11A                  | MSH2     | MSH6            | MTOR    | MUTYH           |
| MYC                                                                                                                             | MYCL (MYCL1)    | MYCN        | MYD88         | NF1          | NF2                     | NFE2L2   | NEKBIA          | NIX2-1  | NOTCH1          |
| NOTCH2                                                                                                                          | <i>NOTCH3</i>   | NPMI        | NRAS          | NSD1         | NTRK1                   | NTRK2    | NTRK3           | NUP93   | PAK3            |
| PALB2                                                                                                                           | PARK2           | PAXS        | PBRM1         | PDCD1LG2     | PDGFRA                  | PDGFRB   | PDK1            | PIK3C28 | PIK3CA          |
| PIK3CB                                                                                                                          | PIK3CG          | PIK3R1      | PIK3R2        | PLCG2        | PMS2                    | POLD1    | POLE            | PPP2R1A | PRDM1           |
| PREX2                                                                                                                           | PRKARIA         | PRKCI       | PRKDC         | PRSS8        | PTCH1                   | PTEN     | PTPN11          | QKI     | RAC1            |
| RADSO                                                                                                                           | RAD51           | RAF1        | RANBP2        | RARA         | RB1                     | RBM10    | RET             | RICTOR  | RNF43           |
| ROS1                                                                                                                            | RPTOR           | RUNK1       | RUNX1T1       | SDHA         | SDHB                    | SDHC     | SDHD            | SETD2   | SF381           |
| SLIT2                                                                                                                           | SMAD2           | SMAD3       | SMAD4         | SMARCA4      | SMARCB1                 | SMO      | SNCAIP          | SOCS1   | SOX10           |
| SOX2                                                                                                                            | SOX9            | SPEN        | SPOP          | SPTA1        | SRC                     | STAG2    | STAT3           | STAT4   | STK11           |
| SUFU                                                                                                                            | SYK             | TAFI        | TBX3          | TERC         | TERT<br>(promoter only) | TET2     | TGFBR2          | TNFAIP3 | TNFRSF14        |
| TOP1                                                                                                                            | TOP2A           | TP53        | TSCI          | TSC2         | TSHR                    | U2AF1    | VEGFA           | VHE     | WISP3           |
| WTI                                                                                                                             | XPO1            | 28782       | ZNF217        | ZNF703       |                         |          |                 |         |                 |
| DNA Gene List: For the Detection of Select Rearrangements                                                                       |                 |             |               |              |                         |          |                 |         |                 |

An increasing number of SOC treatment options and clinical trials require the knowledge of a molecular alteration

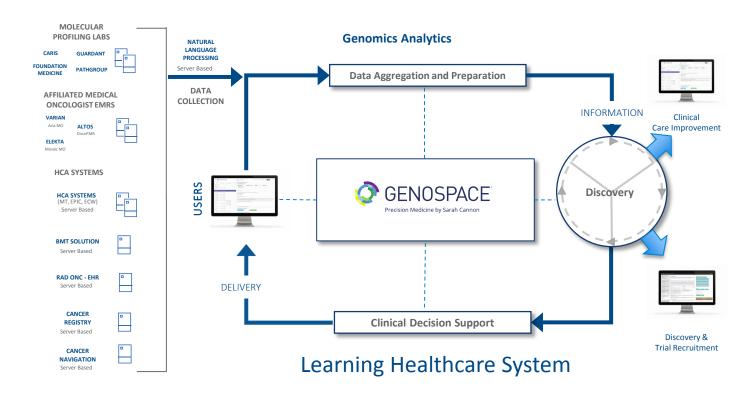



### Molecular reports do not present information in an easily clinically actionable format



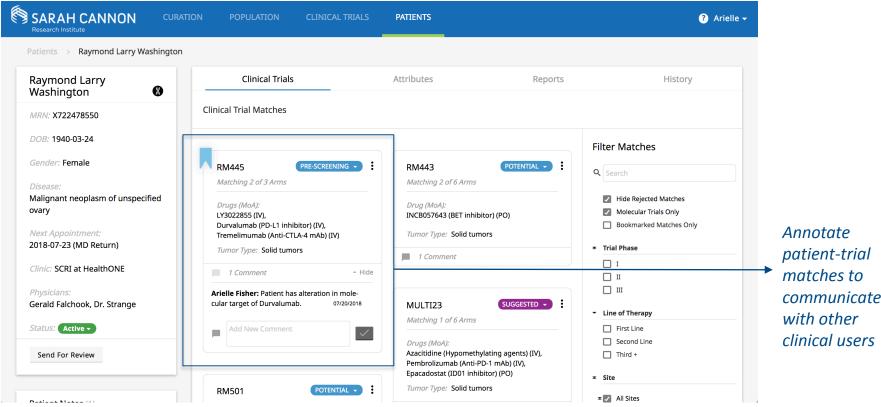
Sarah Cannon's Personalized Medicine program is uniquely positioned to address the opportunities for our partnered medical oncologists, molecular profiling vendors, and pharmaceutical industry partners




### THE SARAH CANNON PERSONALIZED MEDICINE VISION



**Democratize Access to Technologies** 




### GENOSPACE: ENABLING THE CONVERGENCE OF CLINICAL RESEARCH AND CLINICAL CARE





### **REVIEW AND MANAGE YOUR PATIENT'S THERAPY OPTIONS**




communicate



### **MOLECULAR ONCOLOGY SUPPORT SERVICES**

#### **Molecular Cancer Conferences**

- Regularly-occurring office-specific teleconference
- >1000 MCC reviews in 12 months
- ~18% enrollment rate
- >2x increase in MP ordering
- ~23 physician-hours/month







#### **Personalized Molecular Insights**

Powered by Genospace

- Real-time Patient-level review of molecular profiles:
- Since 8/6/2018, All new molecular profiles from late-phase clinics at TO have been annotated in Genospace and abstracted into Personalized Medicine Data Warehouse



### "On-Call" Molecular Insights

- Ad hoc (concierge-level) germline and somatic mutational analysis
- ~4-5 ad hoc cases/week from FCS and TO



### **CONCLUSIONS**

- Better informed patients and physicians will lead to better resource utilization and experiences
- Abundance of information available to care providers is overwhelming and needs to be managed and streamlined
- Maximizing the utilization of technology and processes will be key to success



