Data Privacy-Preservation Mechanisms

Current Theory and Limitations

Finding our Bearings

Basic Premise:
Exponential growth of our data ecosystem. Parts of that ecosystem is relevant to health.

Goal:

To use available data to improve healthcare services (utility)

Normative Constraint : Maintain "Privacy" of health subjects

Confidentiality

Preserving authorized restrictions on information access and disclosure, including means for protecting personal privacy and proprietary information.

[44 U.S.C., SEC. 3542]

Integrity

Guarding against improper information modification or destruction, and includes ensuring information non-repudiation and authenticity.

[44 U.S.C., SEC. 3542]

Availability

Ensuring timely and reliable access to and use of information.

[44 U.S.C., SEC. 3542]

Modes of Use

Access

- Basic Individual Record Access
- Batch Record Access
- (e.g. for population monitoring)

Modeling

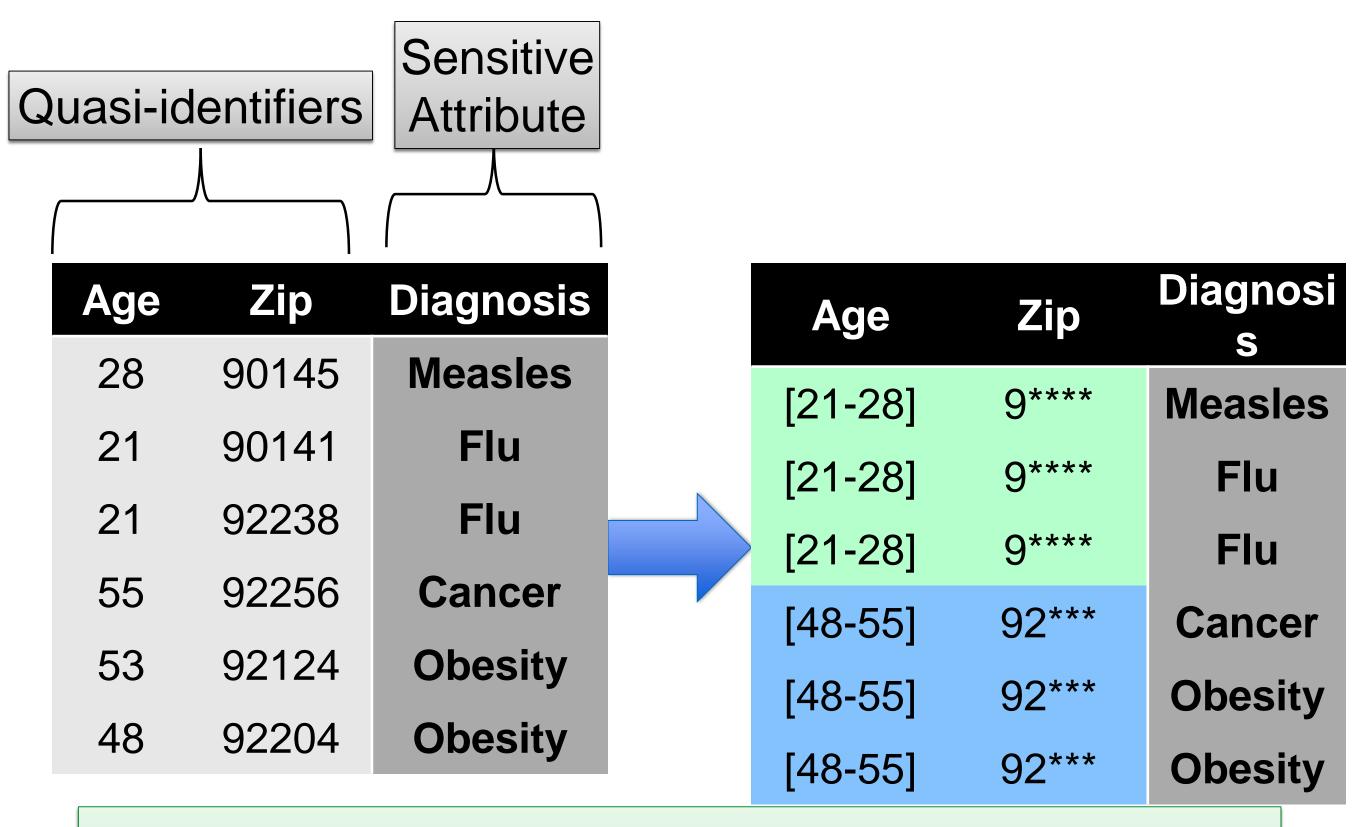
- > Individual Prediction Models
- (e.g. diagnostics)
- Population-level Models
- (e.g. epidemic forecasts)

Typical Problem Statement

Quasi-identifiers		Sensitive Attribute
Age	Zip	Diagnosis
28	90145	Measles
21	90141	Flu
21	92238	Flu
55	92256	Cancer
53	92124	Obesity
48	92204	Obesity

The goal is to prevent "disclosures" i.e. the exposure of sensitive information *linked* to specific subjects. Subject specified by identifiers + quasi-identifiers. Think of it as a game between data owner and a curious adversary.

Privacy-Preservation Techniques (1/2)



K-Anonymity ensures that subjects cannot be identified and linked to sensitive attributes with certainty.

k-Anonymity:

- basic intuitive privacy mechanism
- Still imperfect. Homogeneity attacks

L-Diversity:

Updates k-anonymity. Requires >L diversity in sensitive attributes per sub-class

Skewness Attack:

A form of disclosure or privacy breach e.g. anonymized table discloses that anyone under 30 in the database more likely has flu.

Privacy-Preservation Techniques (2/2)

Disease	Age	Zip	
gastric ulcer	29	47677	1
gastritis	22	47602	2
stomach cancer	27	47678	3
gastritis	43	47905	4
flu	52	47909	5
bronchitis	47	47906	6
bronchitis	30	47605	7
pneumonia	36	47673	8
stomach cancer	32	47607	9

Disease	Age	Zip		
gastric ulcer	<40	4767*	1	
stomach cancer	<40	4767*	3	
pneumonia	<40	4767*	8	
gastritis	>40	4790*	4	
flu	>40	4790*	5	
bronchitis	>40	4790*	6	
gastritis	<40	4760*	2	
bronchitis	<40	4760*	7	
stomach cancer	<40	4760*	9	

"Syntactic" vs. "Semantic" Privacy
No syntactic operations will
prevent all info disclosure.
Focus on limiting what info can be
learnt from a subject being in a
database

t-Closeness:

t-closeness tries to make sub-groups indistinguishable in the sensitive distribution from the full table.

Differential Privacy

Table D ₁	
Row	Income
1	50,000
2	58,000
3	72,000
4	59,000
5	68,000

1
2
3
4
5

Row	Income	
1	50,000	
2	58,000	
3	72,000	
4	59,000	
5	68,000	
6	350,000	

Table Da

$$\forall B, \qquad \frac{P(M(D_1) \in B)}{P(M(D_2) \in B)} < e^{\varepsilon}$$

VS.

- Differential Privacy puts a bound on information disclosure resulting from inclusion in a database.
- Limitations:
 - Subjective choice for epsilon
 - Generally better tailored to an online data access model
 - Repeated queries increases disclosure risk. Typically track with a privacy budget.

"The Myth of PII..."

Privacy Regulations often founded on the assumption that specific descriptive signals are especially revelatory of subjects' identities e.g. HIPAA's PII designation.

With large-scale secondary data & powerful compute, this turns out to be untrue

Any information that distinguishes one person from another can be used for re-identifying data.

Narayanan, Arvind, and Vitaly Shmatikov. "Myths and fallacies of personally identifiable information." *Communications of the ACM* 53, no. 6 (2010): 24-26.

Caveat: Assumes existence of & access to a "population register"

Distinguish between:

Uniqueness & Identifiability

Uniqueness/Unicity

Notional Breakdown of Uniqueness vs. Identifiability

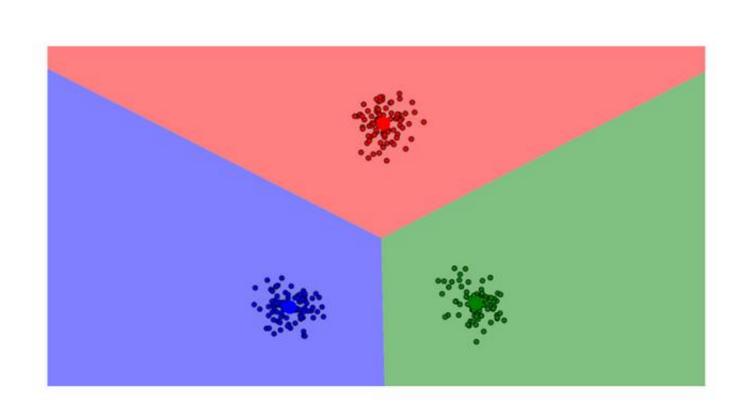
Machine Learning Modes

Machine Learning

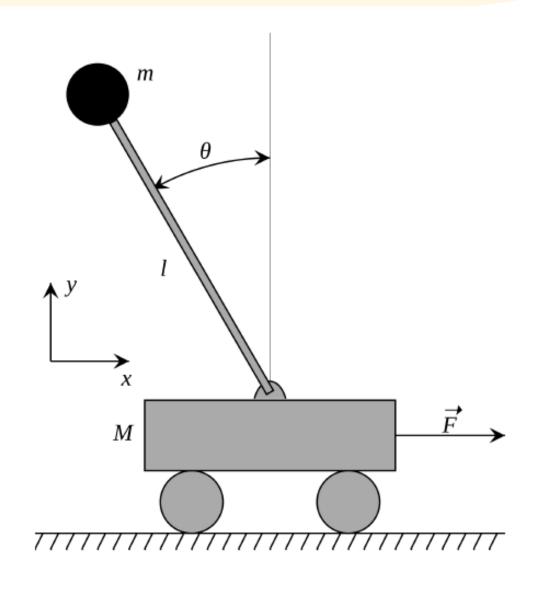
Unsupervised Learning

Reinforcement Learning

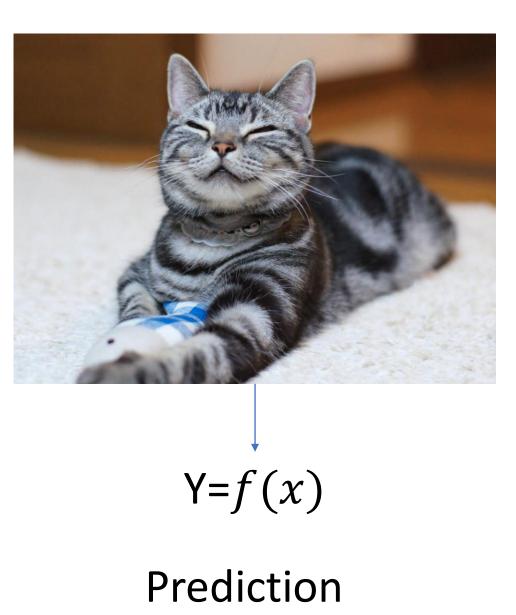
Supervised Learning



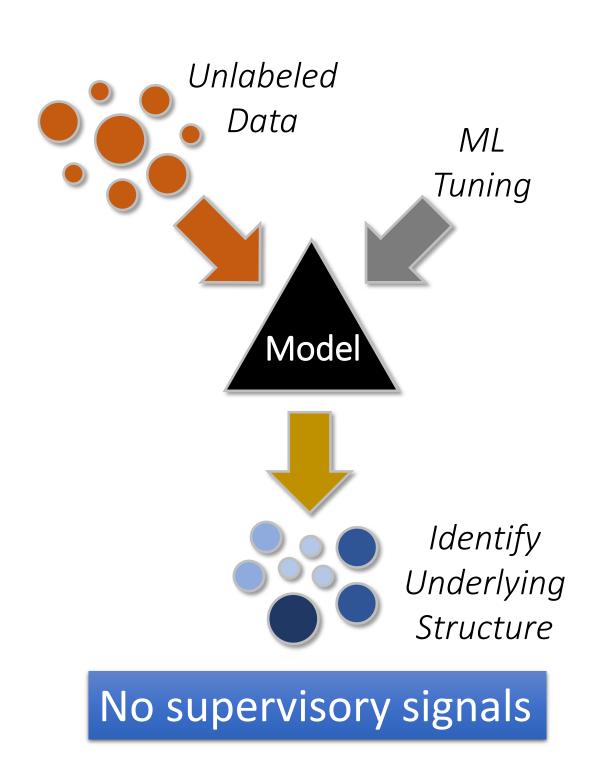
- Clustering
- Density Estimation



Control



Varying Levels of Supervision...



Input (s): samples (x)

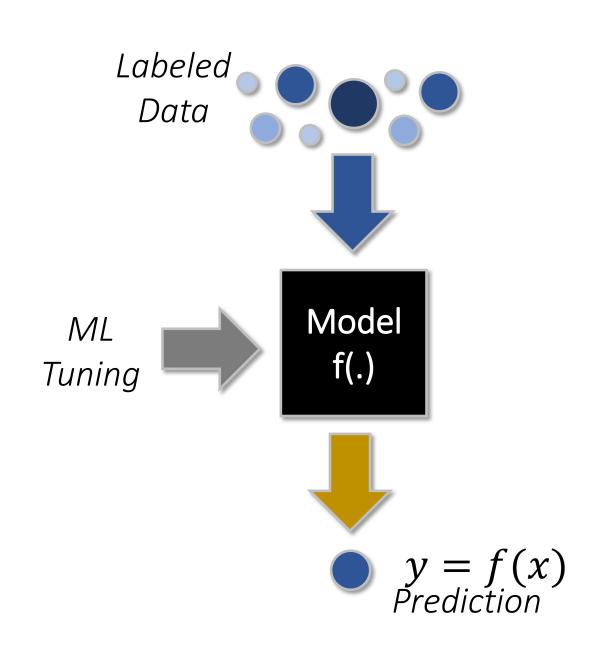
Decision (d): cluster assign (z)

Evaluation (r): Goodness-of-Fit (G)

 $G(\theta) = \ln p(x; \theta)$ Or sum-of-square distances

- Unsupervised Learning:
 - Maximize the log-likelihood, $G(\theta)$ (for density estimation tasks)
- Supervised Learning:
 - Maximize predictive accuracy $Acc(\theta)$
- All use some version of empirical risk minimization to update parameters

$$\theta_{t+1} = \theta_t - \eta_t \nabla_{\theta} J(\theta)$$



Full supervisory signals

Input (s): samples (x)

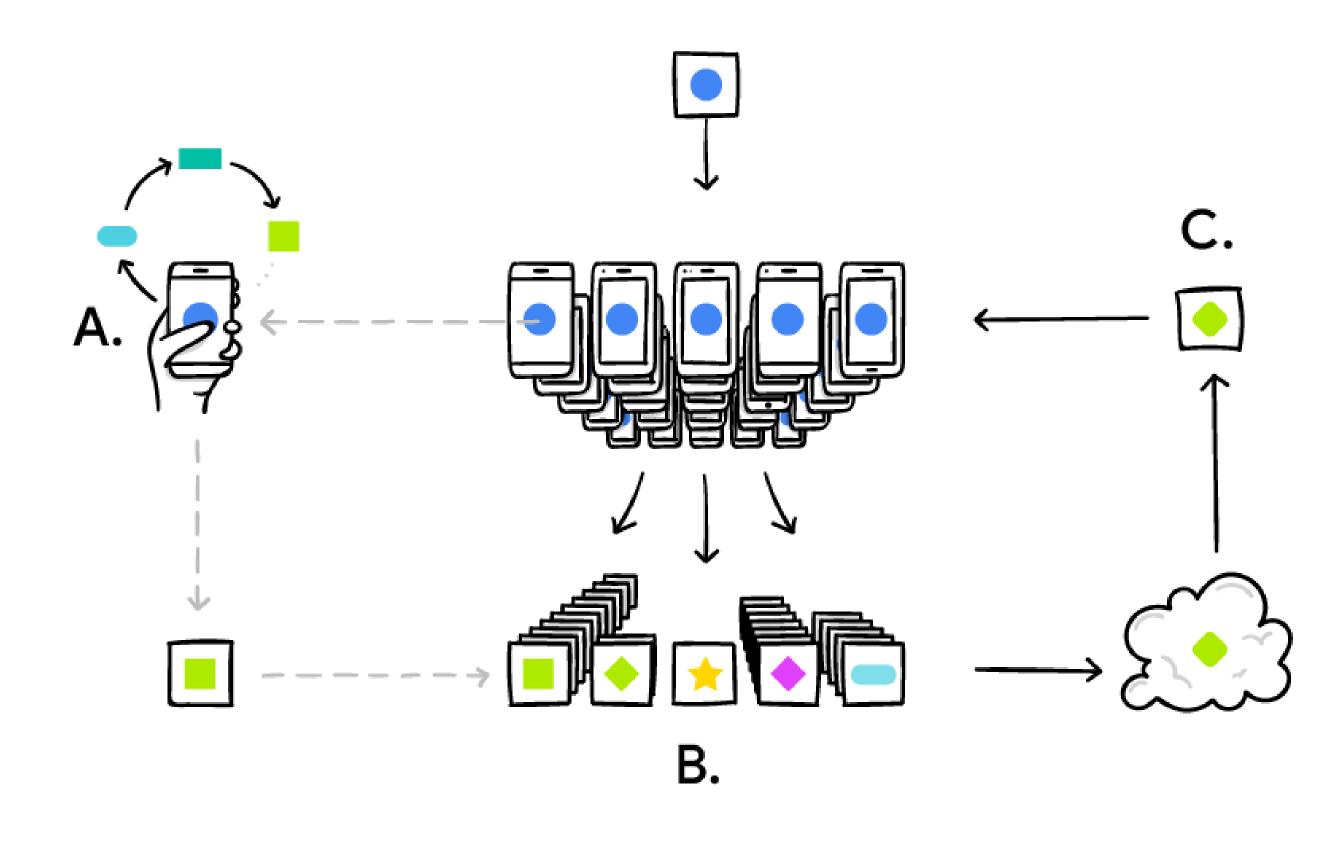
Decision (d): predictions (y)

Evaluation (r): accuracy (Acc)

Acc(
$$\theta$$
) = $J(y, \hat{y}(x, \theta))$
e.g. J = MSE or Cross-Entropy

New Tools in the Arsenal: Federated Learning

- Data is useful for more than just access.
- AI/ML models require data for tuning
- Curating such data for modeling elevates privacy risk
- Federated Learning provides a means for training advanced models without access to subject data



Source: https://ai.googleblog.com/2017/04/federated-learning-collaborative.html

New Threats: Model Inversion

- Advanced models necessarily contain information about the data they are trained on
- Recent work demonstrates inversion attacks on such models
- i.e. design algorithms to reconstruct training data using just access to the model

Figure 1: An image recovered using a new model inversion attack (left) and a training set image of the victim (right). The attacker is given only the person's name and access to a facial recognition system that returns a class confidence score.

Source: Fredrikson, Jha, Ristenpart 2016

- Ransomware/Wannacry
- Advanced Persistent Threat
- Internet of Things/Bodies
- •Is Privacy Fair?

