What Constitutes Reasonable Evidence of Efficacy and Effectiveness?

Daniel Sargent, PhD
Professor of Biostatistics & Oncology
Mayo Clinic, Rochester, MN
February 9, 2009

Overview

Definitions

How to generate evidence

How to evaluate strength of evidence

 What kind of evidence we will need in the future

Definitions: 'Reasonable'

 Definition: agreeable to reason or sound judgment; logical¹

- Challenges in face of life threatening disease
 - Pressure to accept less evidence
 - Discount harms when alternative dire

Definitions: 'Evidence'

- Definition: that which tends to prove or disprove something; ground for belief; proof¹
- Challenges
 - Not mathematics: cannot prove A > B when based on imperfect observations on a sample
 - Not a laboratory: patients must consent to participation
 - Evidence is often unavailable/ inconclusive/ contradictory

Definitions: 'Efficacy'

Definition: capacity for producing a desired result or effect

- Challenges
 - What is the desired result?
 - Can we measure the desired result?
 - Is the result transferrable to other settings?

'Reasonable Evidence of Efficacy'

- Who decides whether 'evidence' of 'efficacy' is 'reasonable'?
- Current (Oncology drugs):
 - FDA, often guided by ODAC
 - Primarily a scientific decision, some patient input
 - Community, guided by
 - Guidelines (ASCO, NCCN)
 - Scientific literature
 - Pharma/marketing

'Reasonable Evidence of Efficacy'

Is the current practice for evaluating efficacy evidence 'reasonable'?

- Mostly yes
 - Input from many parties, in an organized manner
 - Therapies must have efficacy
 - Clear standards (p < 0.05)

Definitions: 'Effectiveness'

 Definition: how well a treatment works in practice, as opposed to efficacy, which measures how well it works in clinical trials or laboratory studies²

- Challenges
 - How can we predict effectiveness from efficacy measures?
 - Do we ever measure this?

'Reasonable Evidence of Effectiveness'

Is the current practice for evaluating effectiveness evidence 'reasonable'?

- Mostly no
 - Input from many parties, unorganized
 - Therapy effectiveness unclear
 - Clear standards lacking

How to generate evidence: hierarchy of research designs³

- I Evidence from at least one properly randomized, controlled trial
- II-1 Evidence from well-designed controlled trials w/o randomization
- II-2 Evidence from well-designed cohort or case-control analytic studies
- II-3 Evidence from multiple time series with or w/o the intervention.
- III Opinions of authorities, clinical experience; descriptive studies and case reports; reports of expert committees

Evidence for efficacy: Level I or II-I

- I Evidence from at least one properly randomized, controlled trial
 - Gold standard for FDA full approval

- II-1 Evidence from well-designed controlled trials w/o randomization
 - Acceptable for accelerated approval

Why are RCTs the gold standard?

 Randomization allows causal inference: A causes B

- All other forms of evidence potentially biased by selection effects & other hidden biases
 - Propensity scores, other modeling approaches try to adjust, but imperfect

Elements of Quality that Apply to Both Level I and II-1 studies

- Pre-specified hypothesis
 - Primary, secondary endpoints
 - Specified data cut-offs
- Defined sample set
 - Eligibility criteria
 - As inclusive as possible
- Power calculations to show have data to address primary aim, pre-specified analysis plans

Elements of Quality that Apply to Both Level I and II-1 studies

- Unbiased endpoint ascertainment
 - Blinding if possible
 - Protocol specified criteria
 - Independent review if possible
- Complete information
 - Standard follow-up per schedule
 - Full assessment of outcome on all patients (few lost to follow-up)

Evidence for Effectiveness: Current Paradigm

- RCT done to achieve initial approval (establish efficacy)
- Adoption by community
- Refined further study / community use
- Refinements rarely studied rigorously
- Ultimate pseudo-validation through meta-analysis or observational study (maybe)

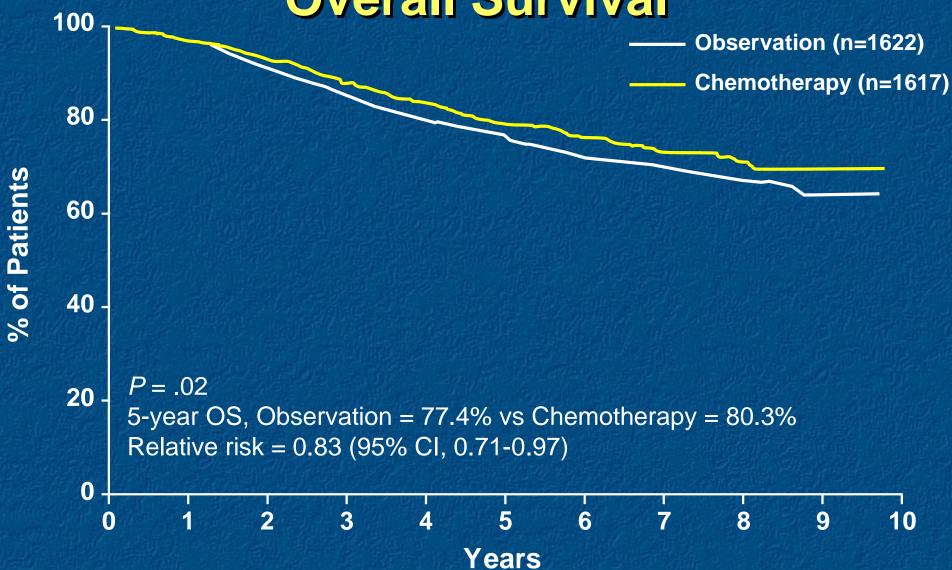
Evidence for Effectiveness

 Current paradigm mostly prohibits generation of level 1 evidence of effectiveness

- Is level I evidence possible?
 - Large, simple trials
 - Cluster randomization

Generating effectiveness evidence: Cluster randomization

- If it is impossible to randomize individuals, can we randomize groups?
 - Physicians, Institutions, States, etc.
- Less powerful than randomizing patients, but still randomized
- Special analyses required, but feasible



Large Simple Trial Example: QUASAR4

- Streamlined trial design, with no extra investigations & minimal extra workload
- Notify trial office of serious unexpected adverse experiences
- Yearly follow-up for brief details of serious toxicity, recurrence, and death
- Health economic, compliance, toxicity, quality of life measured in a sub-study

Bridging the efficacy vs effectiveness gap in RCTs

- Multi-center recruitment
- Minimize eligibility criteria
- Intention to treat analysis
- Minimize accrual disincentives
 - Financial
 - Regulatory
 - Data Collection

Evaluating Strength of Evidence:The Endpoint Hierarchy

- True Clinical Efficacy Measure
- Validated Surrogate Endpoint (Rare)
- Surrogate Endpoint that is "reasonable likely to predict clinical benefit"
- None of the Above: A correlate that is solely a measure of Biological Activity

Evidentiary Requirements for Drug Approval

- Regular approval
 - Clinical benefit, or
 - Established surrogate for clinical benefit

- Accelerated approval
 - Surrogate (reasonably likely to predict clinical benefit)

Evidence: Surrogate Endpoints

 An endpoint obtained sooner, at less cost, or less invasively than the true endpoint of interest

 When using a potential surrogate endpoint, one would like to make the same inference as if one had observed a true endpoint (i.e. a health outcome)

Validation of Surrogate Endpoints

Property of a Valid Surrogate

Effect of the Intervention on the Clinical Endpoint

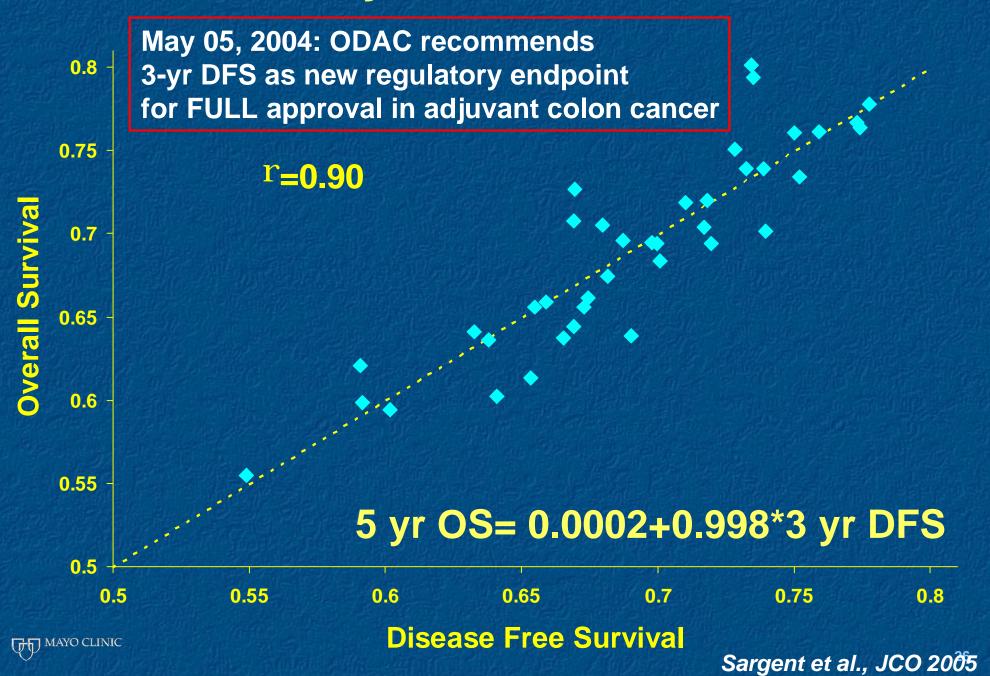
is reliably predicted by the

Effect of the Intervention on the Surrogate Endpoint

Validation of Surrogate Endpoints

Statistical

Meta-analyses of clinical trials data


Clinical

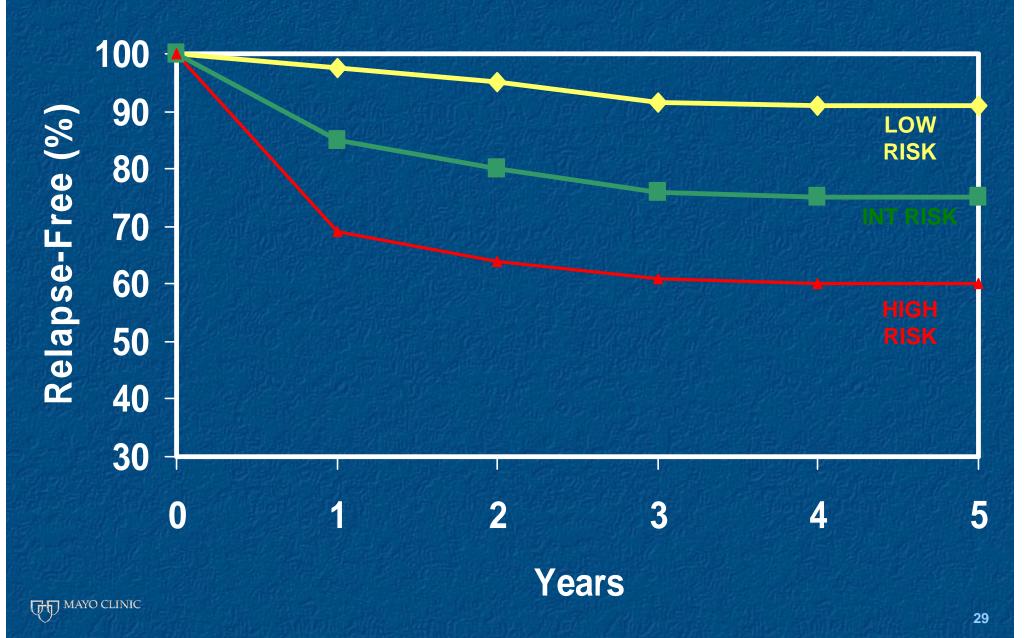
- Comprehensive understanding of the
 - Causal pathways of the disease process
 - Intervention's intended and unintended mechanisms of action

No single gold standard approach

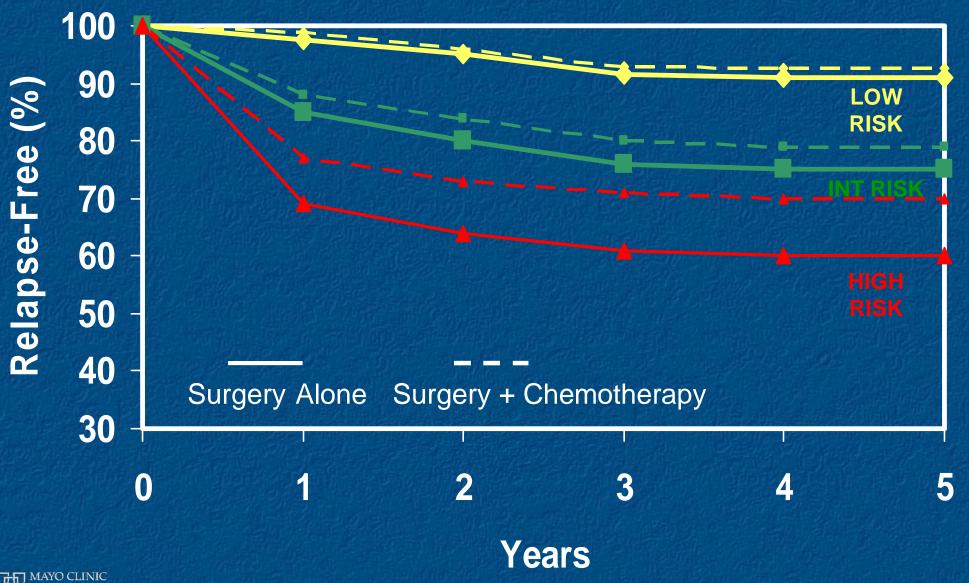
ACCENT Analysis: 3 Yr DFS vs 5 Yr OS

What type of evidence will we need in the future?

- Premise: Biomarkers will define patient populations based on
 - Risk
 - Potential to benefit


- Premise: Biomarkers will allow early assessment of treatment efficacy
 - As trial endpoints
- As patient management tools

Prognostic & Predictive Biomarkers


- New technologies allowing large-scale measurement of genomic & other factors
- New (targeted) therapeutics emerging
- Individualizing therapy becoming increasingly desirable & theoretically feasible – clear value implications
- Very few potential biomarkers developed to the point of allowing reliable use in clinical practice

Prognostic Goal: Early Stage Cancer

Predictive Goal: Early Stage Cancer

Predictive marker validation: RCTs required

 Goal: Determine with treatment will work for which patient

 Vital: Patients treated with rx choices in question must be comparable

 Only true assurance: Patients randomized between treatments

Biomarker Classifier Development: Prospective Specification

- Inclusion/exclusion criteria
- Primary, secondary endpoints
- Precise definition of biomarker outcome (pre-specified cutpoints)
- Statistical analysis methodology
- Just like a prospective RCT clinical trial

Requirements for Retrospective Validation

- Samples available on large majority of patients to avoid selection bias
- Hypotheses, analyses techniques, patient population, and precise algorithm for assay techniques stated prospectively
- All marker subgroup analyses stated upfront, with appropriate sample size justification

Prospective clinical trial designs to validate biomarkers

 Targeted (selection) trial: enroll only those thought likely to respond to new therapy

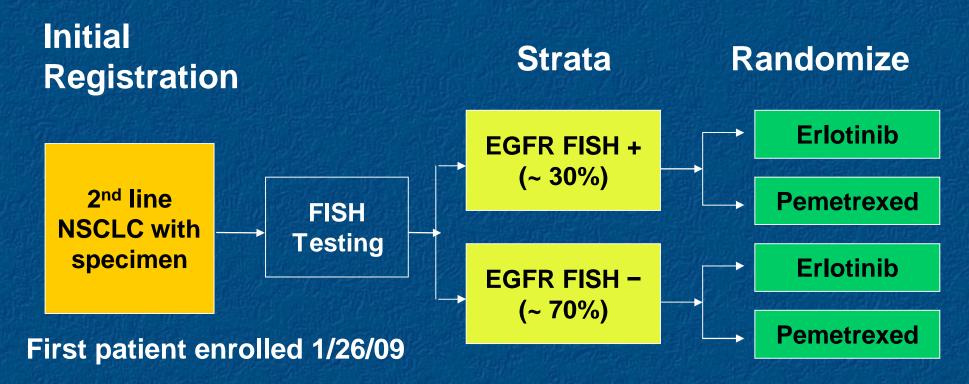
- Unselected trial: Enroll all, but prospectively include biomarker in analysis plan
 - Prospective subgroup analysis by marker status

Designs for Targeted Trials

Design can use standard approaches

Possible Issues

- Negative trials when agent has benefit since precise mechanism of action unknown; missed efficacy in other pts
- Inability to test association of the biologic endpoints with clinical outcomes
- Need to screen all patients anyway
- Need real time method for assessing patients who are / are not likely to respond


Unselected Biomarker Validation Design

 Randomize all pts between treatments, Biospecimens on all – prospectively analyze by marker

- Advantages:
 - Answers more questions
 - Allows retrospective analyses for even better markers

MARVEL - <u>Marker Validation for Erlotinib in Lung</u> Cancer

Primary Goal:

To evaluate whether there are differences in PFS between erlotinib and pemetrexed within the FISH positive and FISH negative subgroups (N = 957)

Conclusions

 As a medical community, we do a reasonable job of efficacy determination

- Still very costly & burdensome
- Need to reduce data collection, develop reliable early endpoints

Conclusions

- We rarely collect data to allow reliable determination of effectiveness
 - Careful experimental design critical to generate reliable evidence
 - Large simple trials, cluster randomization are possibilities
- Future medicine will be more complex, not less, and both efficacy and effectiveness determinations require prospective planning in RCTs

