

Arul M. Chinnaiyan, M.D., Ph.D.
U-M EDRN Biomarker Marker Development Lab
American Cancer Society Research Professor
Howard Hughes Medical Institute

Relevant Disclosures

- Tempus- SAB (Scientific Advisory Board)
- Lynx Dx- SAB/co-founder, commercialization of a urine test for prostate cancer
- Co-inventor on IP related to prostate cancer gene fusions (T2:ERG) and long non-coding RNAs (IncRNAs) associated with cancer

Outline

- Challenges with validation of novel cancer screening tests
- Development of a non-invasive early detection test for a specific cancer (prostate cancer)
- Multi-cancer, multi-omics cancer detection

Outline

- Challenges with validation of novel cancer screening tests
- Development of a non-invasive early detection test for a specific cancer (prostate cancer)
- Multi-cancer, multi-omics cancer detection

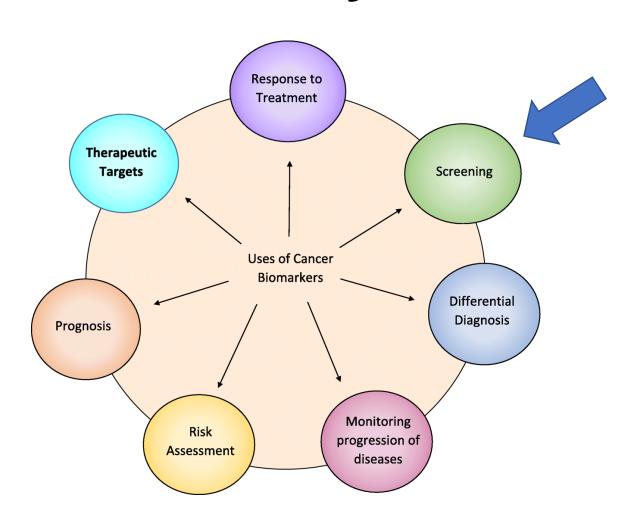

The Case for Early Detection

Table 1 Projected changes in survival with early detection						
Cancer site	Tumours localized when detected (%)	5-year survival rate (%)	5-year survival rate if all tumours were localized when detected (%)			
Colorectal	41	64	90			
Lung	19	16	49			
Breast	65	87	97			
Prostate	65	90	100			

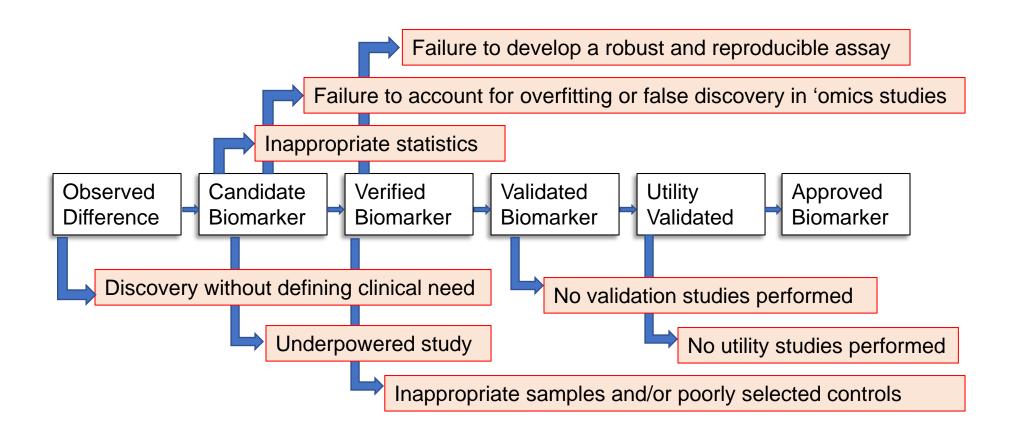
Based on data from SEER¹ for cases diagnosed between 1990 and 1999 inclusive. Cases with in situ or unstaged disease have been excluded. The favourable overall 5-year survival among breast and prostate cancer patients is partly due to the prevalence of screening for these cancers during the calendar years considered.

Etzioni et al., Nature Reviews Cancer 3, 243-252 (2003)

Cancer Biomarkers by Clinical Use

Cancer Biomarkers by Validation Level

1st Step - Define clinical need → determine needed performance characteristics! Observed Candidate Verified Validated Utility Approved Difference Biomarker Biomarker Validated Biomarker Biomarker •CLIA or GLP •Intended use Typically True Repeat of clinical assay Large study approached comparison comparison Large study Randomized with a between with fully Blinded Blinded commercial independent properly Prospective Prospective partner matched cases and study, study, Based on controls. cases and More than More than discussions controls **Blinded** one location one location occurring during final validation Power study Power study Simple Demonstrates Demonstrates studies Sensitivity Sensitivity statistics that marker that marker is Specificity Specificity T test. truly provides •ROC analysis •ROC analysis •Wilcoxon clinical benefit predictive •FDR •FDR rank sum when used as compensation, compensation,

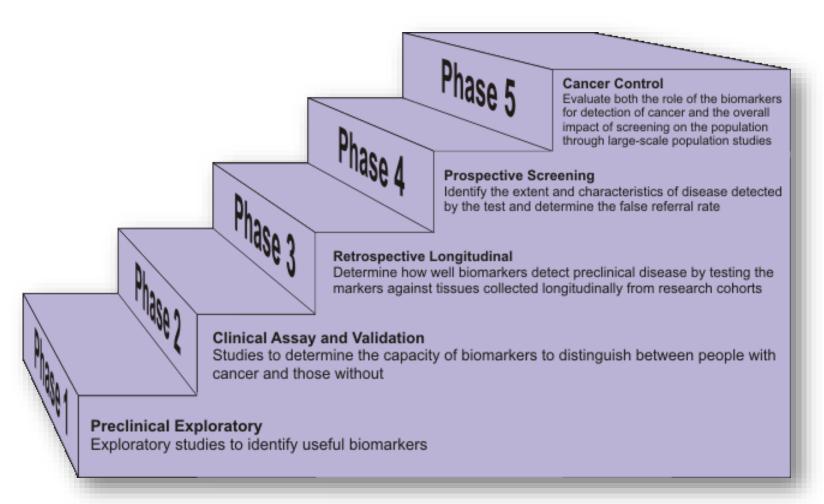

etc.

etc.

LaBaer et al

intended

Common Pitfalls in Cancer Biomarker Research



Challenges in Cancer Biomarker Develoment

- Finding validated and clinically useful biomarkers is rare
 - Despite 40,000 papers/year, many claiming > 90% sensitivity and specificity
 - Only a few FDA approved biomarkers per year
 - Nationwide in the USA
 - Industry and Academia
 - All diseases
 - The challenge is similar to finding a new drug or validated target
- Challenges:
 - Biology
 - Different culture: not just about the story, the markers have to work
 - Validation is not sexy
 - Cannot get grants to do validation
 - Journals don't publish negative results
 - Hard to get academic credit or grants for participating in this type of research

Phases of Biomarker Development

PRoBE

Study

Design: Prospective-

Specimen-

Collection,

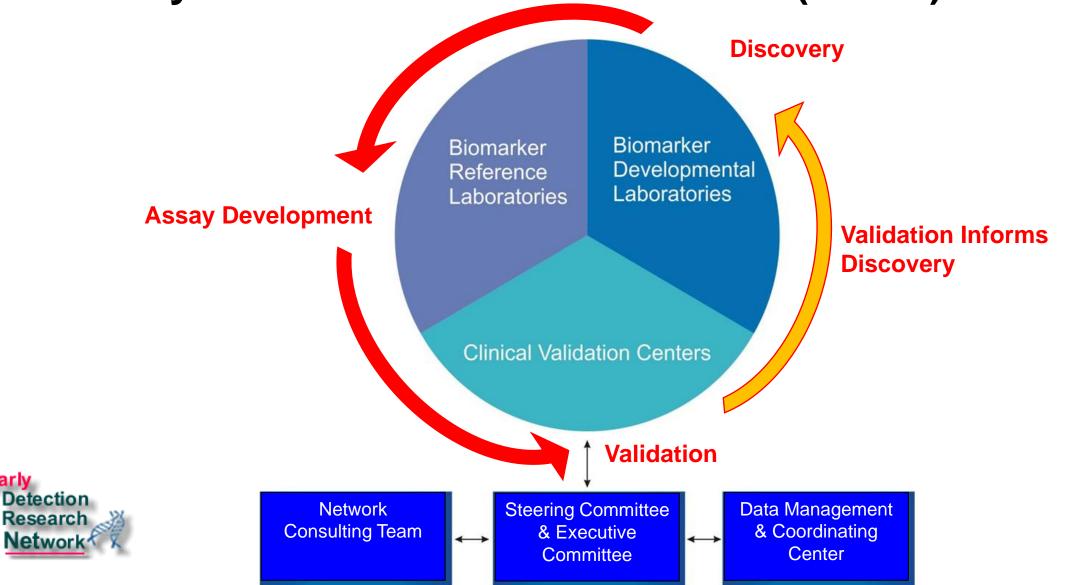
Retrospective-

Blinded-

Evaluation

Pivotal Evaluation of the Accuracy of a Biomarker Used for Classification or Prediction: Standards for Study Design

Margaret Sullivan Pepe et al., J Natl Cancer Inst. 2008 Oct 15; 100(20): 1432-1438.


Citations: >400

Source: Pepe et al, J. Natl. Cancer Inst. 93, 1054-1061, 2001

>1300 citations

Infrastructure for Cancer Biomarker Development: Early Detection Research Network (EDRN)

Outline

- Challenges with validation of novel cancer screening tests
- Development of a non-invasive early detection test for a specific cancer (prostate cancer)
- Multi-cancer, multi-omics cancer detection

Background

- Prostate cancer (PCa) poses a massive clinical and financial burden on patients and the healthcare system.
- Each year, approximately one million prostate biopsies are performed, 175,000 men are diagnosed with PCa, and 32,000 men die of the disease.

Figure 3. Leading Sites of New Cancer Cases and Deaths - 2019

rigare or Leading Sites or New Carlett Gases and Deaths 2013					
	Male				
	Prostate	174,650	20%		
	Lung & bronchus	116,440	13%	T	
Estimated New Cases	Colon & rectum	78,500	9%		
ပ္မ	Urinary bladder	61,700	7%		
§	Melanoma of the skin	57,220	7%		
ž	Kidney & renal pelvis	44,120	5%		
tec	Non-Hodgkin lymphoma	41,090	5%		
па	Oral cavity & pharynx	38,140	4%		
Sti.	Leukemia	35,920	4%		
ш	Pancreas	29,940	3%		
	All sites	870,970			
	Male				
	Lung & bronchus	76,650	24%		
		76,650 31,620	24% 10%		
s	Lung & bronchus			1	
aths	Lung & bronchus Prostate	31,620	10%	1	
Deaths	Lung & bronchus Prostate Colon & rectum	31,620 27,640	10% 9%		
ed Deaths	Lung & bronchus Prostate Colon & rectum Pancreas	31,620 27,640 23,800	10% 9% 7%		
ated Deaths	Lung & bronchus Prostate Colon & rectum Pancreas Liver & intrahepatic bile duct	31,620 27,640 23,800 21,600	10% 9% 7% 7%		
timated Deaths	Lung & bronchus Prostate Colon & rectum Pancreas Liver & intrahepatic bile duct Leukemia	31,620 27,640 23,800 21,600 13,150	10% 9% 7% 7% 4%		
Estimated Deaths	Lung & bronchus Prostate Colon & rectum Pancreas Liver & intrahepatic bile duct Leukemia Esophagus	31,620 27,640 23,800 21,600 13,150 13,020	10% 9% 7% 7% 4% 4%		
Estimated Deaths	Lung & bronchus Prostate Colon & rectum Pancreas Liver & intrahepatic bile duct Leukemia Esophagus Urinary bladder	31,620 27,640 23,800 21,600 13,150 13,020 12,870	10% 9% 7% 7% 4% 4% 4%		

Background: PSA Screening

- The etiology of these hardships can in many cases be traced back to current prostatespecific antigen (PSA)-based methods of PCa diagnosis.
- PSA is a marker of prostate epithelial cells, not prostate cancer.
- The high rate of false positive PSA tests (i.e. elevated PSA in the absence of cancer) results
 in frequent unnecessary biopsies (up to 80%) and a cascade of negative outcomes for
 patients and undue burden on the healthcare system.

This is compounded by the broad biological and clinical heterogeneity of PCa, as a significant proportion of screen-detected cancers are indolent (~50%) and will not harm a patient during their lifetime (i.e. overdiagnosis).

Tosoian et al

Background: PSA Screening

- Harms of overdiagnosis:
 - Unnecessary surveillance
 - Serial prostate biopsy
 - Serial imaging
 - Frequent conversion to treatment
 - Unnecessary treatment
 - Treatment-associated side effects
 - Erectile dysfunction
 - Urinary incontinence
 - Mental/emotional burden
 - Cost and resource burden

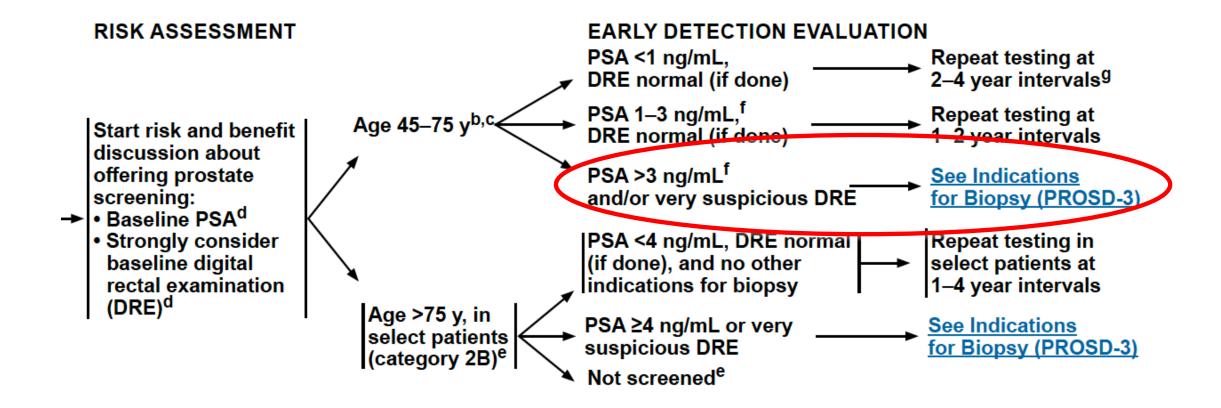
Table. Estimated Effects After 13 Years of Inviting Men Aged 55 to 69 Years in the United States to PSA-Based Screening for Prostate Cancer^a

Effect	No. of Men
Men invited to screening	1000
Men who received at least 1 positive PSA test result	240
Men who have undergone 1 or more transrectal prostate biopsies	220 ^b
Men hospitalized for a biopsy complication	2
Men diagnosed with prostate cancer	100
Men who initially received active treatment with radical prostatectomy or radiation therapy	65
Men who initially received active surveillance	30
Men who initially received active surveillance who went on to receive active treatment with radical prostatectomy or radiation therapy	15
Men with sexual dysfunction who received initial or deferred treatment	50
Men with urinary incontinence who received initial or deferred treatment	15
Men who avoided metastatic prostate cancer	3
Men who died of causes other than prostate cancer	200
Men who died of prostate cancer despite screening, diagnosis, and treatment	5
Men who avoided dying of prostate cancer	1.3

Schroder 2014, Fenton 2018

Where does that leave us?

 There is consensus regarding the need for a test that can reduce the number of men who undergo unnecessary prostate biopsies, i.e. negative biopsies or those detecting low-grade cancer.



Current Standard

Current Standard

INDICATIONS FOR BIOPSYh

- Repeat PSA
 DRE, if not performed during initial risk
- Workup for benign disease

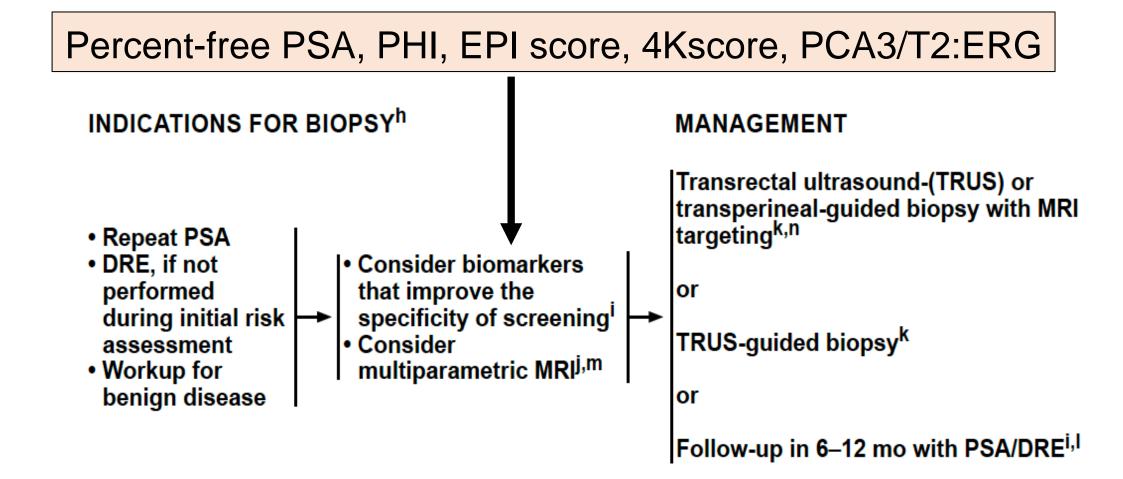
assessment

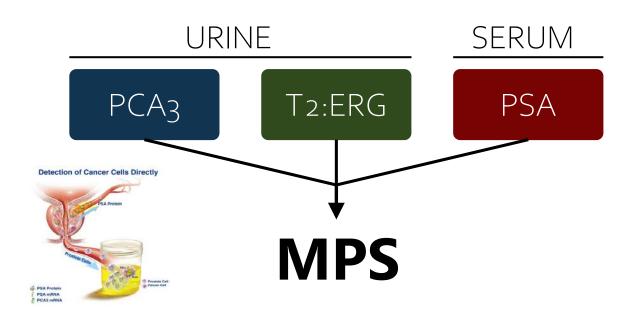
- Consider biomarkers that improve the specificity of screeningⁱ
 Consider
 - multiparametric MRI^{j,m}

MANAGEMENT

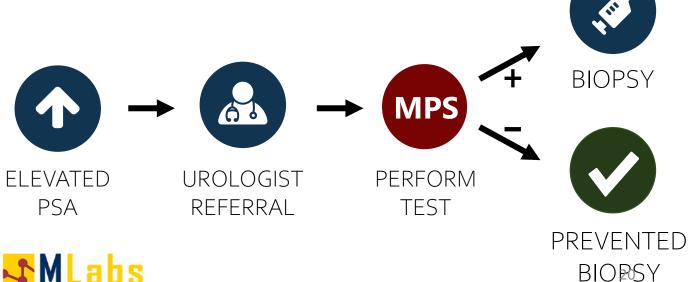
Transrectal ultrasound-(TRUS) or transperineal-guided biopsy with MRI targeting^{k,n}

or


TRUS-guided biopsyk


or

Follow-up in 6–12 mo with PSA/DRE^{i,l}


The NCCN now offers that clinicians consider alternatives to immediate biopsy: biomarkers or multiparametric MRI.

Current Standard

CLINICAL WORKFLOW

MPS: My Prostate Score

PCA3

- long non-coding RNA with highly PCa specific expression
- Most validated non-invasive biomarker for PCa outside of serum PSA

TMPRSS2:ERG FUSION (T2:ERG)

- Highly PCa specific gene fusion discovered by our group
- Most specific and validated tissue biomarker of prostate cancer

VALIDATION STUDIES

PERFORMANCE OF PCA₃ AND T₂:ERG HAS BEEN VALIDATED AND TESTED IN NEARLY 4,000 PATIENTS

Publication	Validation Cohort Size	
Tomlins, S. A. <i>et al. Eur. Urol.</i> (2016)	1244	
Sanda, M. G. <i>et al. JAMA Oncol.</i> (2017)	561	
Leyten, G. H. J. M. <i>et al. Eur. Urol.</i> (2014)	443	
Tomlins, S. A. <i>et al. Sci. Transl. Med.</i> (2011) *T2:ERG Only	1312	
Lin, D. W. <i>et al. Clin. Cancer Res.</i> (2013)	387	
Salami, S. S. <i>et al. Urol. Oncol.</i> (2013)	45	

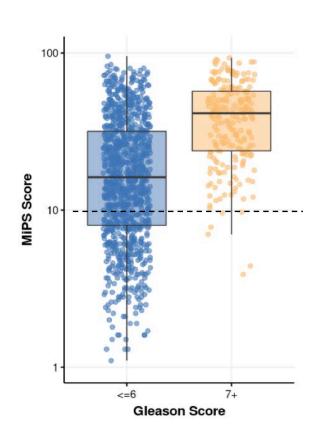
Research

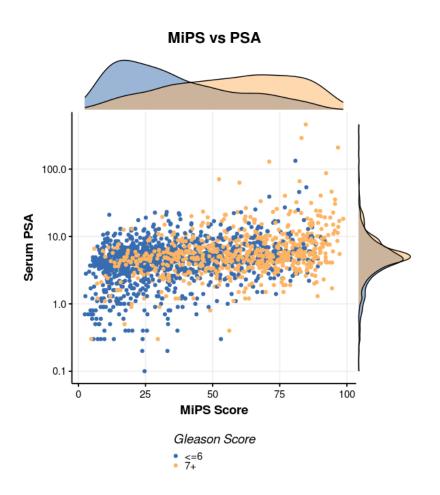
JAMA Oncology | Original Investigation

Association Between Combined *TMPRSS2:ERG* and *PCA3* RNA Urinary Testing and Detection of Aggressive Prostate Cancer

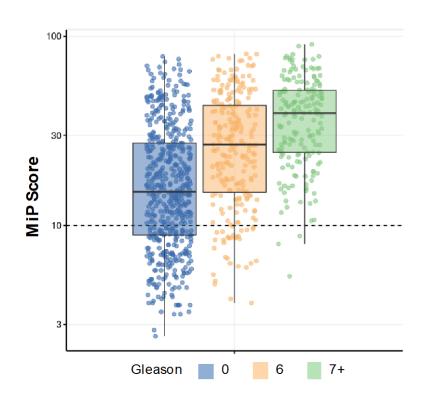
Martin G. Sanda, MD; Ziding Feng, PhD; David H. Howard, PhD; Scott A. Tomlins, MD, PhD; Lori J. Sokoll, PhD; Daniel W. Chan, PhD; Meredith M. Regan, DSci; Jack Groskopf, PhD; Jonathan Chipman, MS; Dattatraya H. Patil, MBBS, MPH; Simpa S. Salami, MD; Douglas S. Scherr, MD; Jacob Kagan, PhD; Sudhir Srivastava, PhD; Ian M. Thompson Jr, MD; Javed Siddiqui, MS; Jing Fan, MS; Aron Y. Joon, MS; Leonidas E. Bantis, PhD; Mark A. Rubin, MD; Arul M. Chinnayian, MD, PhD; John T. Wei, MD; and the EDRN-PCA3 Study Group

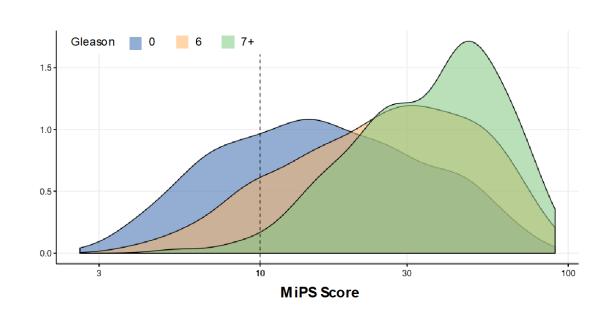
JAMA Oncol. 2017;3(8):1085-1093. doi:10.1001/jamaoncol.2017.0177 Published online May 18, 2017.


Detection of Cancer Cells Directly



MiPS= Mi Prostate Score (PCA3+ TMPRSS2-ERG + urinary PSA+ serum PSA)




MPS IS ABLE TO SEPARATE HIGH-GRADE CANCERS FROM LOW-GRADE AND NORMAL SIGNIFICANTLY BETTER THAN PSA

MPS is a powerful rule-out test for high-grade prostate cancer

Validation Cohort:

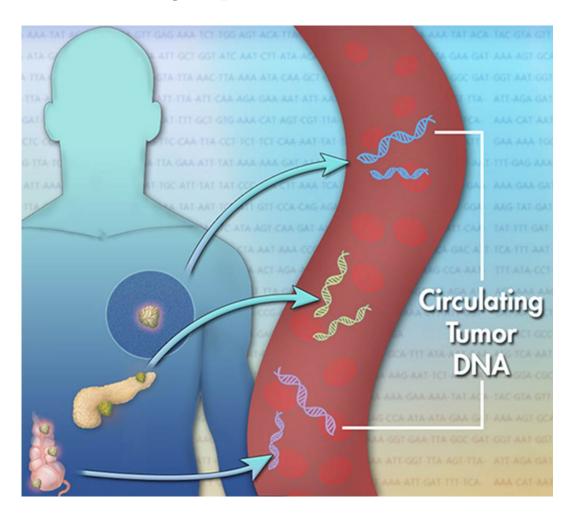
1,244 Samples

30% biopsies prevented

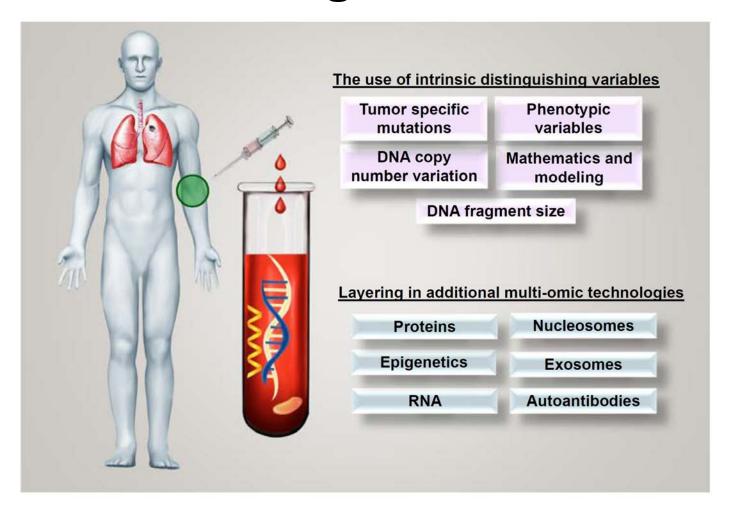
• Sensitivity: 97%

• NPV: 98%

• Specificity: 33%


NPV: 26%

Tomlins et al, Euro. Urol. 2016


Outline

- Challenges with validation of novel cancer screening tests
- Development of a non-invasive early detection test for a specific cancer (prostate cancer)
- Multi-cancer, multi-omics cancer detection

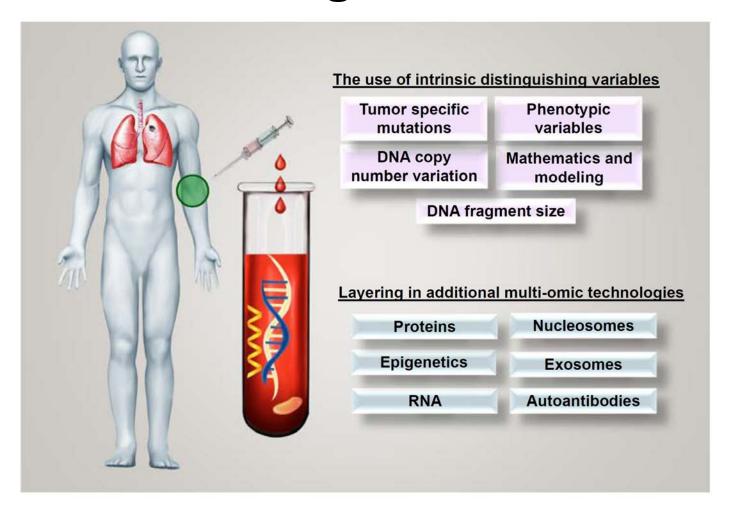
Multi-cancer, multi-omics cancer detection ("liquid biopsy")

Integrative analysis of ctDNA with other multi-omic technologies

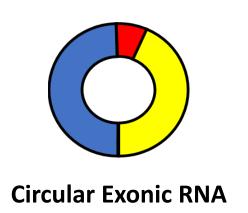
The race to develop early detection tests for cancer

Multi-cancer, deep NGS sequencing, machine learning, and DNA methylation

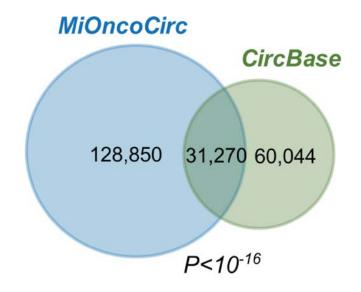
Multi-cancer, CancerSEEK, DNA mutations + protein biomarkers, FDA Breakthrough Device designation

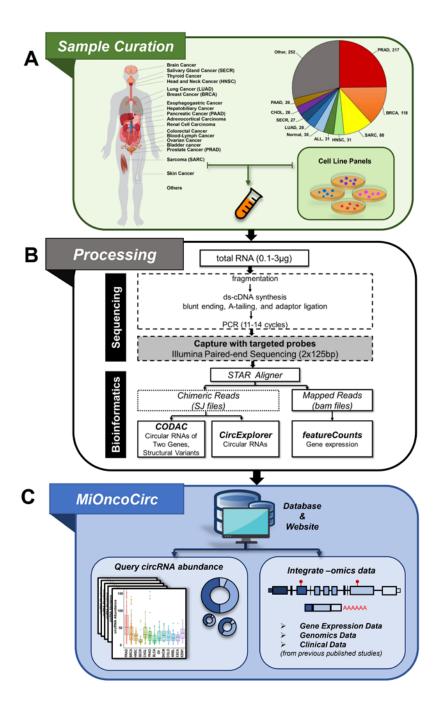


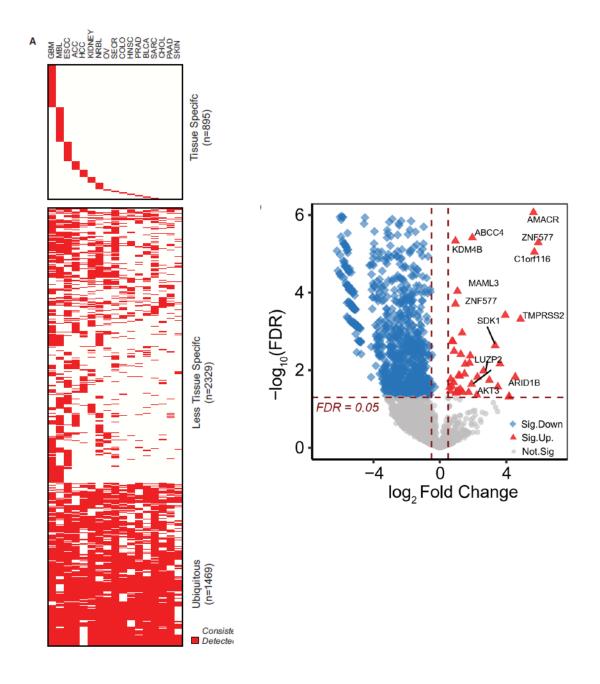
DNA mutations, colon cancer (LUNAR-2)


Multi-omics test, AI, colon cancer

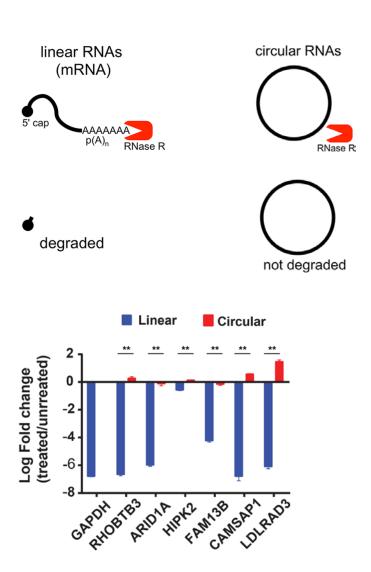
Integrative analysis of ctDNA with other multi-omic technologies

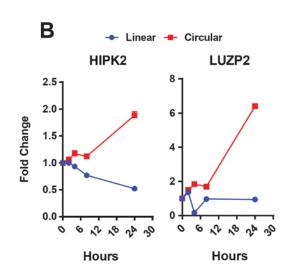

circRNAs

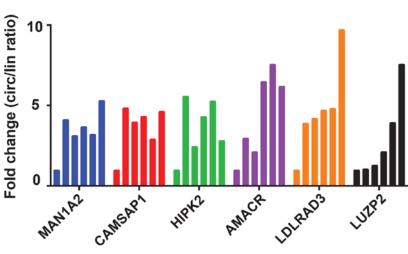

- Class of non coding RNA formed from pre-mRNAs through backsplicing (first characterized >25 years ago)
- Single-stranded and covalently closed; lack Poly A
- RNA seq based technologies have discovered thousands of circRNAs
- Often expression does not correlate with cognate linear RNA
- Varied biological roles have been suggested (e.g., miRNA sponges, EMT, tumorigenesis)
- Due to their covalently closed structure are resistant to exonucleases
- Due to enhanced stability can be found in biospecimens such as plasma


Building the MiOncoCirc Compendium with Exome Capture RNA-Seq

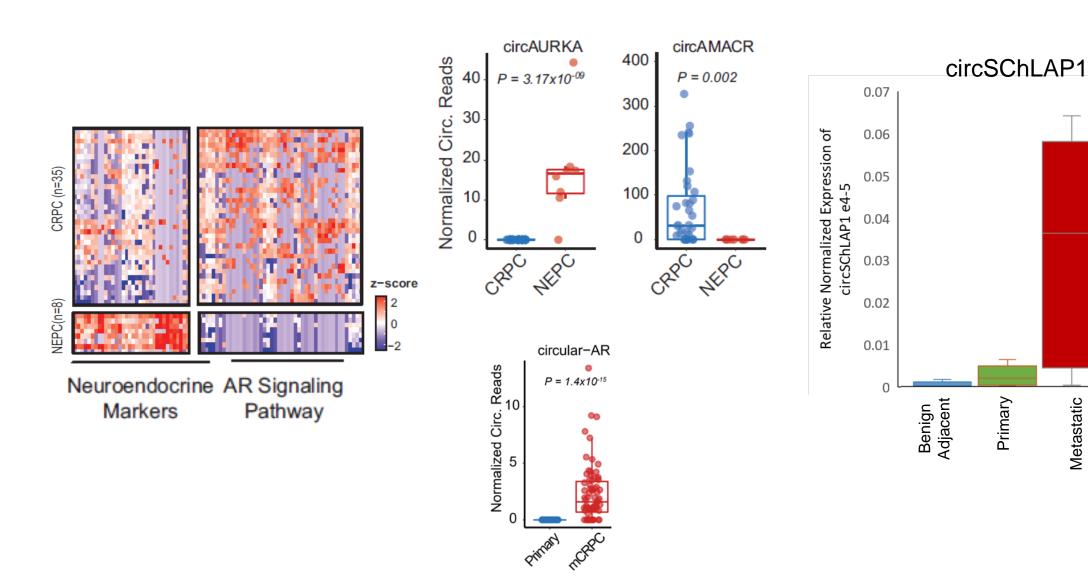
>2000 tumors, >30 tumor types, > 30 metastatic sites





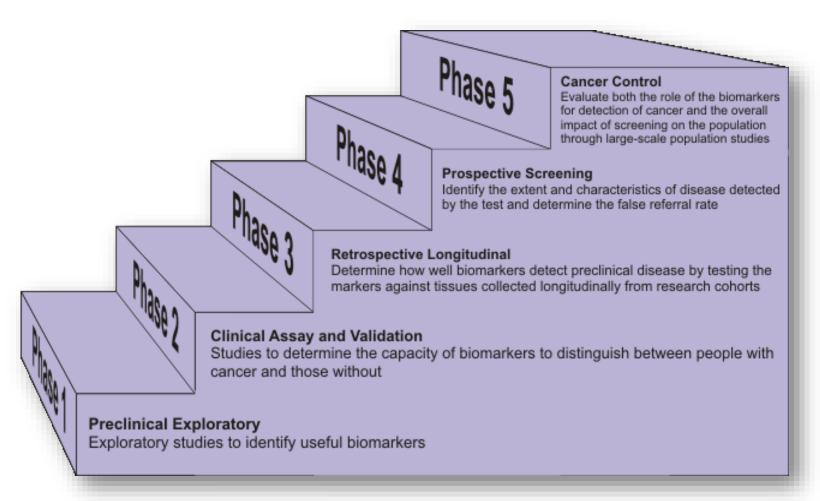

Expression Patterns and Characteristics of circRNAs in Cancer

Assess the Stability of CircRNAs in Extracellular Spaces



Incubate RNA in human plasma → "Mimic" circulating RNAs in blood Samples were harvested at 0, 15, 30, 45, 60, and 75 min.

circRNA biomarkers of prostate cancer



Metastatic

"Housekeeping" circRNAs are detectable in human plasma samples using qPCR

Phases of Biomarker Development

PRoBE

Study

Design:

Prospective-

Specimen-

Collection.

Retrospective-

Blinded-

Evaluation

Pivotal Evaluation of the Accuracy of a Biomarker Used for Classification or Prediction: Standards for Study Design

Margaret Sullivan Pepe et al., J Natl Cancer Inst. 2008 Oct 15; 100(20): 1432-1438.

Citations: >400

Source: Pepe et al, J. Natl. Cancer Inst. 93, 1054-1061, 2001

>1300 citations