

Achieving Excellence in Cancer Diagnosis: A Workshop October 6, 2021

Session 4: Novel Diagnostic Strategies and Tools for Cancer Diagnosis

Novel Technologies and Strategies that Aim to Optimize Diagnosis via Imaging

Maryellen L. Giger, Ph.D.

A. N. Pritzker Distinguished Service Professor of Radiology, Committee on Medical Physics, and the College
The University of Chicago

m-giger@uchicago.edu

Funding and COIs

- Supported in parts by NIH grants CA 195564, CA 166945, and CA 189240; NIH S10 OD025081 Shared Instrument Grant; and The University of Chicago CTSA UL1 TR000430 pilot awards; UChicago Cancer Center Koleseiki Funding and Dancing with Chicago Celebrities Funding; CDAC Grant; c3.ai Grant; NIBIB COVID-19 Contract 75N92020D00021
- MLG is a stockholder in R2/Hologic, shareholder in Qview, and receives royalties from Hologic, GE Medical Systems, MEDIAN Technologies, Riverain Medical, Mitsubishi, and Toshiba.
- MLG is scientific advisor, co-founder, and equity holder in Quantitative Insights, [now Qlarity Imaging] makers of QuantX -- the first FDA-cleared machine learning system for aiding in cancer diagnosis.
- It is the University of Chicago Conflict of Interest Policy that investigators disclose publicly actual or potential significant financial interest that would reasonably appear to be directly and significantly affected by the research activities.

The benefit of a medical imaging examination in terms of its ability to yield an accurate diagnosis depends on:

- Quality of the imaging technology
 - Improvement in standardizing screening mammography (FFDM/Breast Tomosynthesis)

 Need a good image
 - New tomographic imaging systems (e.g., CT, MRI, PET, MRI/PET)
- Quality of the interpretation
 - Mainly performed by radiologist
 - Incorporate a computer analysis (AI)

Need a good reader

Medical Image Interpretation

Medical images are meaningless grayscale/colorscale patterns unless "viewed and analyzed" by an intelligent observer

Radiologist, Computer (AI), or Combination of human & computer (AI-aided)

Tasks of the Human eye-brain system

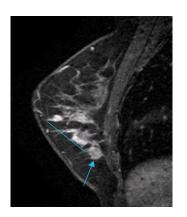
- Finding/locating a signal in an image
- Characterizing/classifying/diagnosing the signal as disease or non-disease
- Clinical decision making on patient management through integrated diagnostics (monitoring)

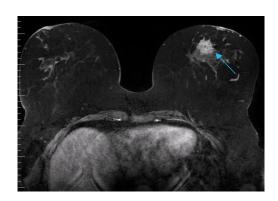
Tasks of AI (computer vision, radiomics, machine learning, deep learning)

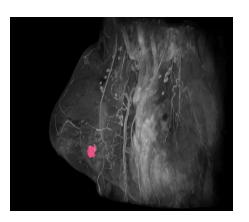
- Similar converting images to quantitative values
- Need to know the clinical task!!!!

Medical Imaging & AI in Precision Medicine & Oncology

- The focus is AI for images that are "clinically & routinely" obtained on the population.
- We want to ask questions about the relationships between features "seen" in medical images and the biology of cancer so that eventually we can detect/diagnose cancer early and give the right patient the right treatment at the right time.
- And to improve the efficiency and workflow of medical imaging interpretation.







Al can be applied at many Stages along the Medical Imaging Chain

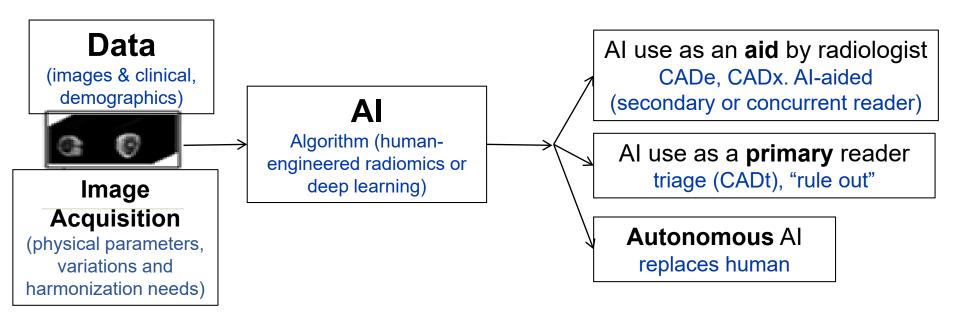
- Imaging Source
- Subject (patient, animal, tissue, cells)
- Imaging detector system (e.g., optimizing detector parameters)
- Contrast media & Imaging probes
- Image presentation (e.g., hanging protocols)
- Image reconstruction (e.g., tomosynthesis)
- Image processing (e.g., image denoising)
- Quantitative image analysis/CADx/Radiomics (e.g., Density estimation, detection, diagnosis, prognosis, therapeutic response)
- Image/Data integration
- Image/Data output display/interface/GUI

Al can be applied at many Stages along the Medical Imaging Chain

- Imaging Source
- Subject (patient, animal, tissue, cells)
- Imaging detector system (e.g., optimizing detector parameters)
- Contrast media & Imaging probes
- Image presentation (e.g., hanging protocols)
- Image reconstruction (e.g., tomosynthesis)
- Image processing (e.g., image denoising)
- Quantitative image analysis/CADx/Radiomics (e.g., Density estimation, detection, diagnosis, prognosis, therapeutic response)
- Image/Data integration
- Image/Data output display/interface/GUI

Answer to some Medical Question

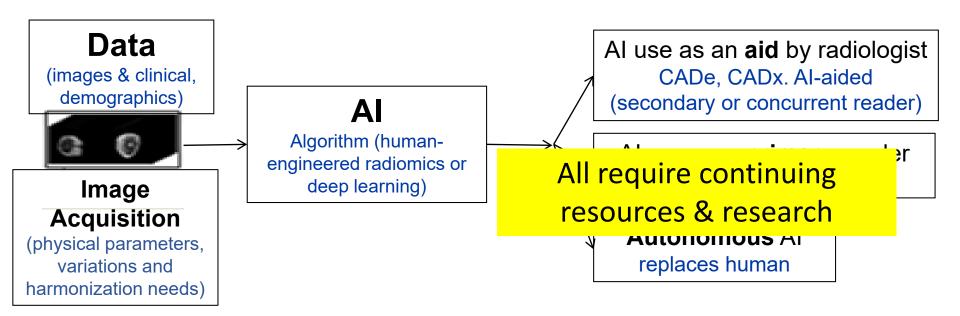
(e.g., risk assessment, detection, diagnosis, prognosis, therapy response)



Appropriate Metrology and Evaluation Methods

Answer to some Medical Question

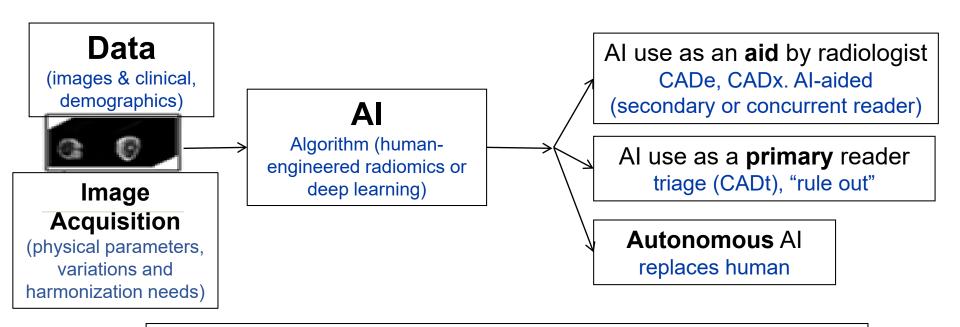
(e.g., risk assessment, detection, diagnosis, prognosis, therapy response)



Appropriate Metrology and Evaluation Methods

Answer to some Medical Question

(e.g., risk assessment, detection, diagnosis, prognosis, therapy response)



Appropriate Metrology and Evaluation Methods

Al can be applied in many **Cancer Imaging Decision-Making Tasks**

- Risk Assessment
- Screening CADe, CADt
- Diagnosis -- CADx
- Prognosis (subtyping)
- Treatment planning
- Assessing treatment response
- Patient management and monitoring
- Disease Discovery (radiogenomics; multi-omics)

Bi WL, Hosny A, Schabath MB, Birkbak NJ, Mehrtash A, Giger ML, Allison T, Arnaout O, Abbosh C, Dunn IF, Mak RH, Tamimi RM, Tempany CM, Swanton C, Hoffmann U, Schwartz LH, Gillies RJ, Huang R, Aerts HJWL: Artificial intelligence in cancer imaging: clinical challenges and applications. CA: A Cancer Journal for Clinicians 2019 Mar;69(2):127-157. doi: 10.3322/caac.21552. Epub Feb 5, 2019.

DETECTION

- · Highlighting suspicious regions in images
- Detecting indeterminate nodules
- Addressing high false-postive rates and overdiagnosis

Luna

Early detection of lung cancer is associated with improved outcomes

CNS

Detection tools for the incidental finding of asymptomatic brain abnormalities

Breast

More robust screening mammography interpretation and analysis

Prostate

"Clinically significant" prostate lesion detection allows for targeted biopsy sampling

· Providing robust tumor descriptors to capture intra-tumor heterogeneity and

Segmentation

Defining the extent of an abnormality in terms of 2D or full 3D assessments

Diagnosis Classifying

abnormalities as benign or malignant

Staging

Categorizing tumors into predefined groups based on expected course & treatment strategies

Imaging Genomics Associating imaging

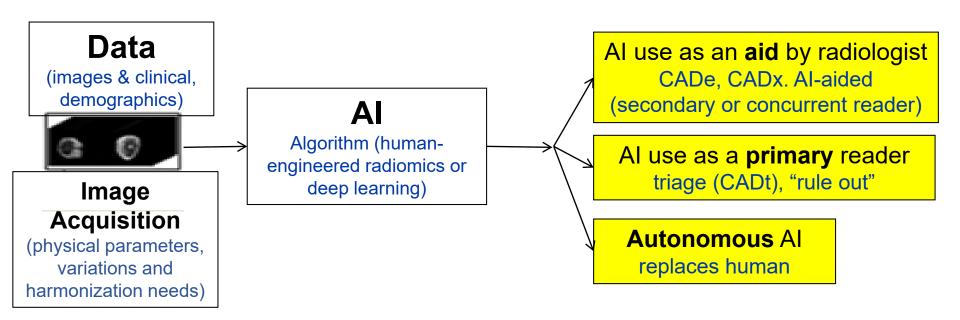
features with genomic data for comprehensive tumor characterization

· Capturing a large number of discriminative features that go beyond those measured by traditional evaluation criteria

Change Analysis Temporal monitoring of tumor changes either in natural history or in

Answer to some Medical Question

(e.g., risk assessment, detection, diagnosis, prognosis, therapy response)



Appropriate Metrology and Evaluation Methods

Evaluation of Clinical Breast
MR Imaging Performed with
Prototype Computer-aided
Diagnosis Breast MR Imaging
Workstation: Reader Study¹

i.e., Radiologists improved in their performance of <u>characterizing and diagnosing</u> lesions when using the computer aid as a second reader

2011

Akiko Shimauchi, MD, PhD

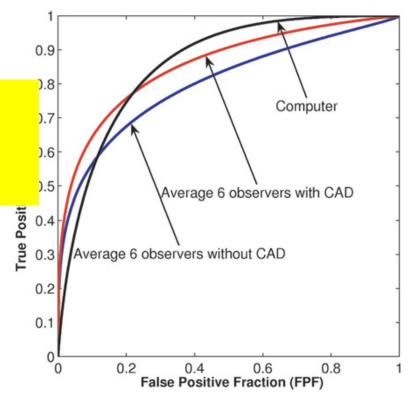
Marvellen L. Giger, PhD

Hiroyuki Abe, MD, PhD Gillian M. Newstead, MD

Neha Bhooshan, PhD

Li Lan, MS Lorenzo L. Pesce, PhD John K. Lee, MD

CADx: Task of Distinguishing between Malignant & Benign Lesions on **Breast MRI**



Computer-Aided Detection in Breast Cancer Screening

Change from Using the Computer Output as a Second Reader to a Potential Independent Reader

Support from Computer as a Second Reader

Rodriguez-Ruiz A, et al Radiology,

10.1148/radiol.2018181371, 2019

- The system uses deep learning convolutional neural networks and features classifiers / image analysis algorithms to indicate calcifications and soft-tissue lesions
- Trained, validated, & tested on 9000 cancers
- Radiologists can use an interactive decision support mode as well as traditional CAD
- Radiologists' unaided AUC = 0.866
- Radiologists' aided AUC = 0.886
- Statistically improved radiologists' performance

Potential future use as Standalone

Independent Reader

Rodeiguez-Ruiz, A, et al, JNCl, 10.1093/jnci/djy222, 2019

- Comparison with 101 (unaided) radiologists vs. computer alone
- 2652 mammographic exams (653 malignant)
- All system was statistically noninferior to that of the average of the 101 radiologist
- Radiologists' unaided AUC = 0.814
- Computer alone AUC = 0.840

CADe in Breast Cancer Screening

ESEARCH • BREAST IMAGING

Radiology

A Deep Learning Model to Triage Screening Mammograms: A Simulation Study

Adam Yala, MEng • Tal Schuster, MS • Randy Miles, MD • Regina Barzilay, PhD • Constance Lehman, MD, PhD

From the Department of Electrical Engineering and Computer Science, Massachusets Institute of Technology, Cambridge, Mass (A.Y., T.S., R.B.); and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, WAC 240, Boston, Mass 02114-2698 (R.M., C.L.). Received December 21, 2018; revision required Pebruary 25; revision received June 5; accepted June 18. Address correspondence to C.L. (e-mail: chelmagepartner.org).

Conflicts of interest are listed at the end of this article.

See also the editorial by Kontos and Conant in this issue.

Radiology 2019; 293:38–46 • https://doi.org/10.1148/radiol.2019182908 • Content codes: BR IN

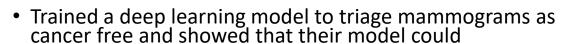
Background: Recent deep learning (DL) approaches have shown promise in improving sensitivity but have not addressed limitations in radiologist specificity or efficiency.

Purpose: To develop a DL model to triage a portion of mammograms as cancer free, improving performance and workflow efficiency.

Change from

Second Reader to Independent Reader

- Role in triaging (CADt) "rule out"
- Role in improving efficiency



- In the simulation study, 20% of mammograms were not need to be send by humans.
- Showed improvement in radiologist efficiency and specificity without harming sensitivity.

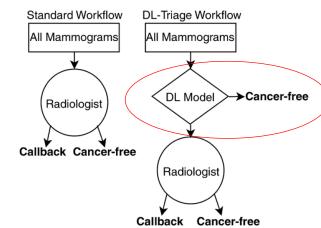
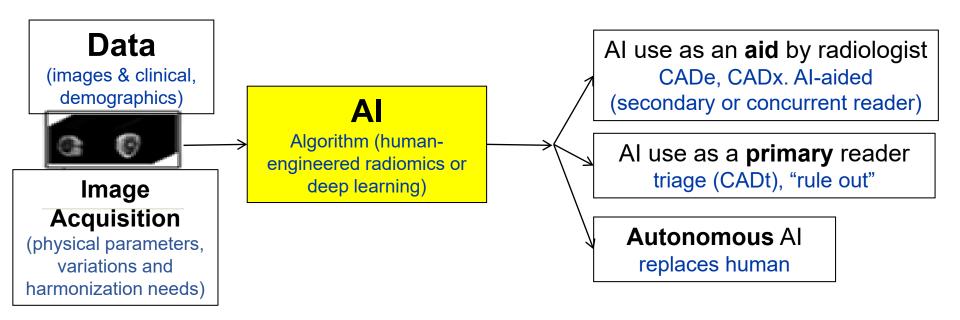


Figure 2: Diagram illustrates experimental setup for triage analysis. In standard scenario, radiologists read all mammograms. In deep learning (DL)-triage scenario, radiologists only read mammograms above model cancer-free threshold. To simulate both scenarios, original interpreting radiologist's assessment on test set was used for radiologist read.

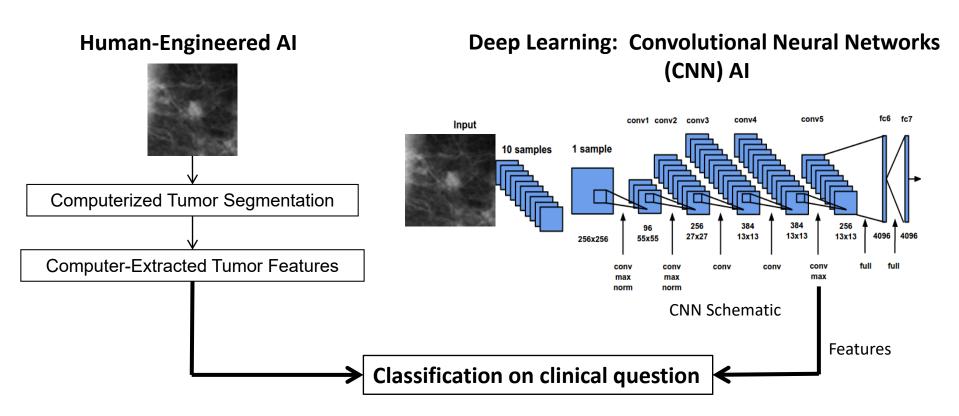
Answer to some Medical Question

(e.g., risk assessment, detection, diagnosis, prognosis, therapy response)

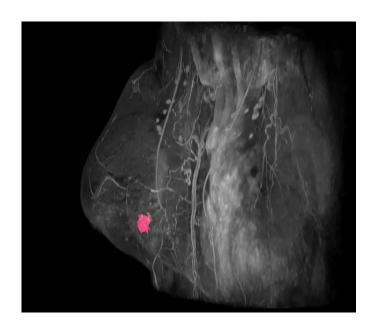


Appropriate Metrology and Evaluation Methods

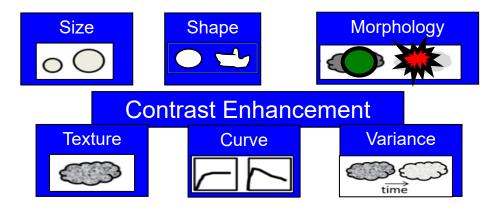
Comparison of Human-Engineered AI and Deep Transfer Learning in distinguishing between malignant and benign breast lesions



Use case example: Analysis of Breast Cancer on MRI using Human-Engineered Features



 After the lesion is automatically segmented, image features (i.e., mathematical descriptors; radiomics) are extracted from the lesion.

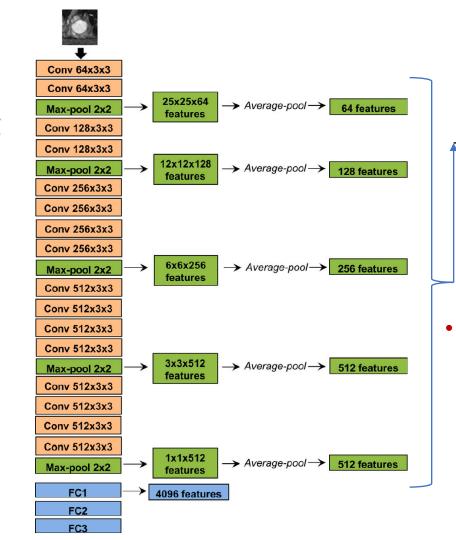


- Features are intuitive, and thus output is more explainable
- 3D/4D features then merged by a classifier (e.g., LDA, SVM) to yield a signature indicating an estimate of the likelihood of malignancy, estimate of the severity of disease, or predicted response

Use case example: Analysis of Breast Cancer on MRI using Transfer Deep Learning

- Task of distinguishing between cancers and non cancers
- Transfer learning reduces the number of cases required

Antropova N, Huynh BQ, Giger ML: A deep fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets. <u>Medical Physics</u> online doi.org/10.1002/mp.12453, 2017.



Classification

(LDA, SVM)

Features are not

intuitive, and

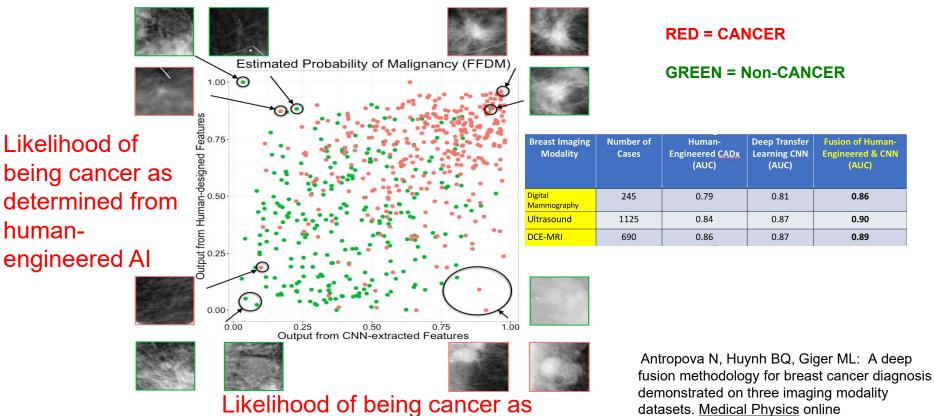
explainability

straightforward

thus

is not

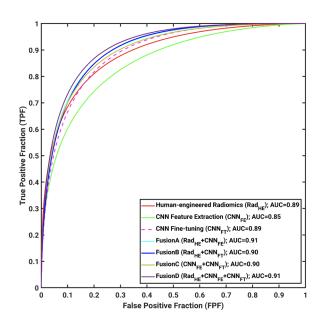
Human-Engineered CADx/Radiomics & Deep Learning CADx/Radiomics (task of distinguishing between cancers and non cancers)

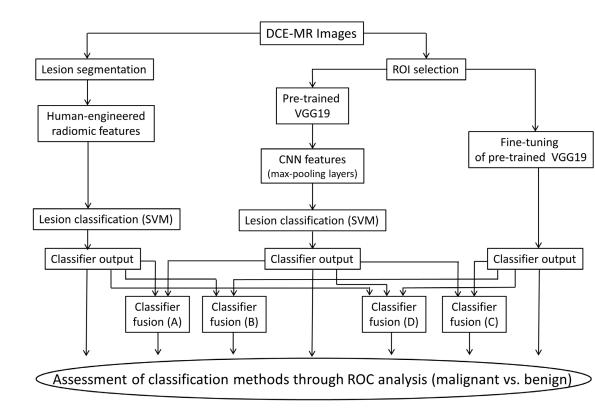


determined from deep learning Al

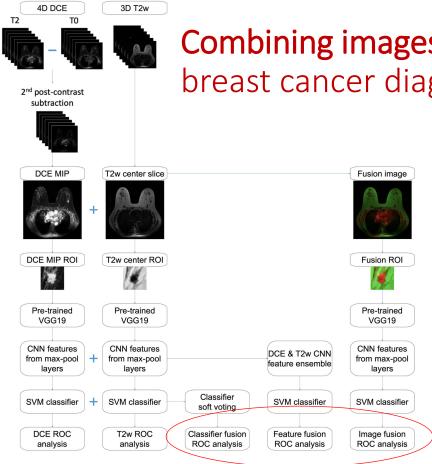
datasets. Medical Physics online doi.org/10.1002/mp.12453, 2017.

Combining Multiple Al Methods for Breast Cancer Diagnosis



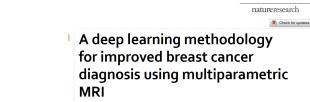


Whitney H*, Li H*, Ji Y, Liu P, Giger ML: Comparison of breast MRI tumor classification using human-engineered radiomics, transfer learning from deep convolutional neural networks, and fusion methods. Proceedings of the IEEE, DOI: 10.1109/JPROC.2019.2950187, 2019.

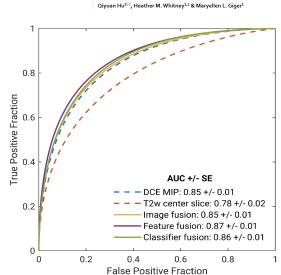


Hu Q, Whitney HM, Giger ML. A deep learning methodology for improved breast cancer diagnosis using multiparametric MRI. Sci Rep. 2020 Jun 29;10(1):10536. doi: 10.1038/s41598-020-67441-4.

Combining images in deep learning AI for improved breast cancer diagnosis using multiparametric MRI



SCIENTIFIC REPORTS



Cancer Imaging

RESEARCH ARTICLE

Open Access

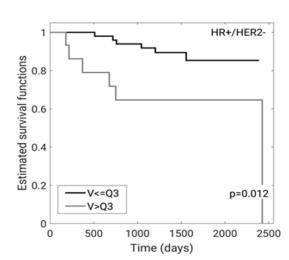
Most-enhancing tumor volume by MRI radiomics predicts recurrence-free survival "early on" in neoadjuvant treatment of breast cancer

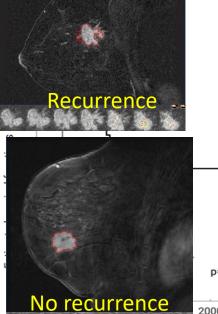
Karen Drukker D. Hui Li, Natalia Antropova, Alexandra Edwards, John Papaioannou and Maryellen L. Giger

- Applied automatic calculation of quantitative radiomics to cases from the I-SPY 1 (ACRIN 6657) study of dynamic contrast-enhanced MR images.
- Al in pretreatment prediction of response to neoadjuvant chemotherapy; risk of recurrence, recurrence-free survival

Transferring AI developments from use in diagnosis to use in prognosis and treatment response

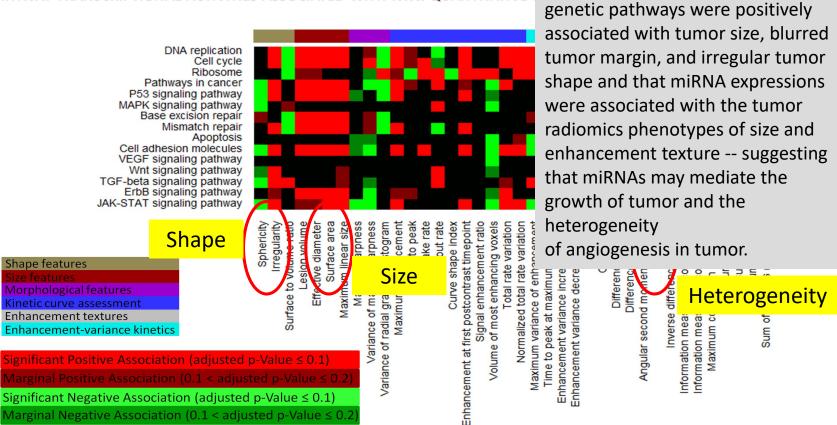
Most-enhancing Tumor Volume Predicts Recurrencefree Survival





IMAGING GENOMICS — USING VIRTUAL BIOPSIES

PATHWAY TRANSCRIPTIONAL ACTIVITIES ASSOCIATED WITH MRI QUANTITATIVE I



Transcriptional activities of various

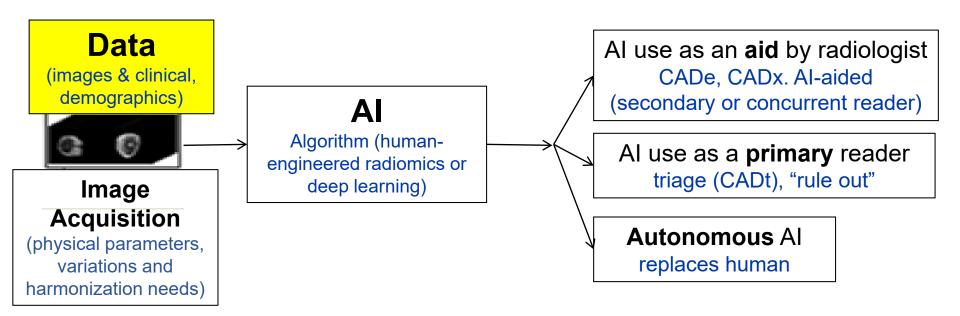
Zhu Y, Li H, ... Giger ML*, Ji Y*: Deciphering genomic underpinnings of quantitative MRI-based radiomic phenotypes of invasive breast carcinoma. Nature – Scientific Reports 5:17787 (2015)

Why after decades, is research in cancer imaging AI still being conducted and papers are still being published for detection, diagnosis, prognosis, and assessing

response to therapy?

Answer to some Medical Question

(e.g., risk assessment, detection, diagnosis, prognosis, therapy response)



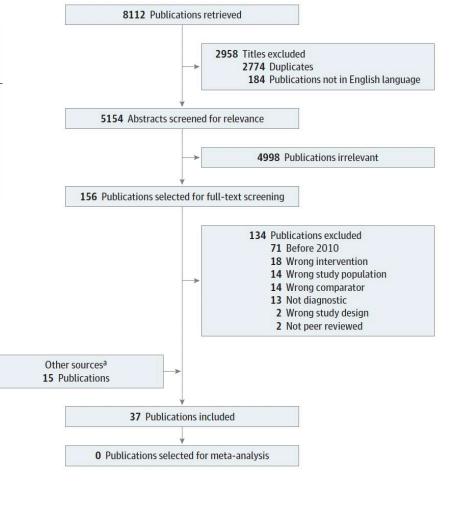
Appropriate Metrology and Evaluation Methods

Original Investigation | Health Informatics

Association of Clinician Diagnostic Performance With Machine Learning-Based Decision Support Systems A Systematic Review

Baptiste Vasey, MMed; Stephan Ursprung, MMed; Benjamin Beddoe, BSc; Elliott H. Taylor, BSc; Neale Marlow, MBBS; Nicole Bilbro, MD; Peter Watkinson, MD; Peter McCulloch, MD

- This systematic review found no robust evidence that the use of ML-based algorithms was associated with better clinician diagnostic performance.
- The evidence for any conclusion was weak because of a high risk of bias in many of the studies and a low number of study participants
- Almost half of all results reported with statistical significance showed no significant difference in performance with or without the use of the computer aids.

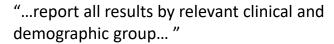


Critical gaps in AI/ML deployment Lack of diverse and representative data

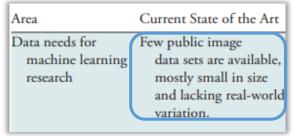
Geographic Distribution of Data to Train Al Algorithms

Kaushal A. Altman R. Langlotz C. JAMA, 2020;324; 1212-1213.

August 6, 2021 -- Artificial intelligence (AI) models can recognize a patient's racial identity on medical images, even though radiologists can't, ... 3 weeks ago



Need for representative dataset



Langlotz CP, Allen B, Erickson BJ, et al. A Roadmap for Foundational Research on Artificial Intelligence in Medical Imaging: From the 2018 NIH/RSNA/ACR/The Academy Workshop. Radiology. 2019;291: 781–791.

https://doi.org/10.1148/radiol.2019190613

Area	Current State
Software use cases for Al	Al algorithms are being created based on use cases developed at
	single institutions working with single developers, limiting diversity and generalizability to widespread clinical practice.

Allen B Jr, Seltzer SE, Langlotz CP, et al. A Road Map for Translational Research on Artificial Intelligence in Medical Imaging: From the 2018 National Institutes of Health/RSNA/ACR/The Academy Workshop. J Am Coll Radiol. 2019. https://doi.org/10.1016/j.jacr.2019.04.014

Artificial intelligence / Machine learning

Hundreds of Al tools have been built to catch covid. None of them helped.

Some have been used in hospitals, despite not being properly tested. But the pandemic could help make medical Al better.

by Will Douglas Heaven

July 30, 2021

nature machine intelligence

Explore content >

About the journal >

Publish with us >

nature > nature machine intelligence > analyses > article

Analysis | Open Access | Published: 15 March 2021

Common pitfalls and recommendations for using machine learning to detect and prognosticate for **COVID-19 using chest radiographs and CT scans**

Michael Roberts , Derek Driggs, Matthew Thorpe, Julian Gilbey, Michael Yeung, Stephan Ursprung, Angelica I. Aviles-Rivero, Christian Etmann, Cathal McCague, Lucian Beer, Jonathan R. Weir-McCall, Zhongzhao Teng, Effrossyni Gkrania-Klotsas, AIX-COVNET, James H. F. Rudd, Evis Sala & Carola-Bibiane Schönlieb

Nature Machine Intelligence 3, 199–217 (2021) Cite this article

53k Accesses 1064 Altmetric Metrics

Understanding Limitations of AI Development in Cancer Imaging can be appreciated through the Limitations of AI Development in COVID-19 Imaging AI

RESEARCH

Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal

Laure Wynants, ^{1,2} Ben Van Calster, ^{2,3} Gary S Collins, ^{4,5} Richard D Riley, ⁶ Georg Heinze, ⁷ Ewoud Schuit, ^{8,9} Marc M J Bonten, ^{8,10} Darren L Dahly, ^{11,12} Johanna A Damen, ^{8,9} Thomas P A Debray, ^{8,9} Valentijn M T de Jong, ^{8,9} Maarten De Vos, ^{2,13} Paula Dhiman, ^{4,5} Maria C Haller, ^{7,14} Michael O Harhay, ^{15,16} Liesbet Henckaerts, ^{17,18} Pauline Heus, ^{8,9} Michael Kammer, ^{7,19} Nina Kreuzberger, ²⁰ Anna Lohmann, ²¹ Kim Luijken, ²¹ Jie Ma, ⁵ Glen P Martin, 22 David J McLernon, 23 Constanza L Andaur Navarro, 8,9 Johannes B Reitsma, 8,9 Jamie C Sergeant, ^{24,25} Chunhu Shi, ²⁶ Nicole Skoetz, ¹⁹ Luc J M Smits, ¹ Kym I E Snell, ⁶ Matthew Sperrin, ²⁷ René Spijker, ^{8,9,28} Ewout W Steyerberg, ³ Toshihiko Takada, ⁸ Ioanna Tzoulaki, ^{29,30} Sander M J van Kuijk, ³¹ Bas C T van Bussel, ^{1,32} Iwan C C van der Horst, ³² Florien S van Royen, ⁸ Jan Y Verbakel, ^{33,34} Christine Wallisch, ^{7,35,36} Jack Wilkinson, ²² Robert Wolff.37 Lotty Hooft.8,9 Karel G M Moons.8,9 Maarten van Smeden8

When the World Needed It Most, **Artificial Intelligence Failed: How COVID-19 Poked Holes in Al**

We should be celebrating how Al improved pandemic responses, but the rollout was messy and the published papers littered with unusable material

Artificial intelligence / Machine learning

Hundreds of Al tools have been built to catch covid. None of them helped.

Some have been used in hospitals, despite not being properly tested. But the pandemic could help make medical AI better.

by Will Douglas Heaven

July 30, 2021

nature machine intelligence

Publish with us > About the journal ∨

nature > nature machine intelligence > analyses > article

Analysis | Open Access | Published: 15 March 2021

Common pitfalls and recommendations for using machine learning to detect and prognosticate for **COVID-19 using chest radiographs and CT scans**

Michael Roberts 🖂, Derek Driggs, Matthew Thorpe, Julian Gilbey, Michael Yeung, Stephan Ursprung, Angelica I. Aviles-Rivero, Christian Etmann, Cathal McCague, Lucian Beer, Jonathan R. Weir-McCall, Zhongzhao Teng, Effrossyni Gkrania-Klotsas, AIX-COVNET, James H. F. Rudd, Evis Sala & Carola-

Nature Machine Intelligence 3, 199–217 (2021) | Cite this article

53k Accesses | 1064 Altmetric | Metrics

Bibiane Schönlieb

Understanding Limitations of AI Development in Cancer Imaging can be appreciated through the

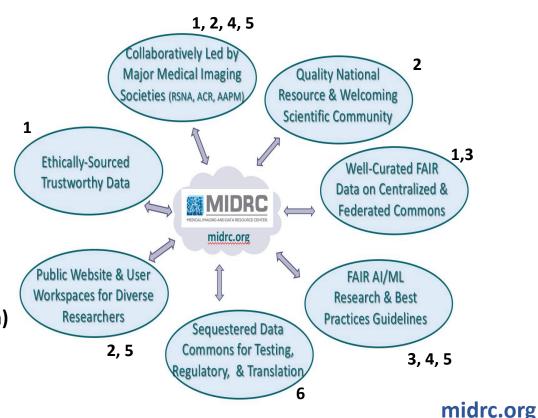
Limitations of AI Development in COVID-19 Imaging AI

What went wrong?

- 1) Poor quality of data, "Frankenstein data sets"
 - Mislabeled data
 - Multiple unknown sources
 - Duplicate data (resulting in leakage between training and testing)
 - No traceability, limited quality control
 - Lack of external validation
- 2) Lack of communications between AI/ML experts and Medical/ Biomedical experts; needed in this multidisciplinary field
 - Lack of valid ground truth
- 3) Bias
 - Collected often for a specific clinical question
 - Specific populations, lack of diversity
 - Single expert score, data sources correlated with 'truth', ...

Suggest AI community embrace data commons (e.g., the Medical Imaging and Data Resource Center)

- 1. Focus on high quality data
 - Trustworthy data
- 2. Collaborative, community culture
 - Bridge multiple expertise
- 3. Promote sharing & transparency
 - Data, models, limitations
- 4. Create and promote **standards**:
 - Data, Quality Control (QC)
 - Real world performance AI/ML
- 5. Address bias:
 - Representative data
 - Diversity of researchers
 - Lower barrier of access (FAIR, open)
- 6. Value the "last mile"
 - in "from bench to bedside"
 - Include post-market evaluations



Medical Imaging & AI in 10 years

- 1. Integrated multi-modality, multi-task Al
 - Currently, most algorithms are focused on one task, one cancer
 - Combinations of multiple human-engineered and deep learning AI algorithms
 - Increasing realization of the role of the end user in development and evaluation
- 2. Al as a means to improve access to healthcare (reduce health disparities)
 - AI when there are limited number of radiologists and other clinicians
 - Combine AI with inexpensive, portable imaging equipment
- 3. Multi-omics datasets for discovery and clinical "biomarkers" linked across patients over time
 - Ethically-sourced and trustworthy data and AI algorithms
 - Disease agnostic collection of datasets to Data Commons/Resource Centers
 - Open and sequestered data commons, such as MIDRC

Recent & Current Graduate Students Joel Wilkie, PhD

Martin King, PhD

Nick Gruszauskas, PhD

Yading Yuan, PhD Robert Tomek, MS

Neha Bhooshan, PhD

Andrew Jamieson, PhD

Hsien-Chi Kuo, PhD Martin Andrews, PhD

William Weiss, PhD

Chris Haddad, PhD

Natasha Antropova, PhD

Adam Sibley, PhD

Kayla Robinson, PhD

Jennie Crosby, PhD

Qiyuan (Isabelle) Hu

Jordan Fuhrman

Lindsay Douglas Natalie Baughan

Thank you

Giger Lab

Research Lab

Karen Drukker, PhD Hui Li, PhD

Heather Whitney, PhD

Yu Ji, MD

Chun Wai Chan, MS

Li Lan, MS

John Papaioannou, MS Sasha (Alexandra) Edwards, MA

Madeleine Durkee, PhD

Summer medical students,

undergraduates, and high school students **Collaborators**

The MIDRC team

Extra Slides

Medical Imaging & AI in Precision Medicine

- Artificial intelligence in medical imaging has been investigated for decades. These investigations have included
- Understanding the changing role of AI in medical imaging in terms of:
 - **a. Various medical decision-making tasks** -- from disease detection to diagnosis to therapeutic response & monitoring
 - b. Methods of **how AI is used by the end-user** (e.g., the clinician) from second reader to concurrent reader to autonomous reader
 - i. Concerns of incorrect or off-label use, i.e. using a second reader AI system as a concurrent reader system
 - c. Human-engineered AI and deep learning AI
 - d. Need for ethically-sourced imaging data & trustworthy AI
 - e. Development of the AI algorithm as well as the evaluation of the radiologist when being aided by the AI in order to assess translation to clinical practice.

- Image quality demands standardization
- · Need to include segmentation to the list
- Also repositories vs. commons
 - Data from research effort with a focused question
 - Useful for Challenges but not representative of populations
 Data from clinical trials with a strict acquisition protocols and also data release is embargoed
 - Data should be released by first publication or end of grant period at the latest Data from large scale data from cooperative groups (like ACRIN etc)
 - While very useful, these are not representative data of the population
 - by collecting disease-agnostic data from diversity-directed collections one can slice and dice
 - Can then do discovery studies between imaging and nonimaging data radiogenomics TCGA breast example
 - Avoid Frankenstein datasets
 - · Coordination across case collections and clinical, demographics, and acquisition parameters data elements
 - If truth files of clinical data are not standardized, it could cause variations in how the truth is used and then different algorithms and performances.
 - Need non-imaging data standardized somewhat like DICOM? LOINC?
 - Need sequestered datasets
 - Repeatability and reproducibility (variability)

What has changed with AI over the decades?

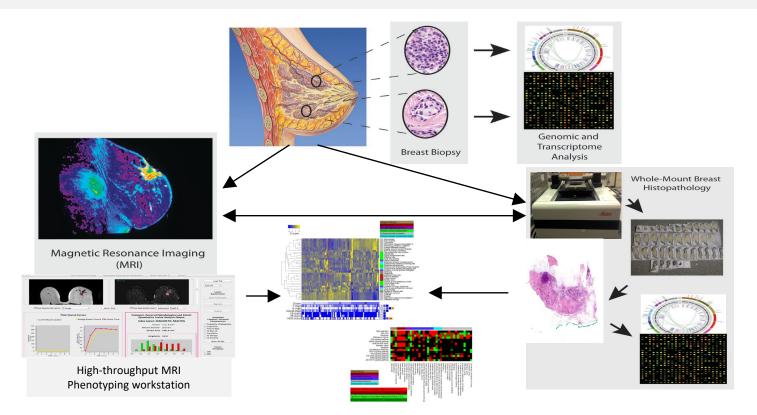
- Faster computers
- Larger datasets of images; although some datasets are limited or flawed
- More advanced algorithms including deep learning
- Realization of additional reasons & means to incorporate in clinical practice
- Al being developed for more clinical questions (modalities & disease sites)

However

- Same clinical tasks of detection, diagnosis, response assessment
- Same concern for "garbage in, garbage out"
- Same potential for misuse (i.e., off-label use)
- Same methods for statistical evaluations
- Same need for sufficient number of cases to span the distribution of disease and normal presentations
- Same need for imaging domain experts and computer domain experts

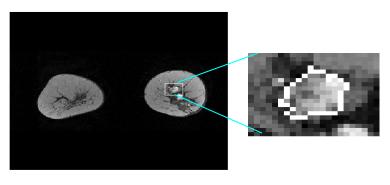
Spatially-correlated multi-omics analyses -- Advantages:

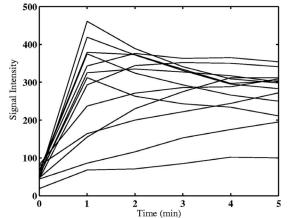
- Spatially registered MRI, histological, and genomics information "virtual" digital biopsy
- Assesses tumor heterogeneity
- Accounts for tumor microenvironment.

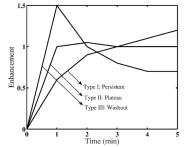


Al/Radiomics of intra-tumor heterogeneity e.g., Contrast Enhancement Heterogeneity in Breast DCE-MRI

Heterogeneity of Tumors:







Regions of most enhancing voxels

Radiomics of texture giving a measure of the heterogeneity of contrast uptake.

Examine the heterogeneity of some features within the tumor to view regions ("habitats"), which may correspond to different biological states within the tumor.

Chen W, Giger ML, Bick U, Newstead G: Automatic identification and classification of characteristic kinetic curves of breast lesions on DCE-MRI. <u>Medical Physics</u>, 33: 2878-2887, 2006.

Human-engineered AI and deep learning AI

- Similar to radiology residency
 - Textbook learning of a limited number of specific examples
 - On the job training through reading cases and obtaining feedback from attending radiologists
- Advancements
 - Merging of human-engineered and deep learning AI algorithms
 - Multiple AI algorithms for a given task
 - Multiple image types (modalities) to mimic radiologists' methods
 - Dependence on input images especially in a limited database situation

Radiology

Ethics of Using and Sharing Clinical Imaging Data for Artificial Intelligence: A Proposed Framework

David B. Larson, MD, MBA • David C. Magnus, PhD • Matthew P. Lungren, MD, MPH • Nigam H. Shah, MBBS, PhD • Curtis P. Langlotz, MD, PhD

"After clinical data are used to provide care, the primary purpose for acquiring the data is fulfilled. At that point, clinical data should be treated as a form of public good, to be used for the benefit of future patients."

Database vs. Repository vs. Resource Center

- "Rough definitions": Database vs. Repository vs. Resource Center
- Database collection of data
- Repository data stored and managed
- Resource center repository with additional aspects including browse/search, analysis, metrology, evaluation, and user interfaces

Large Scale Medical Imaging Studies

- Large is relative –
- Relative to the ML/AI task
- Relative to the prevalence of the disease in question
- Relative to the subtlety of the disease in question
- Relative to the difficulty of the clinical task
- Relative to sub-populations; bias and diversity aspects
- Relative to the type of ML/AI training, tuning, and testing
 - Merging of human-engineered features
 - Transfer learning (feature extraction or fine tuning)
 - Deep learning from scratch
- "Think like a human"

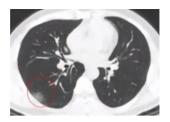
Use Case: Thoracic imaging in the COVID-19 Pandemic

While thoracic imaging, including chest radiography (CXR) and computed tomography (CT), are being re-examined for their role in patient management, the limitations for improved interpretation are partially due to the qualitative interpretation of the images, and thus we aim to develop artificial intelligence (AI) methods to aid in the interrogation of medical images from COVID-19 patients, eventually including cardiac, brain, and other images.

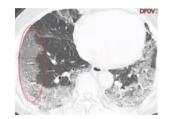
Bilateral lower lobe consolidation

Patchy peripheral ground glass opacities

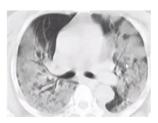
Peripher al air space opacities



Early Stage



Progressive Stage



Severe Stage

Rapid Response to COVID-19 Pandemic

University of Chicago NIBIB Contract PI: Maryellen Giger

Established August 21, 2020

MIDRC.org

American Association of Physicists in Medicine (AAPM) PIs:

- Maryellen Giger (University of Chicago & AAPM Data Science Committee Chair)
- Paul Kinahan (University of Washington & AAPM Research Committee Chair)

Radiological Society of North America (RSNA) Pls:

- Curtis Langlotz (Stanford University & RSNA Board Liaison for IT & Annual Meeting)
- Adam Flanders (Thomas Jefferson University & Member RSNA CDE Committee)

American College of Radiology (ACR) Pls:

- Etta Pisano (ACR Chief Research Officer & Harvard University)
- Michael Tilkin (ACR Chief Information Officer)

- MIDRC -- radiologists & medical physicists/imaging scientists across the nation
 - Collaboration of 23 institutions from academia, community practices, FDA
 - Expert collaboration with community engagement
- See website for listing of all investigators
 - https://www.midrc.org
- High-quality and diverse data commons enabling researchers to address topics no single archive could yield independently (including images/acquisition, clinical, demographic data)

Two Data Intake Portals

One Output User Portal

RSNA COVID-19 Database RICORD

ACR
C∰VID-19
Imaging Research
REGISTRY™

Image quality assurance unbiased ΑI algorithm evaluatio n methods (AAPM)

University of Chicago

data.midrc.org
for searching &

downloading data

Open Commons:

Diverse commons to be accessed by

AT researchers

 Sequestered Commons: To

expedite

translation of AI through regulatory to Clinical Care

Via sequestered datasets and task-based distribution.

MIDRC: Technology Development Projects

The **MIDRC** infrastructure and processes is being created through five **Technology Development Projects**, which will be conducted collaboratively:

- 1. Creating an open discovery platform for COVID-19 imaging and associated data (**led by RSNA**).
- 2. Creating a real-world testing and implementation platform with direct real-time connections to health care delivery organizations (**led by ACR**).
- Developing and implementing quality assurance and evaluation procedures for usage across the MIDRC (led by AAPM).
- 4. Enabling data intake, access and distribution via a world-facing data commons portal (led by all three plus Gen3).
- 5. Linking the MIDRC to other clinical and research data registries (led by all three plus Gen3).

Three MIDRC Data Science Subcommittees

- DSIT Data
 Standards and
 Information
 Technology
 Subcommittee
 - led by RSNA
- DPP Data Policy and Procedures Subcommittee
 - led by ACR
 - DQH Data
 Quality and
 Harmonization
 Subcommittee

led by AAPM

Diversity of the data is an essential component in the developing and testing of unbiased AI

-- MIDRC PIs aims in a pending NIH grant

- Quantitative assessment of the diversity in imaging data within MIDRC, and establishment of fairness metrics and best practices to mitigate bias in AI development.
- Development of algorithmic interventions to detect and reduce bias in designing and independently testing AI algorithms for medical imaging.
- 3. Investigation of de-biased AI algorithms at scale to understand root causes of health disparities.
- Investigation of the clinical impact of our proposed AI interventions in clinical decision making with medical imaging.

Maryellen Giger

UChicago

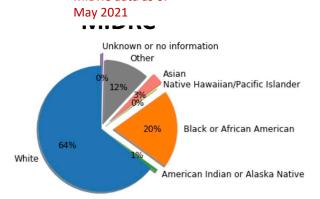
Judy Gichoya Kalapathy-Cramer Emory

Javashree MGH/Harvard

Sanmi Kovejo.

Berkman Sahiner

U Illinois FDA



MIDRC data as of

MIDRC Data Dashboard midrc.org

Total ingested into MIDRC

of Imaging Studies **41.071**

Undergoing MIDRC Data Quality and Harmonization

of Imaging Studies

38,927

Released by MIDRC

of Imaging Studies

2,144

Quality checked
Diversity assessed
Clinical Task AI

Goal of 60,000 curated imaging studies to be released by MIDRC by Sept

Including international datasets

2021

Collaborative Research Projects – Investigators through the various Data Science Committees at ACR, RSNA, & AAPM

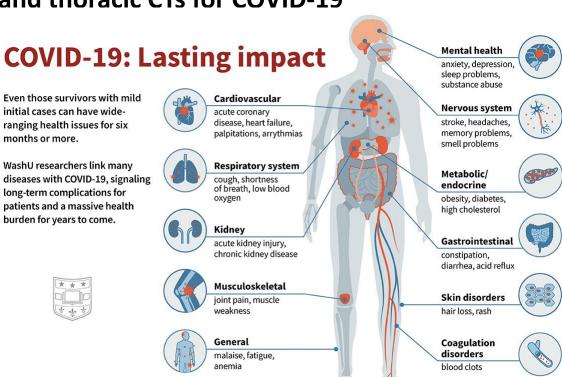
Proj

ject	Title		
1	Natural Language Processing of Radiology Reports for COVID-19	I	Trans-MIDRC scientific workgroups
2	Machine Intelligence Algorithms from Multi-Modal, Multi-institutional COVID-19 Data		Grand Challenges Work
3	Image Labeling and Annotation by a Crowd of Experts for COVID-19		Group
4	Efficient Training and Explainability of Machine Learning Methods from Multi-Institutional Data		 Created to coordinate effort
5	COVID Pneumonia Machine Learning Algorithm Validation and Visualization		on all aspects of challenges
6	Safe Public Training Dataset for COVID-19 Machine Learning Algorithms		 Potential to merge
7	Leveraging Registry Data to Conduct Virtual Clinical Trials		top performing algorithms to
8	Prediction of COVID Pneumonia Outcome using Radiomic Feature Analysis		benefit the
9	Radiomics & Machine Intelligence of COVID-19 for detection and diagnosis on chest radiographs and thoracic CTs		common goodBias and Diversity Work
LO	Visualization & Explainability of Machine Intelligence of COVID-19 for prognosis and monitoring therapy		Group
l 1	Investigation of image-based biomarkers for radiogenomics of COVID-19		 Goal of assessing and mitigating bias
L2	Determining COVID-19 image data quality, provenance, and harmonization		in data and ML
			 Diversity in MIDRC

What is next for MIDRC?

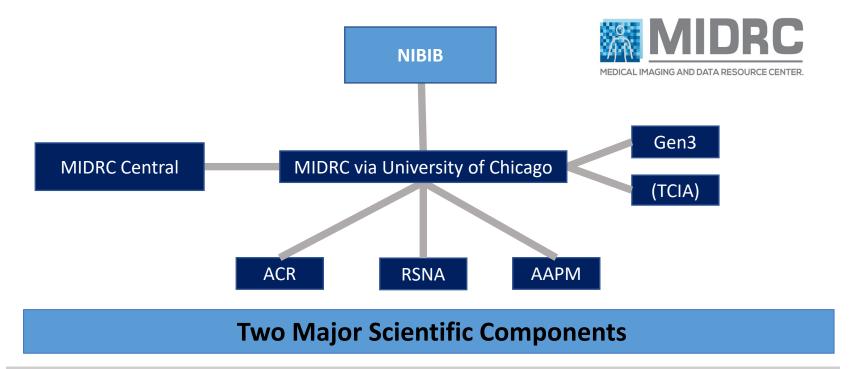
Beyond chest radiographs and thoracic CTs for COVID-19

- Include images of the (brain)
- Include images beyond images to monitor pos
- Collaborate with the n across clinical data, im
- Beyond COVID-19
 - MIDRC, with its develo tools, will be ready for
- Thus, MIDRC will be an in
 - Currently funded for tw
 - Require additional funds to continue with other diseases.



Field in 10 years (exciting directions & challenges)

- 4. Comprehensive data registries (future of MIDRC) to support de-biased AI development, testing, & translation for public good
 - Resource center repository with additional aspects including, e.g., analysis, harmonization, metrology, sequestered data, evaluation, computational enclaves, centralized & federated, and user interfaces
 - "DICOM-image-type" organization for all other –omics (pathomics, EHR, genomics)
 - Collaboration and interconnectivity with other data commons
 - Collaboration with regulatory/FDA to expedite translation & post-market evaluation
- 5. Open shared data resources and a willingness to give data for the public good
 - A patient has already benefited through medical care.
 - A hospital/medical center has already benefitted through reimbursement.
 - Now let the public benefit with the MIDRC second usage of the images.
 - Need to change the culture of medical imaging.



<u>Creation of Open Discovery Data Repository</u>: 5 <u>Technology Development Projects</u> along with three data science subcommittees and advisory committees

<u>Machine Intelligence Computational Capabilities</u>: 12 Collaborative Research Projects along with multiple trans-MIDRC scientific workgroups

MIDRC Data Dashboard

Total ingested into MIDRC

of Imaging Studies

41,071

Undergoing MIDRC Data Quality and Harmonization

of Imaging Studies

38,927

Released by MIDRC

of Imaging Studies

2,144

Quality checked
Diversity assessed
Clinical Task AI

Goal of 60,000 curated imaging studies to be released by MIDRC by Sept

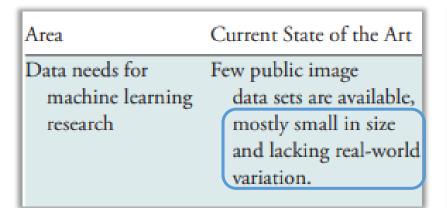
2021

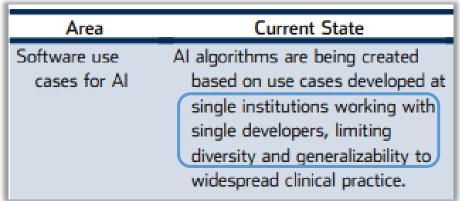
Database vs. Repository vs. Resource Center

"Rough definitions":

- Database collection of data
- Repository data stored and managed
- Resource center repository with additional aspects including browse/search, analysis, metrology, evaluation, and user interfaces

Key Bottleneck to Successful and Meaningful Machine Learning Algorithms: Lack of Diverse Data





Langlotz CP, Allen B, Erickson BJ, et al. A Roadmap for Foundational Research on Artificial Intelligence in Medical Imaging: From the 2018 NIH/RSNA/ACR/The Academy Workshop. Radiology. 2019;291: 781–791. https://doi.org/10.1148/radiol.2019190613

Allen B Jr, Seltzer SE, Langlotz CP, et al. A Road Map for Translational Research on Artificial Intelligence in Medical Imaging: From the 2018 National Institutes of Health/RSNA/ACR/The Academy Workshop. J Am Coll Radiol. 2019. https://doi.org/10.1016/j.jacr.2019.04.014

Radiology

ORIGINAL RESEARCH · SPECIAL REPORT

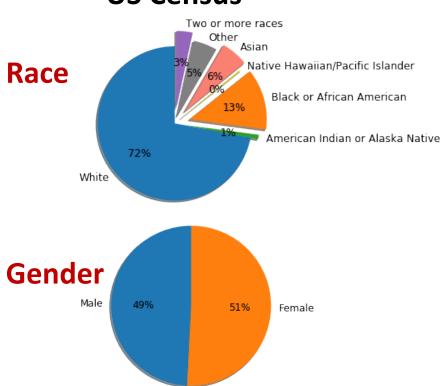
Ethics of Using and Sharing Clinical Imaging Data for Artificial Intelligence: A Proposed Framework

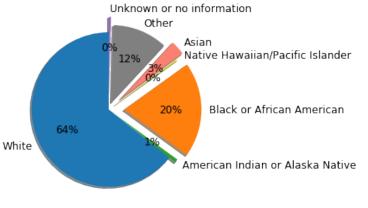
David B. Larson, MD, MBA • David C. Magnus, PhD • Matthew P. Lungren, MD, MPH • Nigam H. Shah, MBBS, PhD • Curtis P. Langlotz, MD, PhD

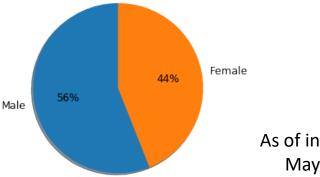
"After clinical data are used to provide care, the primary purpose for acquiring the data is fulfilled. At that point, clinical data should be treated as a form of public good. All who interact with or control the data have an obligation to ensure that the data are used for the benefit of future patients and of society."

Diversity of the data is an essential component in the developing and testing of unbiased Al

US Census







As of incoming data May 31, 2021

4D DCE 3D T2w T2 Deep learning AI methodology for improved breast cancer diagnosis using multiparametric MRI 2nd post-contrast subtraction **SCIENTIFIC** 927 lesions REPORTS natureresearch Check for updates T2w center slice DCE MIP Fusion image A deep learning methodology for improved breast cancer diagnosis using multiparametric MRI Qiyuan Hu^{1™}, Heather M. Whitney^{1,2} & Maryellen L. Giger¹ DCE MIP ROI T2w center ROI Fusion ROI Pre-trained Pre-trained Pre-trained 0.8 VGG19 VGG19 VGG19 True Positive Fraction CNN features CNN features CNN features DCE & T2w CNN from max-pool from max-pool from max-pool feature ensemble layers layers Classifier SVM classifier SVM classifier SVM classifier SVM classifier soft voting AUC +/- SE DCE MIP: 0.85 +/- 0.01 DCE ROC T2w ROC Classifier fusion Feature fusion Image fusion analysis analysis **ROC** analysis **ROC** analysis ROC analysis T2w center slice: 0.78 +/- 0.02 0.2 Image fusion: 0.85 +/- 0.01 Feature fusion: 0.87 +/- 0.01 Classifier fusion: 0.86 +/- 0.01 Hu Q, Whitney HM, Giger ML. A deep learning methodology for 0.2 0.4 0.6 8.0

False Positive Fraction

improved breast cancer diagnosis using multiparametric MRI. Sci

Rep. 2020 Jun 29;10(1):10536. doi: 10.1038/s41598-020-67441-4.

Discovery and Predictive Modeling for Personalized Patient Care

