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The benefit of a medical imaging examination in terms of its
ability to yield an accurate diagnosis depends on:

* Quality of the imaging technology
* Improvement in standardizing screening mammography (FFDM/Breast
Tomosynthesis) Need a good image
* New tomographic imaging systems (e.g., CT, MRI, PET, MRI/PET)
* Quality of the interpretation

* Mainly performed by radiologist Need a good reader

* Incorporate a computer analysis (Al)




Medical Image Interpretation

Medical images are meaningless grayscale/colorscale patterns unless “viewed
and analyzed” by an intelligent observer
e Radiologist, Computer (Al), or Combination of human & computer (Al-aided)

Tasks of the Human eye-brain system

* Finding/locating a signal in an image

* Characterizing/classifying/diagnosing the signal as disease or non-disease

* Clinical decision making on patient management through integrated
diagnostics (monitoring)

Tasks of Al (computer vision, radiomics, machine learning, deep learning)
e Similar — converting images to quantitative values
* Need to know the clinical task!!!!



Medical Imaging & Al in Precision Medicine & Oncology

* The focus is Al for images that are “clinically & routinely” obtained on the
population.

* We want to ask questions about the relationships between features “seen” in
medical images and the biology of cancer so that eventually we can
detect/diagnose cancer early and give the right patient the right treatment at
the right time.

* And to improve the efficiency and workflow of medical imaging interpretation.




Al can be applied at many Stages along the Medical Imaging Chain

* Imaging Source

» Subject (patient, animal, tissue, cells)

* Imaging detector system (e.g., optimizing detector parameters)
e Contrast media & Imaging probes

* Image presentation (e.g., hanging protocols)

* Image reconstruction (e.g., tomosynthesis)

* Image processing (e.g., image denoising)

* Quantitative image analysis/CADx/Radiomics (e.g., Density estimation,
detection, diagnosis, prognosis, therapeutic response)

* Image/Data integration

* Image/Data output display/interface/GUI
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Overall Considerations for Al for Cancer Diagnosis in Medical Imaging

Answer to some Medical Question
(e.q., risk assessment, detection, diagnosis, prognosis, therapy response)

Data Al use as an aid by radiologist
(images & clinical, CADe, CADx. Al-aided
demographics) Al (secondary or concurrent reader)
SN Algorithm (human- SN .
engineered radiomics or Al u‘?’e as a primary reader
Image deep learning) triage (CADt), “rule out”
Acquisition
(physical parameters, Autonomous Al
variations and replaces human
harmonization needs)

Appropriate Metrology and Evaluation Methods

(e.g., standalone evaluation and evaluation of the performance of the enduser)
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Al can be applied in many
Cancer Imaging Decision-Making Tasks
* Risk Assessment

Screening — CADe, CADt
Diagnosis -- CADx

Prognosis (subtyping)

Treatment planning

Assessing treatment response

Patient management and monitoring

Disease Discovery (radiogenomics; multi-omics)

Bi WL, Hosny A, Schabath MB, Birkbak NJ, Mehrtash A, Giger ML, Allison T, Arnaout O, Abbosh C, Dunn
IF, Mak RH, Tamimi RM, Tempany CM, Swanton C, Hoffmann U, Schwartz LH, Gillies RJ, Huang R, Aerts
HJWL: Artificial intelligence in cancer imaging: clinical challenges and applications. CA: A Cancer
Journal for Clinicians 2019 Mar;69(2):127-157. doi: 10.3322/caac.21552. Epub Feb 5, 2019.

DETECTION

¢ Highlighting suspicious regions in images
* Detecting indeterminate nodules
* Addressing high false-postive rates and overdiagnosis

Lung

Early detection of
lung cancer is
associated with
improved outcomes

O

CNS

Detection tools for
the incidental finding
of asymptomatic
brain abnormalities

Breast Prostate
More robust [ “Clinically significant”
screening \“ prostate lesion detection
-G} mammography allows for targeted
interpretation and biopsy sampling
) analysis
| |
CHARACTERIZATION

* Providing robust tumor descriptors to capture intra-tumor heterogeneity and
variatiability

Segmentation
Defining the extent of
an abnormality in
terms of 2D or full

3D assessments

Staging
Categorizing tumors
into predefined
groups based on
expected course &
treatment strategies

3

Diagnosis
Classifying
abnormalities as
benign or malignant

Imaging Genomics
Associating imaging
features with genomic
data for comprehensive
tumor characterization

MONITORING

« Capturing a large number of discriminative features that go beyond those measured
by traditional evaluation criteria

) Change Analysis

Temporal monitoring of

B natural history or in
W response to treatment

tumor changes either in
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Evaluation of Clinical Breast CADx: Task of Distinguishing

MR Imaging Performed with between Malignant & Benign
Prototype Computer-aided Lesions on Breast MRI
Diagnosis Breast MR Imaging 1 ' : :
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Computer-Aided Detection in Breast Cancer Screening
Change from Using the Computer Output as a Second Reader
to a Potential Independent Reader

Support from Computer as a Second Reader

Rodriguez-Ruiz A, et al Radiology,

10.1148/radiol.2018181371, 2019

* The system uses deep learning convolutional
neural networks and features classifiers /
image analysis algorithms to indicate
calcifications and soft-tissue lesions

* Trained, validated, & tested on 9000 cancers

* Radiologists can use an interactive decision
support mode as well as traditional CAD

* Radiologists’ unaided AUC = 0.866

* Radiologists’ aided AUC = 0.886

 Statistically improved radiologists’
performance

Potential future use as Standalone

Independent Reader

Rodeiguez-Ruiz, A, et al, JNCI,

10.1093/jnci/djy222, 2019

* Comparison with 101 (unaided) radiologists
vs. computer alone

* 2652 mammographic exams (653
malignant)

* Al system was statistically noninferior to
that of the average of the 101 radiologist

* Radiologists’ unaided AUC =0.814

* Computer alone AUC = 0.840



https://doi.org/10.1148/radiol.2018181371
https://academic.oup.com/jnci/article/111/9/916/5307077

CADe in Breast Cancer Screening

Change from

A Deep Learning Model to Triage Screening
Mammograms: A Simulation Study

Second Reader to Independent Reader
Role in triaging (CADt) — “rule out”

Adam Yala, MEng * Tal Schuster, MS * Randy Miles, MD * Regina Barzilay, PhD * Constance Lehman, MD, PhD

o o . « o
From the Department of Elcctrical Engincering and Computer Scicnce, Massachuscrs Institute of Technology; Cambridge, Mass (A.Y,, TS., RB.); and Department of ° m

Radi ard Medical School, 55 Fruit St, WAC 240, Boston, Mass 02114-2698 (R.M., C.L.). Received December 21, 2018; O e I n I p rOV I n g e I C I e n Cy
revisi

unc 5; accepted Junc 18. Address correspondence to C.L. (c-mail: clebman@partners.org).

See also the editorial by Kontos and Conant in this issue. Standard Workflow DL-Tri age Workflow

Radiology 2019; 293:38-46 ® hetps://doi.org/10.1148/radiol 2019182908 Content codes: [BR](IN]

All Mammograms| IAll Mammograms,

Background: Recent decp learning (DL) approaches have shown promise in improving sensitivity but have not addressed limitations
in radiologist specificity or efficiency.
Purpose: To develop a DL model to triage a portion of mammograms as cancer free, improving performance and workflow
efficiency.
Radiologist
* Trained a deep learning model to triage mammograms as

cancer free and showed that their model could Callback Cancer-free

* In the simulation study, 20% of mammograms were not need
to be send by humans.

Cancer-free

Radiologist

Callback Cancer-free
* Showed improvement in radiologist efficiency and specificity Figure 2: Diogram lsotes axperimental stvp for iage anay.
W|th0ut harmlng SenS|t|V|ty. n standar: scenario, ra IOOgISfS reaa a mcmmogrcms. n deep

learning (DL)-friage scenario, radiologists only read mammograms
above model cancerfree thresheld. To simulate both scenarios,
original interprefing radiologist’s assessment on test set was used for

radiologist read.
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Comparison of Human-Engineered Al and Deep Transfer Learning in
distinguishing between malignant and benign breast lesions

Human-Engineered Al

y

Computerized Tumor Segmentation

Computer-Extracted Tumor Features

Deep Learning: Convolutional Neural Networks
(CNN) Al
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Use case example: Analysis of Breast Cancer on MRI
using Human-Engineered Features

e After the lesion is automatically segmented,
image features (i.e., mathematical descriptors;
radiomics) are extracted from the lesion.

Morphology

* Features are intuitive, and thus output is more explainable
* 3D/4D features then merged by a classifier (e.g., LDA, SVM) to yield a signature
indicating an estimate of the likelihood of malignancy, estimate of the severity

of disease, or predicted response



Use case example:
Analysis of Breast
Cancer on MRI using
Transfer Deep
Learning

* Task of distinguishing
between cancers and non
cancers

* Transfer learning reduces
the number of cases
required

Antropova N, Huynh BQ, Giger ML: A
deep fusion methodology for breast
cancer diagnosis demonstrated on three
imaging modality datasets. Medical

Physics online
doi.org/10.1002/mp.12453, 2017.
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Human-Engineered CADx/Radiomics & Deep Learning CADx/Radiomics
(task of distinguishing between cancers and non cancers)

Likelihood of
being cancer as
determined from
human-
engineered Al
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Breast Imaging Number of Deep Transfer | Fusion of Human-
Modality Cases Engineered CADx | Learning CNN | Engineered & CNN
(AUC) (AuC)
Digital 245 0.79 0.81 0.86
Mammography
Ultrasound 1125 0.84 0.87 0.90
DCE-MRI 690 0.86 0.87 0.89

™

;

determined from deep learning Al

Antropova N, Huynh BQ, Giger ML: A deep
fusion methodology for breast cancer diagnosis
demonstrated on three imaging modality
datasets. Medical Physics online
doi.org/10.1002/mp.12453, 2017.




Combining Multiple Al [DCE MR Images ———
MethOdS for Breast Lesion segmentation i—@i

Ca ncer DiagnOSiS Pre-trained

Human-engineered VGG19

radiomic features
Fine-tuning
1 CNN features of pre-trained VGG19
0.9 J (max-pooling layers)
0.8 4
| Lesion classification (SVM) | | Lesion classification (SVM) |
0.7 4
3 !
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False Positive Fraction (FPF)

Whitney H*, Li H*, Ji Y, Liu P, Giger ML: Comparison of breast MRI tumor classification using
human-engineered radiomics, transfer learning from deep convolutional neural networks, and
fusion methods. Proceedings of the IEEE, DOI: 10.1109/JPROC.2019.2950187, 2019.



https://doi.org/10.1109/JPROC.2019.2950187
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& & B Combining images in deep learning Al for improved
breast cancer diagnosis using multiparametric MR
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Hu Q, Whitney HM, Giger ML. A deep learning methodology for
improved breast cancer diagnosis using multiparametric MRI. Sci
Rep. 2020 Jun 29;10(1):10536. doi: 10.1038/s41598-020-67441-4.

True Positive Fraction
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SCIENTIFIC
REPORTS

natureresearch

M) Check for updates

A deep learning methodology
forimproved breast cancer
diagnosis using multiparametric
MRI

Qiyuan Hu'™, Heather M. Whitney? & Maryellen L. Giger*

AUC +/- SE

— — —DCE MIP: 0.85 +/- 0.01
— — —T2w center slice: 0.78 +/-0.02 ]

Image fusion: 0.85 +/- 0.01
Feature fusion: 0.87 +/- 0.01
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Transferring Al developments from
e e e Cancer Imaging use in diagnosis to use in prognosis
and treatment response

Most-enhancing tumor volume by MRI Most-enhancing

radiomics predicts recurrence-free survival
“early on” in neoadjuvant treatment of
breast cancer

Karen Drukker ®, Hui Li, Natalia Antropova, Alexandra Edwards, John Papaioannou and Maryellen L. Giger

1 HR+/HER2- -
* Applied automatic calculation of
guantitative radiomics to cases from the £
I-SPY 1 (ACRIN 6657) study of dynamic |
contrast-enhanced MR images.
e Alin pretreatment prediction of response

to neoadjuvant chemotherapy; risk of
recurrence, recurrence-free survival

Tumor Volume
Predicts Recurrence-
free Survival

o
o

Estimated survival functions
o
'S

o
(N

V<=Q3 p=0.012
V>Q3

o
o

500 1000 1500 2000 2500
Time (days)




IMAGING GENOMICS — USING VIRTUAL BIOPSIES

PATHWAY TRANSCRIPTIONAL ACTIVITIES ASSOCIATED WITH MRI QUANTITATIVE |

DNA replication

Cell cycle

Ribosome

Pathways in cancer

P53 signaling pathway
MAPK signaling pathway
Base excision repair
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Cell adhesion molecules
VEGF signaling pathway
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JAK-STAT signaling pathway

Shape

arpness
stogram

Sphericity
Irregularity

Surface to Vo

Surface area

M

Enhancement textures
Enhancement-variance kinetics

~ ©
Es
-—

°®
pri .
e B
ol
O o
.go
>3
C
o
=
©
>

Significant Negative Association (adjusted p-Value < 0.1)

cement

-z
N
()

5
=
>
©
=

iKe rate
out rate

Curve shape index

to peak
Enhancement at first postcontrast timepoint

Signal enhancement ratio

Volume of most enhancing voxels

Total rate variation

Normalized total rate variation

Maximum variance of enhancamant

Transcriptional activities of various
genetic pathways were positively
associated with tumor size, blurred
tumor margin, and irregular tumor
shape and that miRNA expressions
were associated with the tumor
radiomics phenotypes of size and
enhancement texture -- suggesting
that miRNAs may mediate the
growth of tumor and the
heterogeneity

of angiogenesis in tumor.
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ZhuY, Li H, ... Giger ML*, Ji Y*: Deciphering genomic underpinnings of quantitative MRI-based radiomic phenotypes of invasive breast carcinoma.

Nature — Scientific Reports 5:17787 (2015)




Why after decades, is research in cancer imaging Al still
being conducted and papers are still being published
for detection, diagnosis, prognosis, and assessing
response to therapy?
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newok Open.

Original Investigation | Health Informatics

Association of Clinician Diagnostic Performance

With Machine Learning-Based Decision Support Systems
A Systematic Review

Baptiste Vasey, MMed; Stephan Ursprung, MMed; Benjamin Beddoe, BSc; Elliott H. Taylor, BSc; Neale Marlow, MBBS; Nicole Bilbro, MD;
Peter Watkinson, MD; Peter McCulloch, MD

* This systematic review found no robust
evidence that the use of ML-based algorithms
was associated with better clinician diagnostic
performance.

* The evidence for any conclusion was weak

8112 Publications retrieved

2958 Titles excluded
—> 2774 Duplicates
184 Publications not in English language

‘ 5154 Abstracts screened for relevance ‘

—> 4998 Publications irrelevant

‘ 156 Publications selected for full-text screening ‘

134 Publications excluded
71 Before 2010
18 Wrong intervention
14 Wrong study population
14 Wrong comparator
13 Not diagnostic
2 Wrong study design
2 Not peer reviewed

because of a high risk of bias in many of the
studies and a low number of study participant

wn

Other sources?
15 Publications

* Almost half of all results reported with
statistical significance showed no significant
difference in performance with or without the
use of the computer aids.

‘ 37 Publications included ‘

!

‘ 0 Publications selected for meta-analysis ‘

JAMA Network Open. 2021;4(3):e211276



Critical gaps in Al/ML deployment
Lack of diverse and representative data

Geographic Distribution of Data
to Train Al Algorithms

STAT

Kaushal A, Altman R, Langlotz C. JAMA. 2020;324: 1212-1213.

% AuntMinnie.com Judy w. GiChoya

Is radiology Al technology racist?

August 6, 2021 -- Artificial intelligence (Al) models can recognize a patient's
racial identity on medical images, even though radiologists can't, ...
3 weeks ago

“...report all results by relevant clinical and
demographic group...”

Need for representative dataset

Area Current State of the Are

Data needs for Few public image

machine ll:arning data sets are available,

research mnsthr small in size

H.I'I{.‘I. laclcing I'CEI.—W(]'[].

variation.

Langlotz CP, Allen B, Erickson BJ, et al. A Roadmap for
Foundational Research on Artificial Intelligence in Medical
Imaging: From the 2018 NIH/RSNA/ACR/The Academy Workshop.
Radiology. 2019;291: 781-791.
https://doi.org/10.1148/radiol.2019190613

Area Current State
Software use Al algorithms are being created
cases for Al based on use cases developed at

single institutions working wit
single developers, limiting
diversity and generalizability to
widespread clinical practice.

Allen B Jr, Seltzer SE, Langlotz CP, et al. A Road Map for Translational
Research on Artificial Intelligence in Medical Imaging: From the 2018
National Institutes of Health/RSNA/ACR/The Academy Workshop. J Am
Coll Radiol. 2019. https://doi.org/10.1016/j.jacr.2019.04.014
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Understanding Limitations of Al Development in
Cancer Imaging can be appreciated through the
Arificalintetigence / Machine earning Limitations of Al Development in COVID-19 Imaging Al

Hundreds of Al tools have
been built to catch covid.

None Of them helped' Prediction models for diagnosis and prognosis of covid-19:

Some have been used in hospitals, despite not being properly systematic review and critical appraisal

tested. But the pandemic could help make medical Al better. Laure Wynants,” Ben Van Calster,”’ Gary S Collins,** Richard D Riley,” Georg Heinze,”

Ewoud Schuit,®® Marc M ) Bonten,®*? Darren L Dahly,***? Johanna A Damen,*®
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nature > nature machine intelligence > analyses > article

Analysis | Open Access | Published: 15 March 2021 When the WOI‘ld Needed It MOSt,

Common pitfalls and recommendations for using Atrtificial Intelligence Failed: How

machine learning to detect and prognosticate for COVID-19 Poked Holes in Al

COVID'lg llSil‘lg Chest I’adiogfﬂphs and CT scans We should be celebrating how Al improved pandemic responses, but
the rollout was messy and the published papers littered with unusable
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Understanding Limitations of Al Development in

Cancer Imaging can be appreciated through the
Arificialinteligence / Wachine eerning Limitations of Al Development in COVID-19 Imaging Al
Hundreds of Al tools have What went wrong?
been built to catch covid. 1) Poor quality of data, “Frankenstein data sets”
None of them helped. * Mislabeled data
Some have been used in hospitals, despite not being properly e Multiple unknown sources

tested. But the pandemic could help make medical Al better.

* Duplicate data (resulting in leakage between training and

by Will Douglas Heaven July 30,2021 testin g )
nature machine intelligence * No traceability, limited quality control
Explore content ¥ About the journal ¥ Publish with us v o La C k Of eXte rna | va | id atio n

nature > nature machine intelligence > analyses > article

2) Lack of communications between Al/ML experts and Medical/

Analysis | Open Access | Published: 15 March 2021

Common pitfalls and recommendations for using Biomedical experts; needed in this multidisciplinary field
machine learning to detect and prognosticate for e Lack of valid groun d truth

COVID-19 using chest radiographs and CT scans

Michael Roberts &, Derek Driggs, Matthew Thorpe, Julian Gilbey, Michael Yeung, Stephan Ursprung, .

Angelica . Aviles-Rivero, Christian Etmann, Cathal McCague, Lucian Beer, Jonathan R. Weir-McCall, 3) B | a S

Zhongzhao Teng, Effrossyni Gkrania-Klotsas, AIX-COVNET, James H. F. Rudd, Evis Sala & Carola- oo « e .

e sersies * Collected often for a specific clinical question

Nature Machine Intelligence 3,199-217 (2021) | Cite this article ° SpeCiﬁC popu |ati0n5’ lack of dive rsity

53k Accesses | 1064 Altmetric | Metrics

* Single expert score, data sources correlated with ‘truth’, ...



Suggest Al community embrace data commons ﬁﬁ MlDRC
(e.g., the Medical Imaging and Data Resource Center) omeerenmmarcans

1. Focus on high quality data
* Trustworthy data
2. Collaborative, community culture : . .
. R R Major Medical Imaging
* Bridge multiple expertise Societies (RSNA, ACR, AAPM
3. Promote sharing & transparency
* Data, models, limitations
4. Create and promote standards:
* Data, Quality Control (QC) ‘
* Real world performance Al/ML =~ ﬁﬁm fp—
5. Address bias: v i
* Representative data N
* Diversity of researchers H
* Lower barrier of access (FAIR, open)
6. Value the “last mile” 2,5
* in “from bench to bedside”
* Include post-market evaluations

Quality National
Resource & Welcoming

1 Scientific Community
Ethically-Sourced X /

Trustworthy Data

1,3

Well-Curated FAIR
Data on Centralized &
Federated Commons

Public Website & User
Workspaces for Diverse
Researchers

FAIR Al/ML
Research & Best
Practices Guidelines

Sequestered Data
Commons for Testing,
Regulatory, & Translatio

3,4,5

midrc.org



Medical Imaging & Al in 10 years

1. Integrated multi-modality, multi-task Al
e Currently, most algorithms are focused on one task, one cancer
* Combinations of multiple human-engineered and deep learning Al algorithms
* Increasing realization of the role of the end user in development and evaluation

2. Al as ameans to improve access to healthcare (reduce health disparities)
* Al when there are limited number of radiologists and other clinicians
* Combine Al with inexpensive, portable imaging equipment
3. Multi-omics datasets for discovery and clinical “biomarkers” linked across patients
over time
* Ethically-sourced and trustworthy data and Al algorithms
* Disease agnostic collection of datasets to Data Commons/Resource Centers
* Open and sequestered data commons, such as MIDRC
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Medical Imaging & Al in Precision Medicine

* Artificial intelligence in medical imaging has been investigated for
decades. These investigations have included

* Understanding the changing role of Al in medical imaging in terms of:

d.

Various medical decision-making tasks -- from disease detection to diagnosis to
therapeutic response & monitoring

Methods of how Al is used by the end-user (e.g., the clinician) — from second
reader to concurrent reader to autonomous reader

i. Concerns of incorrect or off-label use, i.e. using a second reader Al system as a concurrent
reader system

Human-engineered Al and deep learning Al
Need for ethically-sourced imaging data & trustworthy Al

Development of the Al algorithm as well as the evaluation of the radiologist
when being aided by the Al in order to assess translation to clinical practice.



* Image quality demands standardization

* Need to include segmentation to the list

* Also repositories vs. commons

Data from research effort with a focused question
* Useful for Challenges but not representative of populations
Data from clinical trials with a strict acquisition protocols and also data release is embargoed
* Data should be released by first publication or end of grant period at the latest
Data from large scale data from cooperative groups (like ACRIN etc)
While very useful, these are not representative data of the population
by collecting disease-agnostic data from diversity-directed collections one can slice and dice
¢ Canthen do discovery studies between imaging and nonimaging data — radiogenomics TCGA breast example
Avoid Frankenstein datasets
Coordination across case collections and clinical, demographics, and acquisition parameters data elements
* If truth files of clinical data are not standardized, it could cause variations in how the truth is used and then different algorithms and performances.
Need non-imaging data standardized — somewhat like DICOM? LOINC?
Need sequestered datasets
Repeatability and reproducibility (variability)



What has changed with Al over the decades?

Faster computers

Larger datasets of images; although some datasets are limited or flawed
More advanced algorithms including deep learning

Realization of additional reasons & means to incorporate in clinical practice
Al being developed for more clinical questions (modalities & disease sites)

However

Same clinical tasks of detection, diagnosis, response assessment
Same concern for “garbage in, garbage out”

Same potential for misuse (i.e., off-label use)

Same methods for statistical evaluations

Same need for sufficient number of cases to span the distribution of disease and normal
presentations

Same need for imaging domain experts and computer domain experts



Spatially-correlated multi-omics analyses -- Advantages:

* Spatially registered MRI, histological, and genomics information — “virtual” digital biopsy
* Assesses tumor heterogeneity

» Accounts for tumor microenvironment.

Genomic and
Transcriptome
Analysis

Whole-Mount Breast
Histopathology

High-throughput MRI
Phenotyping workstation



Al/Radiomics of intra-tumor heterogeneity
e.g., Contrast Enhancement Heterogeneity in Breast
DCE-MRI
Heterogeneity of Tumors: e

4001

300f

Signal Intensity

[
=
>

Time (min)

Regions of most enhancing voxels Radiomics of texture giving a

m pviiintias
—_—)
of contrast uptake.

Examine the heterogeneity of some features within the tumor to view regions (“habitats”),

which may correspond to different biological states within the tumor.

Chen W, Giger ML, Bick U, Newstead G: Automatic identification and classification of characteristic
kinetic curves of breast lesions on DCE-MRI. Medical Physics, 33: 2878-2887, 2006.




Human-engineered Al and deep learning Al

* Similar to radiology residency
* Textbook learning of a limited number of specific examples

* On the job training through reading cases and obtaining feedback from attending
radiologists

* Advancements
* Merging of human-engineered and deep learning Al algorithms
* Multiple Al algorithms for a given task

* Multiple image types (modalities) to mimic radiologists’ methods
* Dependence on input images especially in a limited database situation



ORIGINAL RESEARCH - SPECIAL REPORT

Ethics of Using and Sharing Clinical Imaging Data for
Artificial Intelligence: A Proposed Framework

David B. Larson, MD, MBA * David C. Magnus, PhD * Matthew P Lungren, MD, MPH *
Nigam H. Shah, MBBS, PhD * Curtis P Langlotz, MD, PhD

“After clinical data are used to provide care, the primary purpose for
acquiring the data is fulfilled. At that point, clinical data should be treated
as a form of public good, to be used for the benefit of future patients.”

https://pubs.rsna.org/doi/pdf/10.1148/radiol.2020192536



Database vs. Repository vs. Resource Center

“Rough definitions”: Database vs. Repository vs. Resource Center
* Database — collection of data
* Repository — data stored and managed

* Resource center — repository with additional aspects including
browse/search, analysis, metrology, evaluation, and user interfaces



Large Scale Medical Imaging Studies

* Large is relative —

e Relative to the ML/AI task

* Relative to the prevalence of the disease in question

* Relative to the subtlety of the disease in question

» Relative to the difficulty of the clinical task

 Relative to sub-populations; bias and diversity aspects

* Relative to the type of ML/AI training, tuning, and testing
* Merging of human-engineered features
* Transfer learning (feature extraction or fine tuning)
* Deep learning from scratch

e “Think like a human”



Use Case: Thoracic imaging in the COVID-19 Pandemic

While thoracic imaging, including chest radiography (CXR) and computed
tomography (CT), are being re-examined for their role in patient management,
the limitations for improved interpretation are partially due to the qualitative
interpretation of the images, and thus we aim to develop artificial intelligence
(Al) methods to aid in the interrogation of medical images from COVID-19
patients, eventually including cardiac, brain, and other images.

(4]
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Rapid Response to COVID-19 Pandemic ﬁﬁ MIDRC

MEDICAL IMAGING AND DATA RESOURCE CENTER.

Established August 21, 2020
MIDRC.org

University of Chicago NIBIB Contract PI: Maryellen Giger

American Association of Physicists in Medicine (AAPM) Pls: L
*  Maryellen Giger (University of Chicago & AAPM Data Science Committee Chair)

* Paul Kinahan (University of Washington & AAPM Research Committee Chair)
Radiological Society of North America (RSNA) Pls:

* Curtis Langlotz (Stanford University & RSNA Board Liaison for IT & Annual Meeting)
* Adam Flanders (Thomas Jefferson University & Member RSNA CDE Committee)
American College of Radiology (ACR) Pls:

* Etta Pisano (ACR Chief Research Officer & Harvard University)
* Michael Tilkin (ACR Chief Information Officer)

Gen3 Pl: Robert Grossman ﬁ
National Institute of ‘ \ l :R ‘{SM
m) THE UNIVERSITY OF AR ~verican AssociaToN

Biomedical Imaging AMERICAN COLLEGE OF

and Bioengineering ﬁﬂ CHICAGO S L RADIOLOGY Ra:iiologlit?at 50 i.r_‘ty
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* MIDRC -- radiologists & medical physicists/imaging scientists across the nation
* Collaboration of 23 institutions from academia, community practices, FDA

e Expert collaboration with community engagement
* See website for listing of all investigators
 https://www.midrc.org
* High-quality and diverse data commons enabling researchers to address

tOpiCS NoO Single archive could Y|EId independently (including images/acquisition, clinical,
demographic data)



https://www.midrc.org/

& MIDRC

MEDICAL IMAGING AND DATA RESOURCE CENTER.

midrc.org

Two Data Intake Portals

One Output User Portal

RSNA mage
COVID-19 Databasg auality
RICORD —>
unbiased

ACR | A.'I

C#VID-19

Imaging Research

REGISTRY

evaluatio
n
methods
(AAPM)

DATA COMMONS

data.midrc.org
for searching &
downloading
data

- QOpen
Commons:
Diverse commons
t0 be accessed by
AT recearchere

Sequestered

Commons: To
expedite
translation of Al
through regulatory
¢ tO CliniCal Care
Via sequestered
datasets ahd task-
based distribution.




MIDRC: Technology Development Projects

The MIDRC infrastructure and processes is being created through
five Technology Development Projects, which will be conducted
collaboratively:

1.

Creating an open discovery platform for COVID-19 imaging and
associated data (led by RSNA).

Creating a real-world testing and implementation platform
with direct real-time connections to health care delivery
organizations (led by ACR).

Developing and implementing quality assurance and
evaluation procedures for usage across the MIDRC (led by
AAPM).

Enabling data intake, access and distribution via a world-facing
data commons portal (led by all three plus Gen3).

Linking the MIDRC to other clinical and research data registries
(led by all three plus Gen3).

Three MIDRC Data
Science
Subcommittees

DSIT - Data
Standards and
Information
Technology
Subcommittee

= |ed by RSNA

DPP - Data Policy
and Procedures
Subcommittee

= led by ACR

DQH - Data
Quality and
Harmonization
Subcommittee

® led hvy AAPNA



Diversity of the data is an essential component in the
developing and testing of unbiased Al
-- MIDRC PIs aims in a pending NIH grant

Quantitative assessment of the diversity in imaging data within
MIDRC, and establishment of fairness metrics and best practices
to mitigate bias in Al development.

Development of algorithmic interventions to detect and reduce
bias in designing and independently testing Al algorithms for

medical imaging.
. . . . MIDRC data as of
Investigation of de-biased Al algorithms at scale to understand May 2021

root causes of health disparities. 70T ~

Unknown or no information
Other

. Asian

Investigation of the clinical impact of our proposed Al J
. . . « . « . R . . . . "4 7 Native Hawaiian/Pacific Islander
interventions in clinical decision making with medical imaging. //g/

A8 & -

Maryellen Giger Judy Gichoya Jayashree Sanmi Koyejo. Berkman Sahiner
Kalapathy-Cramer
UChicago Emory MGH/Harvard U Illinois FDA

Black or African American

American Indian or Alaska Native



MIDRC Data Dashboard midrc.org

MEDICAL IMAGING AND DATA RESOURCE CENTER.

Total Undergoing
ingested into MIDRC Data Released by

MIDRC Quality and MIDRC

Harmonization

1
H N
“= w# of Imaging Studies

38,927 l ﬂ # of Imaging Studies
| ‘H = 2,144

Quality checked Goal of 60,000 curated
o _ Diversity assessed imaging studies to be
Including international datasets Clinical Task Al released by MIDRC by Sept

2"YN1



Collaborative Research Projects — Investigators through the various Data Science Committees at ACR, RSNA, & AAPM

IS e—
Trans-MIDRC scientific

Project

Natural Language Processing of Radiology Reports for COVID-19 workgroups
Machine Intelligence Algorithms from Multi-Modal, Multi-institutional COVID-19 Data * Grand Challenges Work
Image Labeling and Annotation by a Crowd of Experts for COVID-19 Group
Efficient Training and Explainability of Machine Learning Methods * Creat?d to
from Multi-Institutional Data coordinate effort
. . , , e - on all aspects of
COVID Pneumonia Machine Learning Algorithm Validation and Visualization chaIIenges
Safe Public Training Dataset for COVID-19 Machine Learning Algorithms * Potential to merge

top performing
algorithms to

Prediction of COVID Pneumonia Outcome using Radiomic Feature Analysis benefit the
common good

7 Leveraging Registry Data to Conduct Virtual Clinical Trials

Radiomics & Machine Intelligence of COVID-19 for detection and diagnosis on chest

radiographs and thoracic CTs * Bias and Diversity Work
Visualization & Explainability of Machine Intelligence of COVID-19 for prognosis and Group

monitoring therapy * Goal of assessing

and mitigating bias
in data and ML

e Diversity in MIDRC

Investigation of image-based biomarkers for radiogenomics of COVID-19

Determining COVID-19 image data quality, provenance, and harmonization



i MIDRC

W h at i S n eXt fo r M I D RC? MEDICAL IMAGING AND DATA RESOURCE CENTER.

* Beyond chest radiographs and thoracic CTs for COVID-19

* Include images of the « o
(brain) COVID-19: Lasting impact

Mental health
anxiety, depression,
sleep problems,

substance abuse

Nervous system [ % -
stroke, headaches, ;

memory problems,
smell problems

initial cases can have wide-

disease, heart failure,

iMmages to MOoNItor pos  jreeie o ssuesforsx
° CO | | a b ora te Wit h t h @ N WashUresearchers linkmany @ Respiratory system

diseases with COVID-19, signaling cough, shortness
of breath, low blood

across clinical data, im e,
burden for years to come. i
idney
d Beyond COVI D-19 .m r' acute kidney injury,

chronic kidney disease

* MIDRC, with its develc @ .
tools, will be ready for =y tpammste

* Thus, MIDRC will be an in @ conent_ )
e Currently funded for t o
* Require additional funds to continue with other diseases.

[ ] I n CI u d e i m a ges b eyo n ( Even those survivors wi.th mild @ (a::;:i;‘::::;lar

Metabolic/
endocrine
obesity, diabetes,
high cholesterol

Gastrointestinal

constipation,
diarrhea, acid reflux

oy Sl
Skin disorders %}8®
hair loss, rash

Coagulation
disorders
blood clots




Field in 10 years (exciting directions & challenges)

Comprehensive data registries (future of MIDRC) to support de-biased Al development,
testing, & translation for public good

» Resource center — repository with additional aspects including, e.g., analysis,
harmonization, metrology, sequestered data, evaluation, computational enclaves,
centralized & federated, and user interfaces

* “DICOM-image-type” organization for all other —omics (pathomics, EHR, genomics)
* Collaboration and interconnectivity with other data commons
* Collaboration with regulatory/FDA to expedite translation & post-market evaluation

Open shared data resources and a willingness to give data for the public good
* A patient has already benefited through medical care.

* A hospital/medical center has already benefitted through reimbursement.

* Now let the public benefit with the MIDRC second usage of the images.

* Need to change the culture of medical imaging.



% MIDRC
NIBIB
MEDICAL IMAGING AND DATA RESOURCE CENTER.

MIDRC via University of Chicago

MIDRC Central

- I

Creation of Open Discovery Data Repository: 5 Technology Development Projects

along with three data science subcommittees and advisory committees

Machine Intelligence Computational Capabilities: 12 Collaborative Research Projects
along with multiple trans-MIDRC scientific workgroups




MIDRC Data Dashboard
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Database vs. Repository vs. Resource Center

“Rough definitions”:
* Database — collection of data
* Repository — data stored and managed

* Resource center — repository with additional aspects including
browse/search, analysis, metrology, evaluation, and user interfaces



Key Bottleneck to Successful and Meaningful Machine
Learning Algorithms: Lack of Diverse Data

Area

Current State of the Art

Diata needs for
machine ltarning

rEsca H_'l'l

Few public image

data sets are available,

. . N
mostly small in size
and lacking real-world
variation. P

Langlotz CP, Allen B, Erickson BJ, et al. A Roadmap for Foundational
Research on Artificial Intelligence in Medical Imaging: From the 2018
NIH/RSNA/ACR/The Academy Workshop. Radiology. 2019;291: 781-791.
https://doi.org/10.1148/radiol.2019190613

Area Current State

Software use Al algorithms are being created
cases for Al based on use cases developed at
single institutions working with
single developers, limiting
diversity and generalizability to
widespread clinical practice.

Allen B Jr, Seltzer SE, Langlotz CP, et al. A Road Map for Translational Research on
Artificial Intelligence in Medical Imaging: From the 2018 National Institutes of
Health/RSNA/ACR/The Academy Workshop. ] Am Coll Radiol. 2019.
https://doi.org/10.1016/].jacr.2019.04.014



https://doi.org/10.1016/j.jacr.2019.04.014
https://doi.org/10.1148/radiol.2019190613

i MIDRC

MEDICAL IMAGING AND DATA RESOURCE CENTER.

ORIGINAL RESEARCH - SPECIAL REPORT

Ethics of Using and Sharing Clinical Imaging Data for
Artificial Intelligence: A Proposed Framework

David B. Larson, MD, MBA * David C. Magnus, PhD * Matthew P Lungren, MD, MPH
Nigam H. Shah, MBBS, PhD = Curtis P Langlotz, MD, PhD

“After clinical data are used to provide care, the primary purpose for acquiring
the data is fulfilled. At that point, clinical data should be treated as a form of
public good. All who interact with or control the data have an obligation to
ensure that the data are used for the benefit of future patients and of society.”

https://pubs.rsna.org/doi/pdf/10.1148/radiol.2020192536




Diversity of the data is an essential component
in the developing and testing of unbiased Al

US Census

Race

White

Gender

Male

Two or more races

Black or African American

American Indian or Alaska Native

Female

i MIDRC

MEDICAL IMAGING AND DATA RESOURCE CENTER.

MIDRC

Unknown or no information
Other

Asian
/Natiue Hawaiian/Pacific Islander

Black or African American

White

American Indian or Alaska Native

Female

Male

As of incoming data
May 31, 2021
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“ B Deep learning Al methodology for improved breast
cancer diagnosis using multiparametric MRI

subtraction

SCIENTIFIC
REPORTS

natureresearch

{ Pusianiimzge: | A deep learning methodology
forimproved breast cancer
diagnosis using multiparametric
MRI

Qiyuan Hu'™, Heather M. Whitney? & Maryellen L. Giger*

[ DCEMIP 7 \'\':I:Zw center slicér:
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VGG19 VGG19 VGG19
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[ CNN features [ CNN features DCE & T2w CNN CNN features b |
from max-pool | -+ | from max-pool 1 from max-pool ©
feature ensemble '
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analysis analysis |_ROC analysis | \_ROC analysis 'ROC analysis ) 0.2 — — —T2w center slice: 0.78 +/-0.02 |
Image fusion: 0.85 +/- 0.01
Feature fusion: 0.87 +/- 0.01
Classifier fusion: 0.86 +/- 0.01
Hu Q, Whitney HM, Giger ML. A deep learning methodology for 0 > o o o .
improved breast cancer diagnosis using multiparametric MRI. Sci " False Positive Fraction

Rep. 2020 Jun 29;10(1):10536. doi: 10.1038/s41598-020-67441-4.



Discovery and Predictive Modeling for Personalized Patient Care

_ Virtual “digital”
Screening €— A biopsies
IMAGING-GENOMICS
o DISCOVERY
: : - Biopsy Results, | TRANSLATION:
Dllri%n?r?tlc <> Genetic Testing | _ * > Predictive
909 Results /ﬁ Modeling
L ——

Treatment Planning

& Following for Response < Virtual “digital”

biopsies

Risk of . 4

Recurrence

Assessment of }(

Use virtual biopsy for when an actual biopsy is not practical
Giger Lab; U Chicago
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