

NASEM Workshop on Advancing Diagnostic Excellence for Older Adults

Gary Weissman, MD, MSHP July 21, 2022



#### **Disclosures**

- Sources of support
  - NIH (NHLBI, NIA)
  - The Alzheimer's Association
  - University of Pennsylvania and Penn Medicine
- Conflicts of interest
  - None





**TABLE 5-1** Opportunities to Reduce Diagnostic Error Through Electronic Clinical Documentation

| Role for Electronic<br>Documentation                  | Goals and Features of Redesigned Systems                                                                                                                                                                            |  |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Providing access<br>to information                    | Ensure ease, speed, and selectivity of information searches; aid cognition through aggregation, trending, contextual relevance, and minimizing of superfluous data.                                                 |  |
| Recording<br>and sharing<br>assessments               | Provide a space for recording thoughtful, succinct assessments, differential diagnoses, contingencies, and unanswered questions; facilitate sharing and review of assessments by both patient and other clinicians. |  |
| Maintaining<br>dynamic patient<br>history             | Carry forward information for recall, avoiding repetitive patient querying and recording while minimizing copying and pasting.                                                                                      |  |
| Maintaining<br>problem lists                          | Ensure that problem lists are integrated into workflow to allow for continuous updating.                                                                                                                            |  |
| Tracking<br>medications                               | Record medications that the patient is actually taking, patient responses to medications, and adverse effects in order to avert misdiagnoses and ensure timely recognition of medication problems.                  |  |
| Tracking tests                                        | Integrate management of diagnostic test results into note workflow<br>to facilitate review, assessment, and responsive action as well as<br>documentation of these steps.                                           |  |
| Ensuring<br>coordination and<br>continuity            | Aggregate and integrate data from all care episodes and fragment encounters to permit thoughtful synthesis.                                                                                                         |  |
| Enabling<br>follow-up                                 | Facilitate patient education about potential red-flag symptoms; tracfollow-up.                                                                                                                                      |  |
| Providing<br>feedback                                 | Automatically provide feedback to clinicians upstream, facilitating learning from outcomes of diagnostic decisions.                                                                                                 |  |
| Providing<br>prompts                                  | Provide checklists to minimize reliance on memory and directed questioning to aid in diagnostic thoroughness and problem solving                                                                                    |  |
| Providing<br>placeholder for<br>resumption of<br>work | Delineate clearly in the record where clinician should resume work<br>fter interruption, preventing lapses in data collection and thought<br>process.                                                               |  |
| Calculating<br>Bayesian<br>probabilities              | Embed calculator into notes to reduce errors and minimize biases i subjective estimation of diagnostic probabilities.                                                                                               |  |
| Providing access<br>to information                    | Provide instant access to knowledge resources through context-<br>specific "infobuttons" triggered by keywords in notes that link use:                                                                              |  |

to relevant textbooks and guidelines.

"The committee concluded that health IT has the potential to impact the diagnostic process in both positive and negative ways...

Despite this potential, however, there have been <u>few</u> demonstrations that health IT actually improves diagnosis in clinical practice."



sources











#### The state of clinical Al

- Billions of dollars invested
- Tens of thousands of peerreviewed publications
- Only a handful of published RCTs, not all suggesting benefit of AI system
- Hype far exceeds evidence



Source: https://commons.wikimedia.org/wiki/File:Reflection in a soap bubble edit.jpg











**ARTICLE** 

Pivotal tri

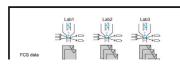
Michael D. Abràmoff

Article n for

#### detection Patterns

Knowledge transfer to enhance the performance of deep learning made > Radiology: Artificial Intelligence > VOL. 4, NO. 3 B cell neoplasm **Original Research** 

#### **Graphical abstract**



**Artificial Intelligence with Statistical Confidence Scores for Detection of Acute or Subacute Hemorrhage on Noncontrast CT Head Scans** 

©Eli Gibson ☑, ©Bogdan Georgescu, ©Pascal Ceccaldi, ©Pierre-Hugo Trigan, ©Youngjin Yoo, Jyotipriya Das, Thomas J. Re, Vishwanath RS, Abishek Balachandran, Eva Eibenberger, Andrei Chekkoury, Barbara Brehm, DUttam K. Bodanapally, DSavvas Nicolaou, Pina C. Sanelli, Thomas J. Schroeppel, Thomas Flohr, Dorin Comaniciu, Vyvonne W. LuiSee fewer authors





#### **Distribution of Papers**











#### **Current knowledge: rules-based CDSS**

- Prescribing practices aligned with Beers Criteria
- Palliative care referral
- High-risk anti-depressant medication prescribing
- Deprescribing and medications reviews
- Delirium
- Falls prevention
- Functional decline
- Post-acute care transitions
- Pressure ulcers





## **Current knowledge: AI-based CDSS**

Diagnosis of nutrition-related syndromes

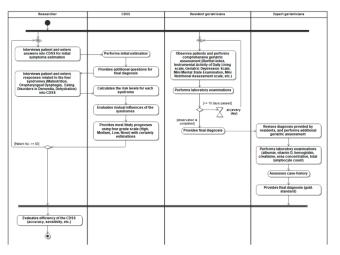


Figure 1. The procedure of experimental evaluation of the proposed CDSS.

## Diagnosis of need for palliative care

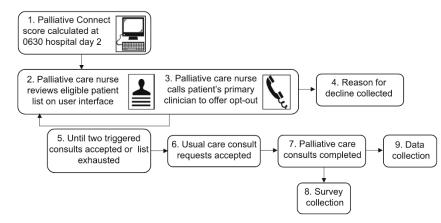


Figure 1 Study process flow for palliative connect intervention. Each weekday, a Palliative Connect score (predicted risk of death within 6 months) was calculated for patients on hospital day 2. Patients with a score ≥ 0.3 populated a web-based user interface list in order from highest to lowest risk (actual prediction not shown). The palliative care team's triage nurse called the primary clinicians of patients in descending order to offer an opt-out of the triggered consult until the maximum of two consults were accepted. Remaining patients were carried over on the list each day until they were offered a triggered consult, or they were discharged or transferred to another service. Consults requested per usual care were accepted. Palliative care clinicians and hospitalists completed surveys and clinical data was obtained from the clinical data warehouse.





### Challenges specific to older adults

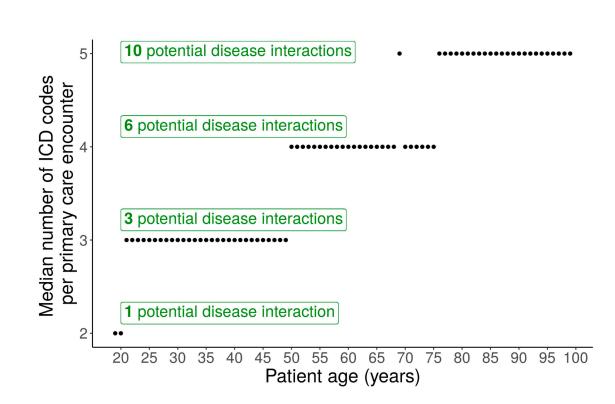
- Broad diagnostic scope
- Higher comorbidity count
- Higher variation in functional status
- Uncertainty in prognosis and life expectancy
- Less gold-standard data from clinical trials due to age exclusions
- Higher prevalence of cognitive impairment
- Higher probability of care fragmentation
- Higher probability of (and possibly need for) caregiver involvement





#### Diagnostic scope and complexity increase with age

- In a sample of 571,543
   primary care encounters
   in Penn Medicine from 2020-2021
- The median number of diagnoses at each encounter increases linearly with age
- The complexity, or number of of potential disease interactions, increases geometrically with age

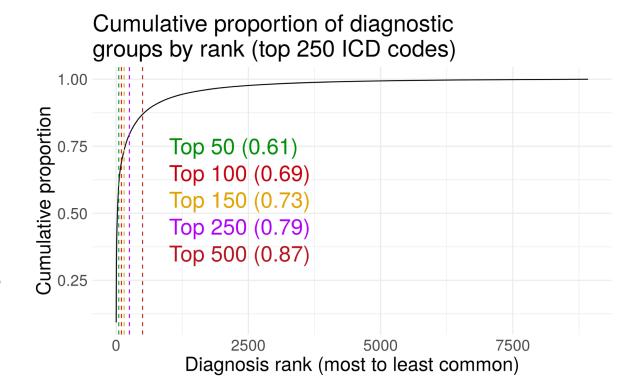






## Diagnostic scope in primary care

- 177,965 primary care encounters in Penn Medicine (FY 2020) among those age ≥ 65
- Internal Medicine, Geriatric Medicine, Family Medicine, and Penn Primary Care groups
- Most common 250 ICD codes collapsed into 150 clinically relevant diagnostic categories, the rest are individual ICD codes







#### Text analysis: documented signs and symptoms

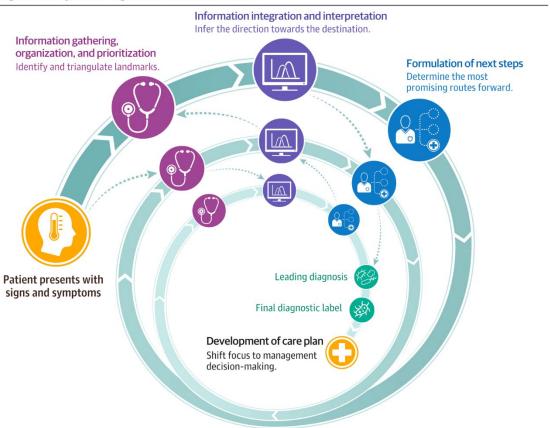
- Convenience sample of 40,000 outpatient encounter notes in UPHS (2018-2019) among individuals age  $\geq 65$
- UMLS Metathesaurus to identify signs and symptoms in clinical text
- Most common signs and symptoms ranked by prevalence

| Text feature              | Count  | Cumulative % |
|---------------------------|--------|--------------|
| Dyspnea                   | 33,671 | 9.1%         |
| Wheezing                  | 25,744 | 16.1%        |
| Exanthema                 | 17,663 | 20.9%        |
| Chest pain                | 15,054 | 25.0%        |
| Sore to touch             | 14,607 | 29.0%        |
| Symptoms                  | 11727  | 32.2%        |
| Headache                  | 9592   | 34.8%        |
| Discharge, body substance | 9468   | 37.4%        |
| Fatigue                   | 8717   | 39.7%        |
| Chills                    | 8237   | 42.0%        |
| Abdominal pain            | 7973   | 44.1%        |





#### Figure. The Dynamic Diagnostic Refinement Process



# Diagnosis as collaborative, iterative, wayfinding





#### The intended user of the AI should be involved early Observe the clinical environment Design and continuously during this stage to ensure their Identify needs through interviews and focus groups needs are considered. Develop user personas Development Rapid and iterative prototyping of an AI model Conduct iterative user testing to maintain desired performance characteristics Perform cognitive walkthrough through testing with intended end-users. Perform final (summative) usability testing

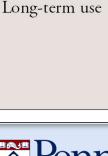
Four Life Cycle Phases of Artificial Intelligence Model Deployment Incorporating Human Factors Elements and User-

niques

new technology

Refine based on user feedback

Conduct pilot test



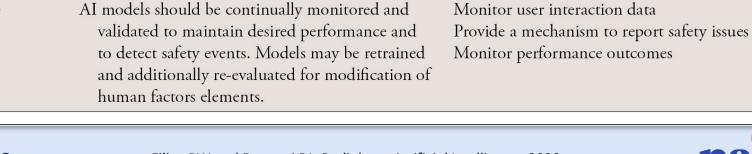
Implementation

centered Design

Life Cycle Phase

Description

work processes.



Technical integration, testing and deployment,

educational sessions for users, and consideration of

interaction with other clinical systems, tools, and



Example User-Centered Design Methods and Tech-

Redesign existing workflows and processes to integrate

## **Next steps: Al diagnostic CDSS**

- Strong regulatory environment to ensure accountability
- RCTs needed to establish safety, effectiveness, and equity
- Transparency and reproducibility to promote access, innovation, and trust





## Next steps: specific to older adults

- Broad diagnostic scope vs disease-specific
- Models trained on data from older adults
- Clinician-, patient-, and caregiver-facing interfaces
- Integration with workflows relevant to older adults (primary care, nursing home, home health)



