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Outline
s Overview of the Role of Statistics in Research

= Two Main Challenges for Finding the “Truth”
m Issues/Solutions in Drug Development & Care for Older Adults

m Statistical Considerations
* Pragmatic trials
* Bayesian adaptive designs
* Platform design and adaptive enrichment
* Bayesian hierarchical model

s Concluding Remarks



Overview of the Role of Statistics in Research

Data: Signal + Noise

it only took you |g

Extract the signal and
filter out the noise

Goal of
Data Analysis:

Statistics: Find a needle In a
haystack



Two Main Challenges for Finding the “Truth”

mBias
* Selection bias Older vs. Younger Adults
> Protocol eligibility criteria
* Assignment bias Single vs. Multiple Arms
> Randomization
* Evaluation bias 0S vs. PFS: QoL: PRO

> Selection of endpoints

= Variability
* Population heterogeneity
> Define a more homogeneous group
> Reproducible measures
* Stochastic variability

* Measurement variability
> Increase sample size, efficient design and analysis




Key Issues and Solutions in Cancer Drug Development &
Care for Older Adults

Under-Representation of Old Adults in Trials
* Broaden eligibility criteria
> Relax age restrictions; Age specific inclusion/exclusion criteria

* Pragmatic trials
» Easy to enroll and conduct; Results are more generalizable

Endpoints — What matter?
e Grade Il versus Grade Ill/IV toxicities
* Progression-free survival vs. Overall survival?
* Quality of life (QolL), Patient Report Outcomes (PRO)

Age or Frailty?
* Lower dose for patients with higher frailty; Dose-toxicity/ Dose-efficacy relationship
* Competing risks associated with age/frailty

Burdett et al. Competing Risks in Older Patients With Cancer: A Systematic Review of Geriatric Oncology Trials, INCI 2018

Dale and Mohile. Lessons Learned from Arti—Collaborating to Improve Care: the Past, Present, and Future of the Cancer and Aging
Research Group. J Am Geriatr Soc, 2019

Sedrak et al. Older Adult Participation in Cancer Clinical Trials: A Systematic Review of Barriers and Interventions, CA Cancer J Clin 2021 .



Accurate and Precise Inference

Accuracy
X v
Large N
X
Increase
Precision Efficiency in
Design &
Analysis

Representative

— Samples



Randomized Controlled Trial vs. Pragmatic Trial

Randomized Controlled Trial Pragmatic Trial
Condition ldeal Real World
Setting Controlled Clinical Practice
Comparator Placebo Standard of Care
Eligibility Restrictive Broad
Accrual Hard Easy

Treatment Fixed / Protocol Specified Flexible / Patient Oriented

Endpoints Rigorously Assessed Easily Assessed
Focus Response, PFS, OS Qol, PRO

Generalizability Less More




Adaptive Trial Design Shiny Applications

( 30+ online programs freely available)

NTEGRATED PLATFORM
FOR DESIGNING

CLINICAL TRIALS

RESEARCHEDUCATION INNOVATION
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https://trialdesign.org



Bayesian Adaptive. Model-Assisted Designs for Phase I/Il Trials

Bayesian Optimal Interval (BOIN) Designs Bayesian Optimal Phase 2 (BOP2) Designs
How to choose a design? BOP?2 Suite
@ BOIN Design Decision Tree
To find the maximum tolerated dose (MTD) or . ' . A .
optimal biological dose (OBD) :x BOP | A |
MTD as a Secondary Single.aggnt or
objective? combination?
Single-agent . Combination BOP2 2R-BOP2 TOP
Incorporate prior Launch Launch
information?
BOIN12 U-BOIN No Yes BOIN Comb Make optimal go/no-go Extension of BOP2
- interim decisions allowing real-time go/no-
f;i:?é?éfv y. go decisions

No Yes BOIN
BOIN TITE-BOIN

Berry SM, Carlin BP, Lee JJ, and Mueller P. Bayesian Adaptive Methods for Clinical Trials. CRC Press: Boca Raton, FL, 2010.
Yuan Y, Lee JJ and Hilsenbeck SG. Model-Assisted Designs for Early Phase Clinical Trials: Simplicity Meets Superiority. JCO PO 2019 :



Platform Design with Adaptive Enrichment in
Randomized Phase Il Trials

m Start with one control and multiple experimental arms or age subgroups

s Continuous toxicity monitoring
* Drop subgroups when excessive toxicity is found

= Apply equal randomization (ER) or adaptive randomization (AR)
* Adaptive enrichment via AR

m Calculate the predictive probability or posterior probability of each subgroup being better

than the control
e Sufficiently low: Drop the subgroup
e Sufficiently high: Graduate the subgroup
* Otherwise, continue patient enrollment until reach N,

m A perpetual, drug screening platform
* Write a protocol with the “backbone” infrastructure
* Add new treatments whenever needed
* Amend the protocol by adding subgroups

Hobbs BP, Chen N, Lee JJ. Controlled multi-arm platform design using predictive probability. Stat Methods Med Res 27(1):65-78, 2018
Zhu H, Piao J, Lee JJ, Hu F, Zhang L. Response adaptive randomization procedures in seamless phase II/Ill clinical trials. J Biopharm Stat 30(1):3-17, 2019
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Platform Trial with AR, Response Rate: 6,=0.2, 6,=0.3, 0,=0.4, 6,=0.2, 6:=0.3, 6,=0.4




Figure 1: Outcome (Number of Patients = 138) Obs. Resp. Rate
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Bayesian Hierarchical Model for Synthesizing Information

= Clinical Trials often have subgroups
* Different histology subtypes or age subgroups

= How do we analyze data?

* Treat each subgroup separately
> Do not use information efficiently

* Combine all subgroups into one group
> Not all groups are the same
m Bayesian hierarchical model can borrowing information across subgroups

* More borrowing when subgroups are more alike and less borrowing when
subgroups are more different. (nice!)

m Bayesian hierarchical model can synthesize trial data and real world
evidence

Chen, N. and Lee, J. J. Bayesian hierarchical classification and information sharing for clinical trials with subgroups and binary outcomes,

Biometrical Journal 2019.
Chen and Lee, Bayesian cluster hierarchical model for subgroup borrowing in the design and analysis of basket trials with binary endpoints,

Statistical Methods in Medical Research 2020



Borrowing Across Subgroups
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Concluding Remarks

m Statistics can help in extracting signals from the data
* Avoid bias
* Reduce variability / Increase efficiency

s Simplify the trial design and conduct

m Apply novel statistical methods

m Statistics can help in cancer drug development & care for
older adults
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Data Acqwsmon Analysis, and Interpretatlon

= Data is a “gold mine”
s Acquire more high-quality data
= Apply novel statistical design/analysis

s Make generalizable inference

s Turn “gold mine” into “pure gold” : LUV TUTOUTDEG )

f g(tip)f(p)dp

Work closely with statisticians from beginning to end in every project.
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Team Work!

Clinical Patients Scientists
Trialists Advocates Statisticians
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