
The exposome and health

Gary W. Miller, Ph.D.
Vice Dean for Research Strategy and Innovation
Professor of Environmental Health Sciences
Mailman School of Public Health
Columbia University, New York, NY
gary.miller@columbia.edu

@exposome
@garywmiller3

The exposome: a Wild idea

Editorial

Complementing the Genome with an "Exposome": The Outstanding Challenge of Environmental Exposure Measurement in Molecular Epidemiology

Christopher Paul Wild

Molecular Epidemiology Unit, Centre for Epidemiology and Biostatistics, Leeds Institute of Genetics, Health and Therapeutics, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom

Defined the "Exposome" as all exposures from conception onwards, including those from lifestyle, diet and the environment.

The Nature of Nurture: Refining the Definition of the Exposome

Gary W. Miller¹ and Dean P. Jones

Rollins School of Public Health, School of Medicine, Emory University, Atlanta, Georgia 30322

The cumulative measure of environmental influences and corresponding biological responses throughout the lifespan

A systematic, unbiased, and omic-scale examination of external factors contributing to disease or health status*

*avoid candidate gene search faults

A strategy for exposomics

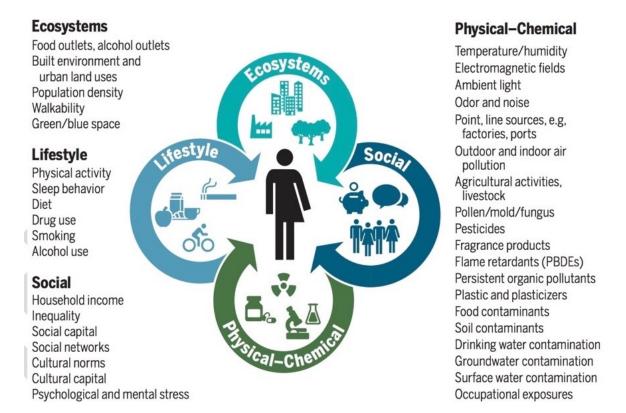
The exposome is vast. We need a suite of tools to capture the breadth of external factors that influence health: satellite imaging, wearable devices, sensors, sentinel animals, computational approaches, and analysis of biological samples.

The approach that we have taken is to use high-resolution mass spectrometry (HRMS) to extract as much data as possible out of human blood samples.

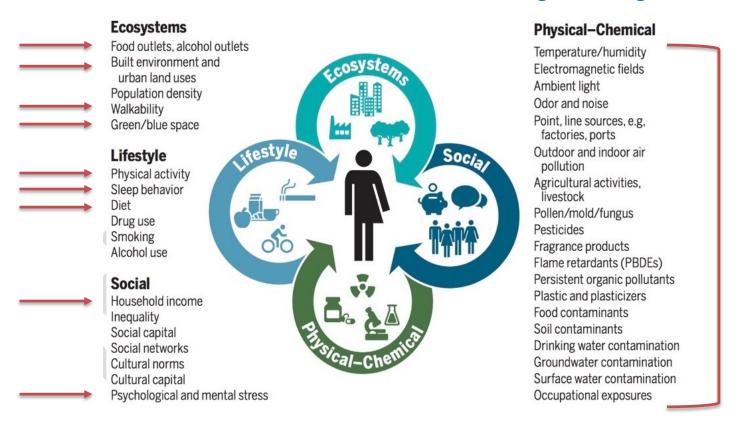
HRMS on plasma/serum provides an excellent initial scan of the exposome, capturing hundreds of exogenous chemicals/features, as well as the biological state of the individual. It can be conducted on biobanked samples, leveraging the large longitudinal studies supported by other mechanisms.

A strategy for exposomics

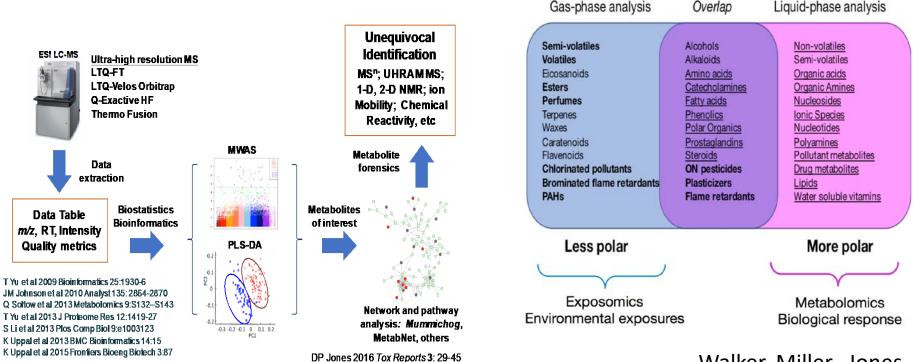
The exposome is vast. We need a suite of tools to capture the breadth of external factors that influence health: satellite imaging, wearable devices, sensors, sentinel animals, computational approaches, and analysis of biological samples.


could take

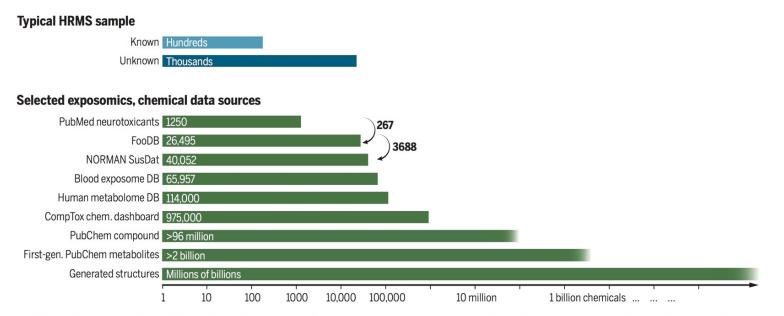
The approach that we have taken is to use high-resolution mass spectrometry (HRMS) to extract as much data as possible out of human blood samples.


Dog/Cat/Goldfish

HRMS on plasma/serum provides an excellent initial scan of the exposome, capturing hundreds of exogenous chemicals/features, as well as the biological state of the individual. It can be conducted on biobanked samples, leveraging the large longitudinal studies supported by other mechanisms.


External factors \rightarrow internal biological signals

External factors \rightarrow internal biological signals



LC and GC based high resolution mass spectrometry to detect <u>exogenous</u> chemicals and <u>endogenous</u> metabolites

Walker, Miller, Jones

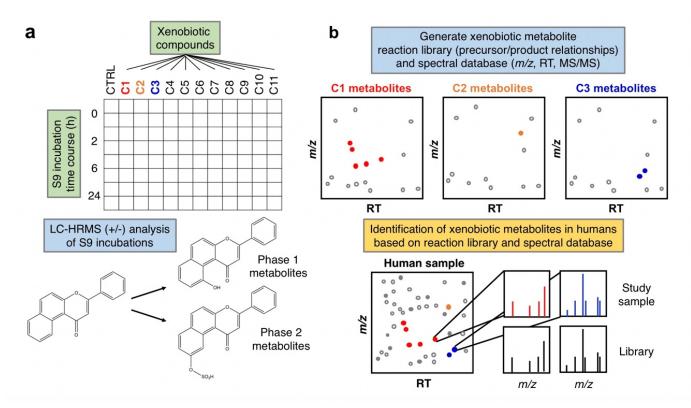
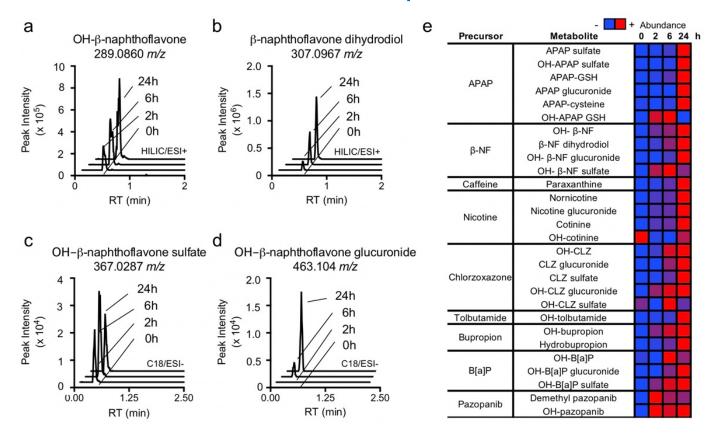
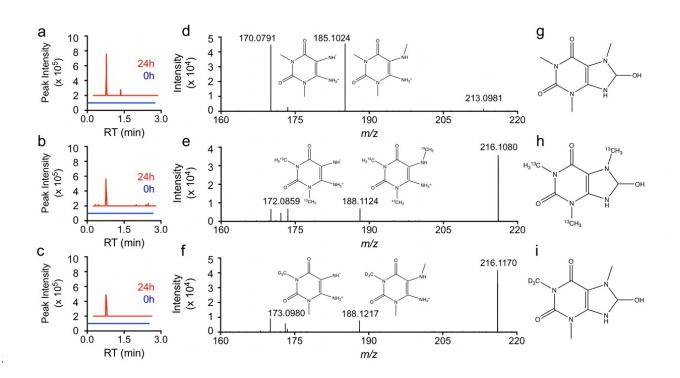

Because authentic standards are rarely available for xenobiotics and their metabolites, identification relies heavily on accurate mass and RT matching with databases

Fig. 2. Chemical complexity of HRMS and the exposome. Top: Known versus unknown features in a typical HRMS measurement [data from (7)]. Bottom: Selected data sources relevant to the chemical exposome (10−14, 19). Arrows show the overlap of potential neurotoxicants in FooDB (http://foodb.ca/) and FooDB components in NORMAN SusDat (www.norman-network.com/nds/susdat/) (prioritized chemicals of environmental interest).

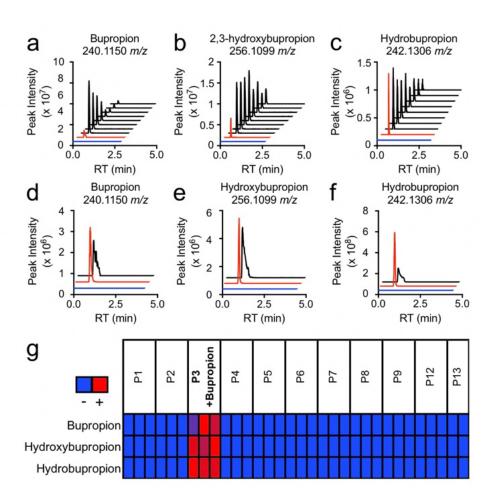

Science. 367: 392-396, 2020

Large-scale xenobiotic metabolite identification for exposomics

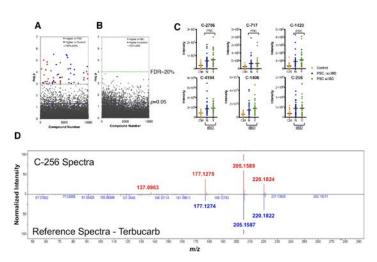


Liu et al., Nature Communications, 2021

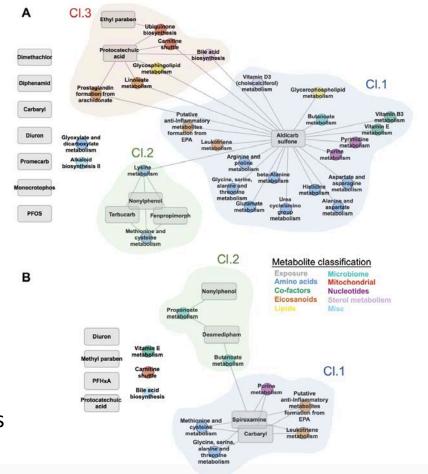
Human liver S9 enzymes generate phase I and II xenobiotic metabolites in a time-dependent manner


Stable isotope-assisted unexpected metabolite identification

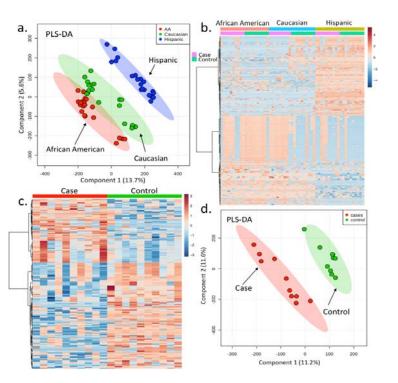
Liu et al., Nature Communications, 2021

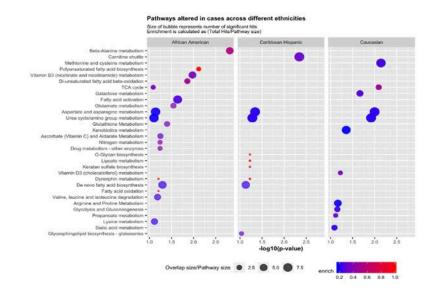

Identification of documented xenobiotic exposure

Liu et al., Nature Communications, 2021



Mayo Clinic, Emory, Columbia Primary sclerosing cholangitis EWAS x MWAS


*high incidence of liver cancer


Exogenous chemicals vs. endogenous metabolites

Walker et al., Hepatology Communications, Nov, 2021

Alzheimer's disease and WHICAP

N=160

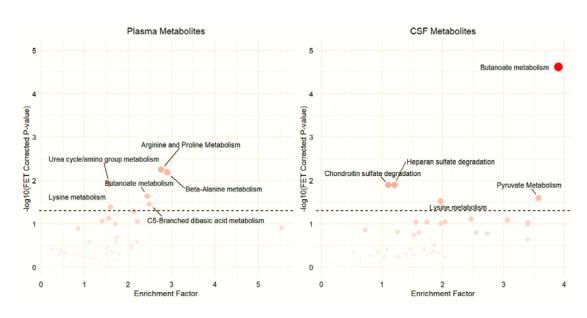

Vardarajan, Kalia, et al. Alzheimer's Dementia, 2020 Richard Mayeux, PI

Table 2. Number of		SA1	SA 2a	All Aims	
blood samples		Incident AD	Prevalent AD	Metabolomes	
2 +	724	247	375	3,692	
3 (or more) ++	760	529	260	4,647	
Totals	1484	776	635	8,339	

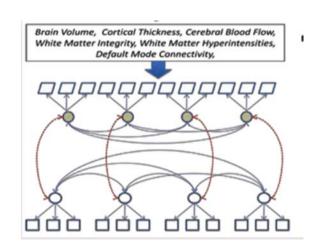
EFIGA Genetic epidemiology of Alzheimer's disease in Caribbean Hispanics

AD biomarkers: Nfl, AB40, AB42, total-Tau, pTau181, pTau 217 CSF and plasma LC-HRMS is completed data analysis in process GC-HRMS pending

84 control, 33 AD (will increase 4x)

Based on observation that Caribbean Hispanics in Northern Manhattan have increased risk of AD, Richard Mayeux started EFIGA. Located in the Dominican Republic, EFIGA follows participants over time with cognitive testing, blood and CSF samples.

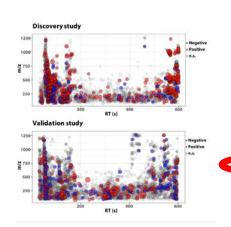
Exposomics of cognitive decline


12 cognitive tasks that assess:

episodic memory fluid reasoning ability perceptual speed vocabulary

fMRI imaging during tasks plasma collected at baseline and 5-yr follow up

IQ tests administered

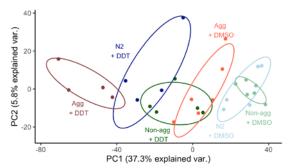

Yaakov Stern, PI -20/group Ages 20, 30, 40, 50, 60, 70, 80

LC-HRMS-untargeted (Kalia, Miller-Columbia)
GC-HRMS-targeted(80)/untargeted (Manz, Pennell-Brown)

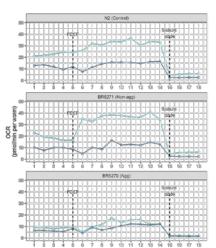
Alzheimer's disease (93), Mild cognitive impairment (50), controls (59) APOEgentoype, CSF (AB42, pTau)

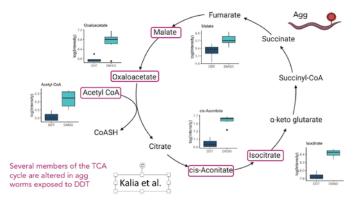
Table 4. Putative compound identification of plasma features from MWAS.

m/z	RT	Change in AD	Putative compound(s) Predicted adduct		ID level ^a	Notes
129.0661	89	Higher	Glutamine (2 ppm)	-H ₂ O+H	1	
231.1205	211	Higher	5S,6S-epoxy-15R-hydroxy-ETE (+Na, 0 ppm)		3	
246.9550	127	Higher	Numerous database matches	-H₂O+H		Contains halogen (Cl and/or Br)
334.1410	86	Lower	Piperettine (1 Hydroxyated metabolite	of DDE	,	
349.1515	80	Lower	Piperine (1 ppm)	+ACN+Na	4	
386.8946	61	Higher	1,1-Dichloro-2-(dihydroxy-4'-chlorophenyl)-2-(4'-chlorophenyl)ethylene (9 ppm)	+K	2	Contains halogen (Cl and/or Br)
662.0933	158	Higher	GDP-D-mannuronate (+ACN+H [M+1], 0 ppm); Chaetocin (-2H ₂ O+H [M+1], 8 ppm); Blighinone (+H [M+1], 9 ppm)	[M+1] isotope	4	
663.4524	36	Higher	Lipid A-disaccharide-1-P (+2H, 2 ppm); Aluminium dodecanoate (+K, 2 ppm)		4	

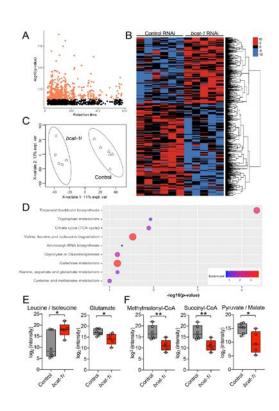

^aID level indicates annotation confidence: 1, *m/z* and retention time confirmed with MS², 2: Multiple/isotopes present; 3: *m/z* matched single adduct mass within 10 ppm mass error, 4: *m/z* matched adduct mass of multiple isobaric species, probable identifications listed.

*Adduct of rivastigmine strongest feature associated with AD


Niedzwiecki, Walker, Howell, Watts, Jones, Miller, Hu preliminary data



DDT, p-Tau, and metabolites in Alzheimer's



The metabolomic/ exposomic analysis works in *C. elegans*

Kalia et al., posted on bioRxiv

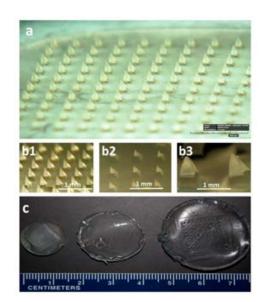
Mor et al., PNAS, 2020

Cross-species analysis

Worms and plasma

Worms and CSF

Annotation	C. elegans	Human plasma	Annotation	C. elegans	Human CSF
Lipoamide	Lower (p = 0.027)	Negative (p = 0.035)	Tyrosine	Lower (p = 0.046)	Negative (p = 0.039)
Diethylthiophosphoric acid	Lower (p = 0.044)	Negative (p = 0.015)	Carnitine	Lower (p = 0.0001)	Negative (p = 0.048)
11, 12-dihydroxy eicosatrienoic acid	Higher (p = 0.029)	Positive (p = 0.01)	Cystine	Lower (p = 0.011)	Negative (p = 0.031)
N-acetyl-lysine	Lower (p = 0.042)	Negative (p = 0.033)	N,N-dimethylaniline-N-oxide	Lower (p = 0.00002)	Negative (p = 0.042)
Cystine	Lower (p = 0.01)	Negative (p = 0.032)			


If we can perform this analysis between humans and *C. elegans*, an organism with only 959 cells in its entire body, the comparison from humans to dogs is undoubtedly feasible.

INTERSTITIAL FLUID

Sampling interstitial fluid from human skin using a microneedle patch

Pradnya P. Samant¹, Megan M. Niedzwiecki^{2,3}, Nicholas Raviele¹, Vilinh Tran⁴, Juan Mena-Lapaix¹, Douglas I. Walker^{2,3,4}, Eric I. Felner⁵, Dean P. Jones⁴, Gary W. Miller^{2,6}, Mark R. Prausnitz¹*

Concentration of caffeine

ISF

109

(1%)

807

Science Translational Medicine, 2020

SBF ISF

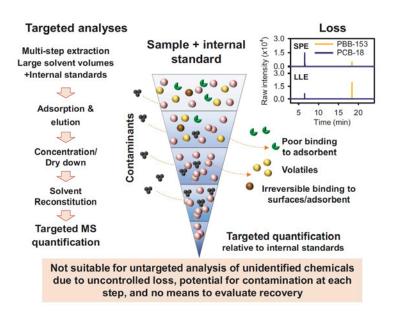
1087

(14%)

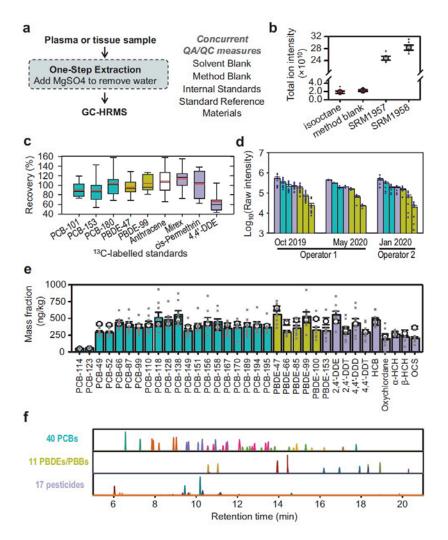
693

(7%)

SBF


287

(4%)


768

(10%)

A scalable workflow to characterize the human exposome-Hu et al., Nature Communications 2021

Express liquid extraction to LC-HRMS

Toward Capturing the Exposome: Exposure Biomarker Variability and Coexposure Patterns in the Shared Environment

Ming Kei Chung,[†] Kurunthachalam Kannan,^{‡©} Germaine M. Louis,[§] and Chirag J. Patel*,^{†©}

"Shared household explained 43% and 41% of the total variance for PFASs and blood metals, but less than 20% for the remaining 11 EDC classes."

"Our findings suggest that individual, rather than shared environment, could be a major factor influencing the covariation of the exposome."

*N.B. couples do not share their environments in the first 20-30 years of life. Need to pay attention to developmental windows/life stages.

Exposomics is gaining acceptance within the U.S. biomedical research community. We must continue to innovate and demonstrate to be able to analyze biobanks like NIH All of Us, UK Biobank. NCI Cohort Consortium.

The approaches I have described have been used in a variety of animals: mice, rats, drosophila, zebrafish, *C. elegans*, and dogs.

There are essentially no technical limitations. HRMS-based exposomics and metabolomics can be performed on blood samples from any species. The question is what are we trying to learn? Are we trying to identify hundreds of environmental compounds in companion animals? Are we trying to discover links to disrupted global metabolism? Are we looking for specific contaminants?

I favor untargeted HRMS due to its relative lack of streetlamp bias, but that is merely my opinion. Targeted approaches have greater sensitivity and greater confidence in identification, but they require that you know what you are looking to measure. But then you must ask yourself:

I favor untargeted HRMS due to its relative lack of streetlamp bias, but that is merely my opinion. Targeted approaches have greater sensitivity and greater confidence in identification, but they require that you know what you are looking to measure. But then you must ask yourself:

Do you know what you are looking for?

I favor untargeted HRMS due to its relative lack of streetlamp bias, but that is merely my opinion. Targeted approaches have greater sensitivity and greater confidence in identification, but they require that you know what you are looking to measure. But then you must ask yourself:

- 1) Do you know what you are looking for?
- 2) Do you really know that you know what you are looking for?

Acknowledgements

- Miller Lab (Columbia)
- Jones Lab (Emory)
- Walker Lab (Mt. Sinai)
- Pennell Lab (Brown)
- Lazaridis Group (Mayo)
- Pollitt Lab (Yale)
- Irving CTSA Biomarkers Lab (Columbia)
- Mayeux team (Columbia)
- Stern team (Columbia)
- Schymanski team (Luxembourg)
- Klanova team (Czech Republic)
- Barouki team (France)
- Vermeulen team (Netherlands)
- NIEHS, NIA, NIDDK

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

COLUMBIA PRECISION MEDICINE

Precision medicine and the exposome December 17, 2021

Exposome, 2021, osab001

DOI: 10.1093/exposome/osab001

Advance Access Publication Date: 16 March 2021

Editorial

Exposome: a new field, a new journal

Gary W. Miller 📵

Christopher Wild.

Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA

"To whom correspondence should be addressed: Email: gary.miller@columbia.edu

I would like to suggest that there is need for an 'exposome' to match the genome... Essentially, once one subtracts the genetic component from the phenotypic manifestations, one is left with E. We have incredible clinical, cellular, and molecular characterization of the phenotype (P), and the extraordinary advances in percentics and genet-

Published by Oxford University Press