Deriving Population-Level Insights in Digital Mental Health: Opportunities and Challenges of Social Media

Munmun De Choudhury

munmund@gatech.edu

School of Interactive Computing | Georgia Tech

Societal Community Relationship

Computational and AI artifacts for social good

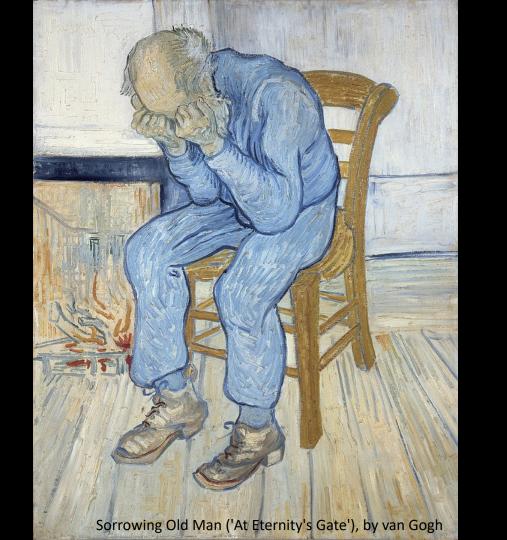
Understand and improve wellbeing

Social Media Human/Stakeholder-Centered I neory Centered

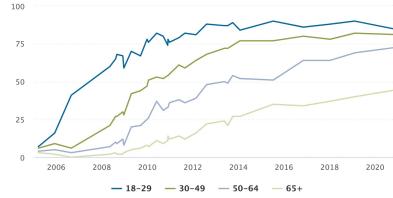
Al + Interdisciplinary

No relevant disclosures or COIs

Individual

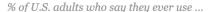


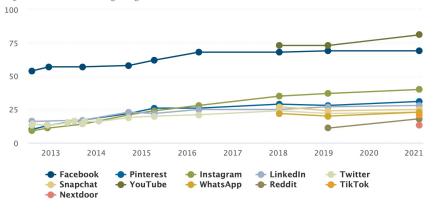
% of U.S. adults who say they use at least one social media site, by age



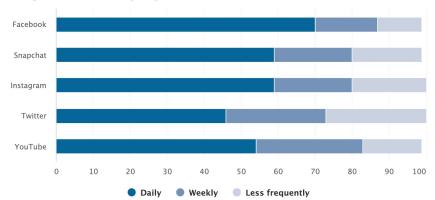
Note: Respondents who did not give an answer are not shown. Source: Surveys of U.S. adults conducted 2005-2021.

PEW RESEARCH CENTER





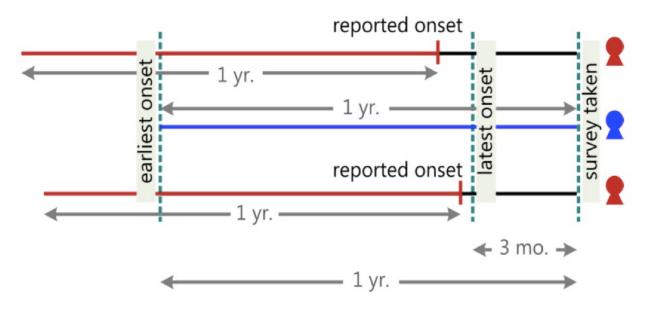
Among U.S. adults who say they use ___, the % who use each site ...



Social Media – A New Potential in Digital Mental Health

Social Media Language and Behavior Predicts Onset of Major Depressive Disorder

476 individuals (233 female) recruited via Amazon's Mechanical Turk; took
 CES-D/BDI and consented to accessing their Twitter data

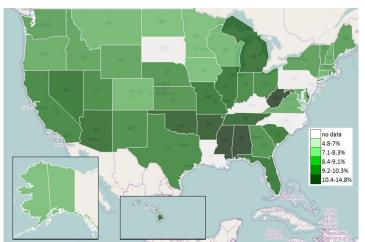


A Social Media Index

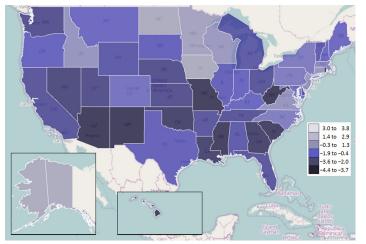
$$SMDI(t) = \frac{n_d(t) - \mu_d}{\sigma_d} - \frac{n_s(t) - \mu_s}{\sigma_s}$$

standardized difference between frequencies of depression-indicative and standard posts, compared to a period before between k and t-1 $(1 \le k \le t-1)$

actual (BRFSS data)

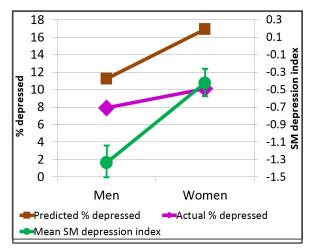


predicted (SMDI)

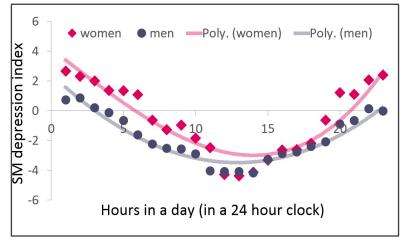


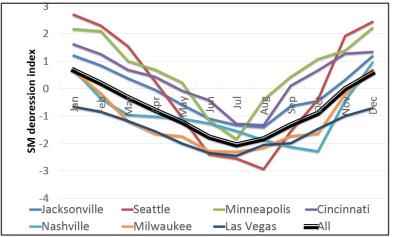
least squares regression fit yields correlation of 0.52

y = 0.082x + 3.08Portland $R^2 = 0.6435$ Social media depression index Louisville cksonville Nashville Cleveland ndianapolis Atlanta Minneap Cincinn Kansas City Pittsburgh Sacramento Las Vegas Tucson 10 20 St Louis New Orleans Petroit -2 Rank based on depression rate ◆ SM depression index —Linear (SM depression index)



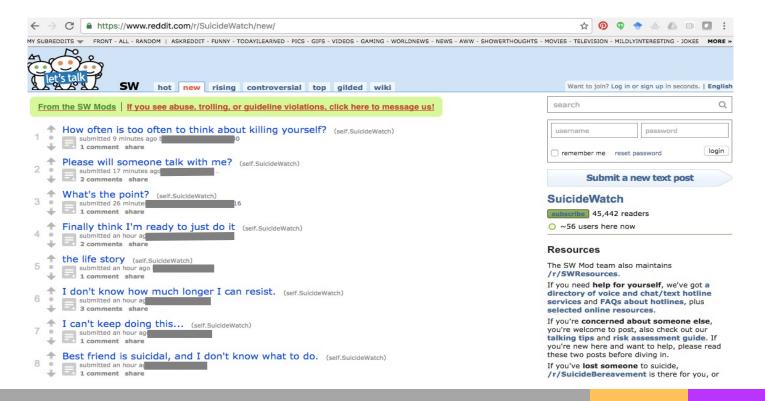
(De Choudhury, Counts, Horvitz, WebSci 2013)



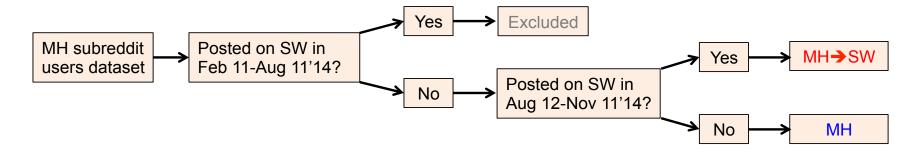


Mental health risks as a precursor of suicidal thoughts and behaviors – where social media can help

Media Health Discourse in Social Media Predicts Shifts to Suicidal Ideation



Propensity Score Matching



 Work within the potential outcomes framework for causal modeling, applying stratified propensity score matching to estimate causal effects

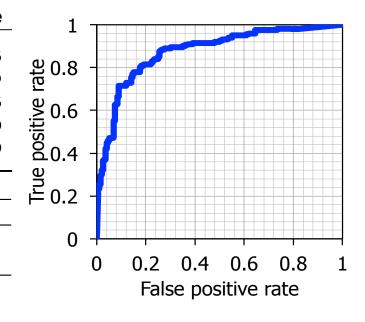
Patterns of Mental Health Discourse on Social Media Predict Future Suicidal Ideation

depression	+30%	differences	-57%
useless	+51%	always a	-56%
suicidal	+34%	be working	-56%
medicine	+52%	keep your	-56%
locked	+51%	preferred	-56%
no friends	+51%	awesome l	-56%
loneliness	+50%	and enjoy	-55%
alone I	+34%	it work	-55%

Prediction

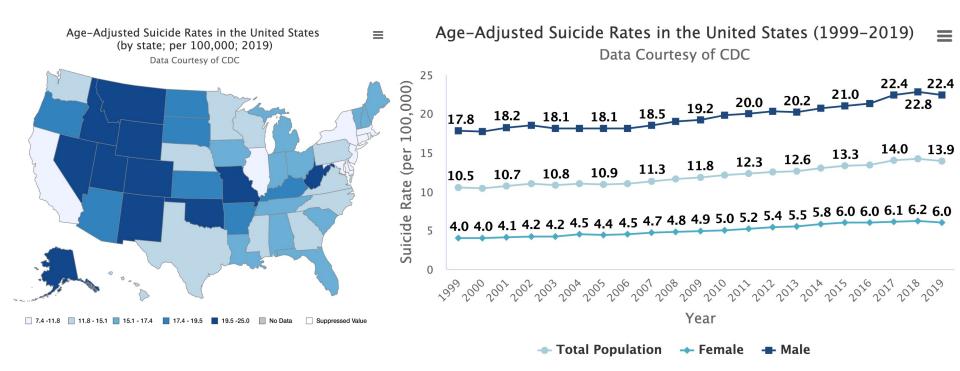
Model	Deviance	df	χ^2	<i>p</i> -value
Null	9190.6	0		
Linguistic Structure	5083.7	5	4106.9	$< 10^{-6}$
Interpers. Awareness	7949.6	4	1241	$< 10^{-9}$
Interaction	4429.2	8	4761.4	$< 10^{-6}$
Content	2793.5	15000	6397.1	$< 10^{-10}$
Full	1864.4	15017	7326.2	$< 10^{-10}$

Actual/Predicted	Class 0	Class 1	Total
Class 0	73	15	88
Class 1	20	68	88
Accuracy	83.5%	77.5%	80% (mean)
Precision	.79	.82	.81 (mean)
Recall	.83	.78	.81 (mean)
F-1	.81	.8	.80 (mean)



Envisioning social media as part of a "data ecology" in suicidal risk prediction

Can We Accurately Forecast Nationwide Suicide Rates?



Combining Real-Time Datasets

- Goal: Building a machine learning framework to predict suicide death counts in real-time
 - Time series forecasting problem to predict weekly number of suicide
 - Using multiple time series datasets collected and pre-processed from both social media and clinical sources

Suicide-relevant streams from social media or web

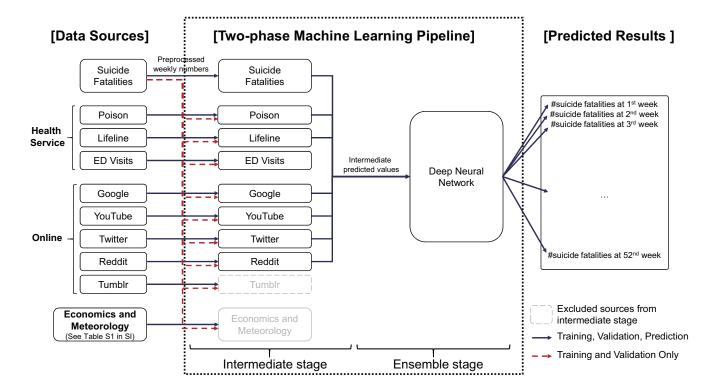
Health services data streams from clinical sources

Machine Learning Framework:

- Maximally use the signal from each data source
- Combine all signals in an intelligent and harmonic way

Time series forecasting for weekly suicide death counts, mimicking natural data acquisition process

Overall Architecture



(Choi, Sumner, Holland, Zwald, Bowen, Wang, Law, Taylor, Konjeti, De Choudhury; JAMA Network Open)

Prediction Results (Ensemble Model)

Ground truth: 14.47

Encomble Type	Pearson	RMSE	MAPE	SMAPE	Annual Estimated
Ensemble Type	Coeff.				Rate (Error %)
Health Services Data Sources	0.802	56.847	5.457	2.629	15.08 (4.14%)
Online Data Sources	0.633	52.035	4.189	2.149	14.12 (2.49%)
Baseline + Health Services Sources	0.832	46.096	4.367	2.123	14.91 (2.97%)
Baseline + Online Data Sources	0.737	80.478	7.306	3.841	13.37 (7.67%)
Health Services + Online Data Sources	0.791	43.239	3.806	1.916	14.31 (1.17%)
All Data Sources	0.811	44.439	4.006	2.001	14.40 (0.55%)

(Choi, Sumner, Holland, Zwald, Bowen, Wang, Law, Taylor, Konjeti, De Choudhury; JAMA Network Open) (Saha, Torous, Caine, De Choudhury, JMIR)

Takeaways

Q SELF-CARE

The New York Times

Is Everybody Doing ... OK? Let's Ask Social Media

Researchers are looking at online behavior to gauge public mental health. The results aren't pretty.

Partly supported by a contract from the CDC; NSF RAPID 2027689

The path forward...

Thanks!

munmund@gatech.edu http://www.munmund.net @munmun10

Microsoft

