LONG-TERM HEALTH EFFECTS OF COVID-19:

Musculoskeletal/Fatigue/
Post-Exertional Malaise/Pain

Anthony L. Komaroff, MD
Professor of Medicine, Harvard Medical School
Senior Physician, Brigham and Women's Hospital

NASEM, March 21, 2022

No conflicts of interest

TOPICS TO BE COVERED

- Frequency of musculoskeletal disease post-COVID
- Frequency of persisting symptoms post-COVID
- Impact of symptoms on functional capacity
- Similarity of post-COVID symptom profile to that of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS)... and to other post-infection syndromes
- Similarity in the emerging underlying pathophysiology of Long COVID and ME/CFS

Post-Acute Sequelae of SARS-CoV-2

VA Health system: ~73,000 people with COVID-19 vs. ~5 million controls without COVID — adjusted for many pertinent covariates, including health care utilization.

Adjusted hazard ratios (HR), all significant, of developing *new* diseases post-COVID over next *4 months*:

Myopathies (HR = 5.1)

Incidence of Persisting Symptoms Following Acute COVID-19

How Common Is "Long COVID?

Hard to answer because studies have been heterogeneous in important ways:

- Hospitalized vs. non-hospitalized?
- Diagnosed by lab test (PCR, Ag, Ab?), "clinical Dx" or self-diagnosis?
- Followed as part of a systematic prospective, repeated measures study vs. surveyed at one time point?
- Symptoms reported to health professionals as part of study vs. self-reported symptoms from online patient groups
- How severe the symptoms: functional status?
- Followed for how long?

Symptoms/Function 6 Months Post-COVID

Systematic review of 57 studies involving 250,351 people with COVID-19 (79% hospitalized, 60% with persistent chest imaging abnormalities) followed for 6 months found frequent persistent symptoms:

Symptoms		Function		
Fatigue	38%	▼ function	43%	
Pain	31%	▼ mobility	20%	
Post-exertion		▼ exercise	16%	
malaise	13-50%	tolerance		

Post-Exertional Malaise: IOM Case Definition

- Cardinal symptom of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), according to the National Academy of Medicine
- Definition: A prolonged exacerbation of a patient's baseline symptoms after physical/cognitive/orthostatic exertion or stress. It may be delayed relative to the trigger.

From: Beyond Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Redefining an Illness. Institute of Medicine, 2015.

Cardiopulmonary Exercise Tests in Post-COVID Patients With Exertional Intolerance

	Post- COVID	Healthy Controls	P-value
Peak VO ₂ % Predicted	70±11	131±45	.001
Systemic O ₂ extraction	0.5±0.1	0.78±0.1	<.0001
Peak cardiac index	7.8±3.1	8.4±2.3	NS

From: Singh I, et al. Chest 2022;161:54

How Often Does Post-Acute COVID Meet Criteria for ME/CFS?

Following hospitalization for PCR-confirmed COVID-19:

- 47% of cases have persistent fatigue 6 months later
- 13-25% meet IOM criteria for ME/CFS,
 6-9 months later.

Functional Capacity 9 Months Post-COVID

Population-based cohort study of 51,338 Canadians followed for 9 months in first year of pandemic. Those with probable or confirmed acute COVID-19 were more likely than those who did not develop COVID-19 to be functionally impaired:

- Reduced ability to engage in normal household activities (OR 1.89)
- Reduced physical activity (OR 1.91)
- Difficulty standing from sitting position (OR 2.33)
- Similar results for people with suspected COVID-19

From: Beauchamp MK, et al. JAMA Network Open 5(1):e2146168

Risk Factors for Persistent Symptoms, Post-COVID

- Sickest with acute COVID, but....
- Greatest evidence of inflammation/tissue damage with acute COVID, but....
- PCR+ vs. PCR-, but....
- Female, but....
- Premorbid asthma/COPD (more likely to develop non-pulmonary symptoms post-COVID), but....
- Premorbid history of depression, but....

Post-Infectious Fatigue Syndromes

- Infectious-like illnesses¹⁻³
- Epstein-Barr virus^{4,6,7}
- Lyme disease⁵
- Coxiella burnetti⁷
- Ross River virus⁷
- Mycoplasma pneumoniae⁸
- Enteroviruses⁹
- Human herpesvirus-6¹⁰

- Ebola¹¹
- West Nile Virus¹²
- SARS¹³
- Dengue¹⁴
- Parvovirus¹⁵
- Giardia¹⁶
- COVID-19¹⁷

¹ Shelokov A. *NEJM* 1957:257:345.

² Poskanzer DC. NEJM 1957:257:356.

³ Acheson ED. *Am J Med* 1959;4:569.

⁴ Jones JF. *Ann Intern Med* 1985;102:1.

⁵ Sigal LH. *Am.J.Med.* 88:577-581, 1990.

⁶ White PD. *Br J Psychiatry* 1998;173:475

⁷ Hickie I. *BMJ*;2006;333:575.

⁸ Salit IE. *Can Dis Wkly* 1991;17:E:9.

⁹ Chia JKS. *J Clin Pathol* 2008;61:43.

¹⁰ Komaroff AL. *J Clin Virol* 2006;37:S39.

¹¹ Epstein L. *NEJM 2015;*373:2483.

¹² Sejvar JJ. *J Neuropsychol* 2008;2:477.

¹³ Moldofsky H. *BMC Neurol 2011;*11:37.

¹⁴ Seet RC, et al. *J Clin Virol* 2007;38:1.

¹⁵ Kerr JR, et al. *J.Gen.Virol.* 2010;91:893.

¹⁶ Litleskare S. *Gast Hepatol* 2018;16:1064

¹⁷ Komaroff AL. *Front Med 2021;*7, 606824.

Comparison of Pathophysiology: ME/CFS vs. Long COVID - 1

	ME/CFS	LC
Infectious trigger	√ (often)	11
Dysautonomia/brainstem dysfunction	11	V V
Autoantibodies, many to neural targets	11	VV
▼ generation of ATP from O₂, sugar, fats, AAs	11	V
General hypometabolic state, including in brain	V	V
Redox imbalance (oxidative/nitrosative stress)	11	VV
Activated & exhausted CD8+ T cells and NK cells	11	
Gut microbiome dysbiosis: ▲ pro-inflammatory species, and ▼anti-inflammatory species	N N	V

Komaroff AL, Lipkin WIL. Trends Mol Med (Cell Press) 2021;27(9):895-906 Paul B, Lemle M, Komaroff AL, Snyder SH. PNAS 2021;118:e2024358118

Comparison of Pathophysiology: ME/CFS vs. Long COVID

	ME/CFS	LC
Invasive CPET reveals reduced preload, peak exercise aerobic capacity, O ₂ extraction	√	V
Endothelial dysfunction/coagulopathy	√	V V
Reactivation of latent herpesviruses	V	$\sqrt{}$
Injury and repair in multiple organs		V
Ion channelopathies	√	
Craniocervical instability	√	
Small fiber neuropathy	V	$\sqrt{}$
Cognitive deficits (esp. attention)	V	$\sqrt{}$
Neuroinflammation	√	V
Mast cell activation syndrome	V	?√

Komaroff AL, Lipkin WIL. Trends Mol Med (Cell Press) 2021;27(9):895-906 Paul B, Lemle M, Komaroff AL, Snyder SH. PNAS 2021;118:e2024358118

Biologic Triggers of Pathology

- Injury and repair in multiple organs ➤ inflammation
- Persistent reservoirs of virus > immune response that becomes exhausted
- Viral genome integrated into host genome
- Reactivation of neurotropic pathogens, e.g., herpesviruses
- Mitochondrial dysfunction in T cell subsets
- Chronic inflammation ➤ oxphos to glycolysis ➤ deficient ATP generation and a hypometabolic state.
- SARS-CoV-2 ▶gut dysbiosis ▶chronic inflammation and autoimmunity
- Endothelial dysfunction/coagulopathy
- Dysfunctional brainstem/vagus nerve signaling

Conclusions

- Musculoskeletal disease and symptoms, fatigue, post-exertional malaise and pain often persist for at least 6 months postacute COVID-19
- Functional impairment, often attributed to these symptoms, also is common
- These "Long COVID" patients have similar symptoms to people with ME/CFS and other post-infectious syndromes
- They also appear to have similar underlying pathophysiology