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T-cell states are associated with ICT response

Melanoma patients Sample dissociation Single cell RNA-seq
treated with checkpoint and sorting of CD45* immune cells n=16,291
immunotherapy
, CD45*
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31 non-responding tumors
17 responding tumors

Response to immune checkpoint therapy in melanoma

Nir Hacohen Lab
Sade-Feldman et al. Cell 2018



Genes that predict ICT response

Responders
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= scRNA-seq identifies T-cell gene programs
corresponding to responders and non-responders
= Approach is genome-wide and unbiased
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In tumor tissue predicts better
response and survival

Nir Hacohen Lab
Sade-Feldman et al. Cell 2018



Novel dendritic cell phenotypes play a role in ICT
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Cancer cells co-opt an immune survival strategy
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= | eptomeningeal metastases: 3.5 months median survival
= CSFislow iniron, rich in immune cells—how do cancer cells survive?

= Cancer cells from all patients overexpress two iron transport genes
with Adrienne Boire Lab
Chi et al. Science 2020



Cancer cells co-opt an immune survival strategy
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= [ron chelation inhibits cancer cell growth in CSF
= Genome-wide view provided an unexpected mechanism for cancer cell
survival and immune suppression: competition for resources

Chi et al. Science 2020



Single-cell data is not ‘big data’

Single-cell data feels like ‘big data’, but it is actually ‘complex data’

Problem

= Typical dataset is a matrix of 100,000 cells x 20,000 genes (~200 million values)
= Yet, it is only derived from 10—-40 patients, insufficient for most clinical questions
= Clinical trials inherently contain small sample sizes

Solutions

= Meta-analysis of multiple clinical trials
= |ntegrate single-cell data with large bulk genomics or H&E datasets
= |ncorporate prior biological knowledge into the modeling



Factor analysis to characterize gene programs

cell

count matrix scores gene scores
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= Goal of factor analysis: decompose a cellular profile into gene programs
= This is an unconstrained problem (many ways to slice and dice the matrix)
= Many factors are confounded by cell type or technical noise



Spectra factor analysis

Spectra: Supervised pathway deconvolution of interpretable gene programs
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Spectra factor analysis
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Factors are scored by
= how well they match the data
= support for knowledge graph

Factors are fit to the data by
adding and removing genes

Novel factors can be found by
detaching them from the graph
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Spectra dissects breast cancer response to immunotherapy

Response to anti-PD-1 treatment in breast cancer
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Tumor-reactive T cells respond to immunotherapy
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Spectra adapts the genes to the data

New tumor reactivity genes

from SPECTRA TCR signaling
IC receptor DOK2
42 HAVGR2 NFATC1
LAG3 SH2D2A
TNFRSF4
- T activation/survival
- Cytotoxicity BATF
B tumor reactivity factor PRF1 GADDA45G
. GZMB
B input gene set LAYN
Pt LTA ZBTB32
Spectra identifies putative new mediators
replicated in a validation dataset
Combination 0X40 agonism/CTLA-4 blockade immunology B L
with HER2 vaccination reverses T-cell anergy and Py— 145D and Gadd _ ] _
romotes survival in tumor-bearing mice . .~ Gadd45h and Gadd45g are important for anti-tumor
f; T gM o BATF a.nd.IRF4. cooperate to counter exhaustionin  j;myne responses
ard Wiiarn L odmenaes o ewice” Michael 1 Mcllamara’sfan F. Hlgart-Mardszus®, Mohammad Farha™  tumor-infiltrating CAR T cells " ) )
Songguang Ju"?, Yibei Zhu"? Lin Liu', Shao Dai', Changyou Li',
i e e e, S e B e, s Ml e Forln ORTZVS L ok S EdaGonzilea-Avalos®, Wade Zhang, Payal Ramchandani®®, Chao Yang),  Elsabeth Chen', Yukai He', Xueguang Zhans"? and Binfeng. Lu'

Chan-Wang J. Lio ®"", Anjana Rao®"**7#= and Patrick G. Hogan ("5 =



Understanding cells in their tissue context
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= Spatial context is needed to understand cell-cell interactions

= New spatial technologies are emerging
= Cell-cell interactions can serve as potent drug targets



What we need to do

Collect well-designed longitudinal cohorts, including responders and non-responders;
profile with single-cell and spatial technologies

Work in teams of immuno-oncology and computational experts to design new
algorithms suited for this data

Aggregate cohorts (with careful statistics), integrate with other data modalities
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