Weill Cornell Medicine

Challenges of Trial Design Incorporating Pharmacodynamics

The Importance of Mechanism-Driven Drug Development

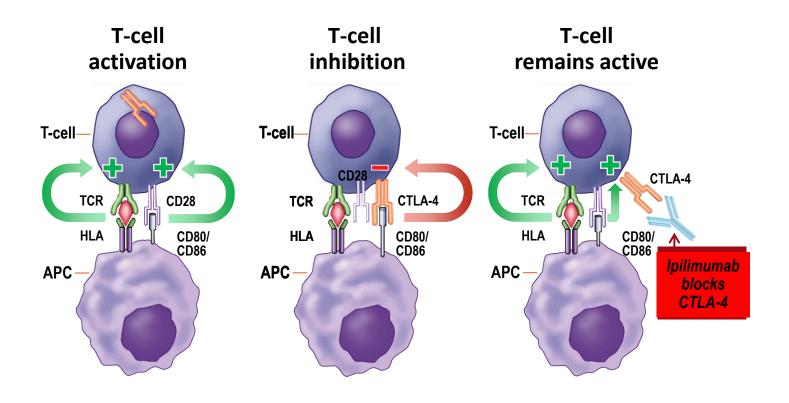
Weill Cornell Medicine

Disclosure Information Jedd Wolchok, MD, PhD, FASCO

Consultant for:

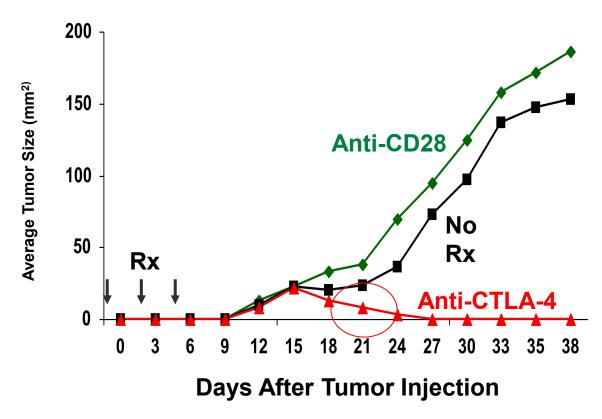
Apricity; Arsenal IO; Ascentage Pharma; AstraZeneca; Bicara Therapeutics; Boehringer Ingelheim; Bristol Myers Squibb; Daiichi Sankyo; Dragonfly; Georgiamune; Imvaq; Maverick Therapeutics; Psioxus, Recepta; Tizona; Trieza; Sellas; Werewolf Therapeutics.

Grant/Research Support from:

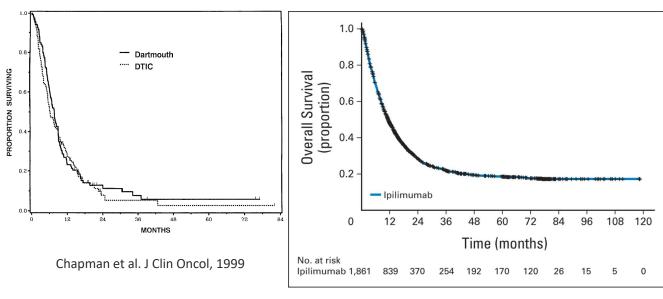

Bristol Myers Squibb

Equity in:

Tizona; Imvaq; Linneaus; Apricity; Arsenal IO; Georgiamune; Trieza; Ascentage



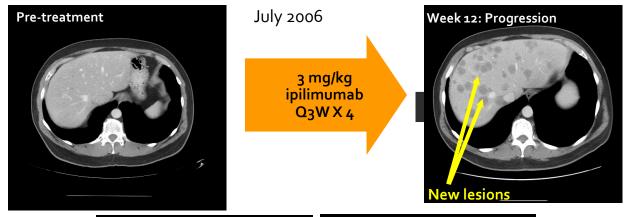
Ipilimumab Augments T-Cell Activation and Proliferation


Adapted from O'Day et al. Plenary session presentation, abstract #4, ASCO 2010.

Anti-CTLA-4 Induces Regression of Transplantable Colon Carcinoma

Leach et al., Science, 1996

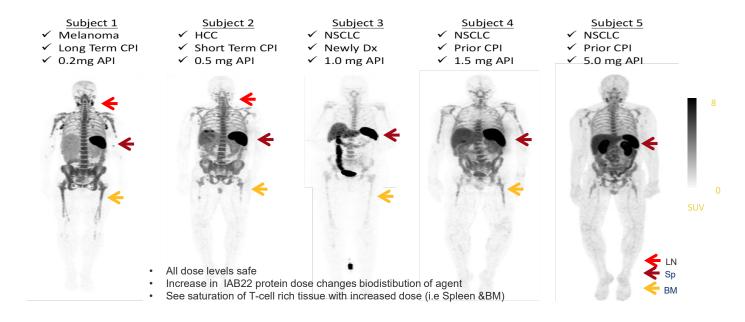
Ipilimumab Phase II and III data: Primary analysis of pooled overall survival (OS) data in context of prior standard care


Dirk Schadendorf et al. JCO 2015;33:1889-1894

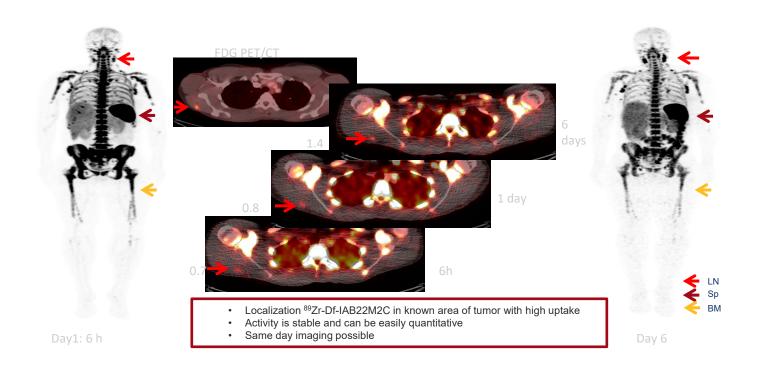
Four Patterns of Response to Ipilimumab Therapy Observed

- 2 conventional:
 - Response in baseline lesions
 - 'Stable disease' with slow, steady decline in total tumor volume
- 2 novel:
 - Response after initial increase in total tumor volume
 - Response in index plus new lesions at or after the appearance of new lesions

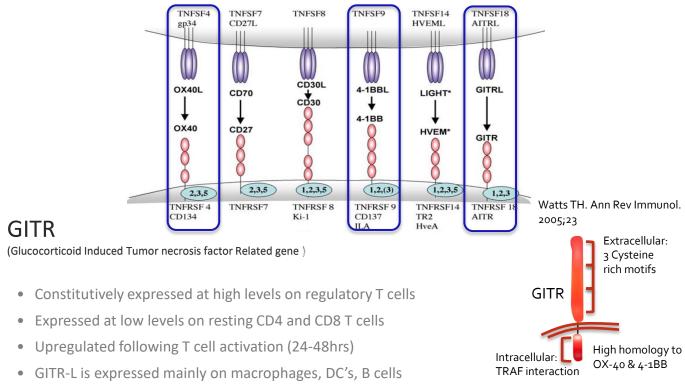
Ipilimumab Pattern of Response: Atypical



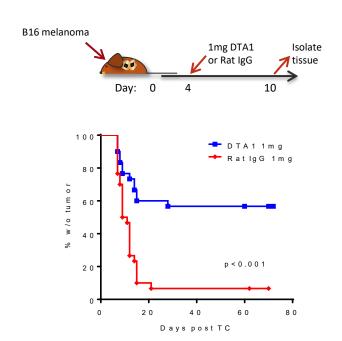
Source: 2008 ASCO Abstract #3020 Wolchok.


Summary of First-in-Human 89Zr IAB22M2C PET/CT

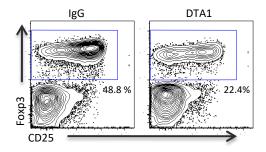
Pandit-Taskar et al., J Nucl Med, 2019


Is a drug hitting its target? Pharmacodynamic imaging of T cells: Melanoma

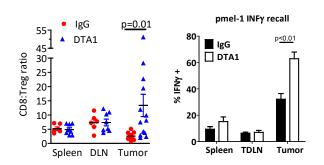
Pandit-Taskar et al., J Nucl Med, 2019


GITR Agonism as a means to overcome suppressive cells in the microenvironment

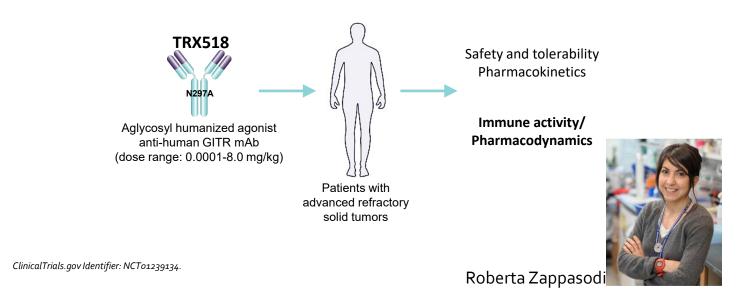
TNF family members: targets for agonist immunotherapy



Agonist antibodies to GITR (DTA-1) have been demonstrated to break self tolerance


Anti-GITR (DTA-1): B16 murine transplantable melanoma model

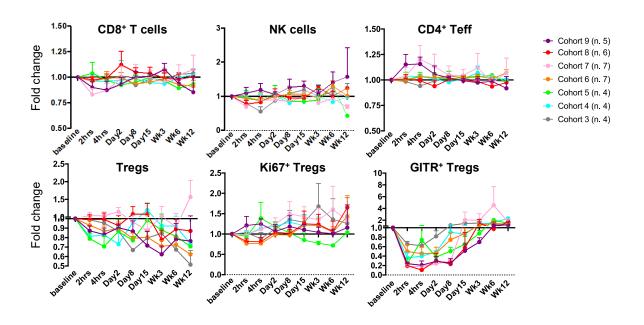
DTA-1 causes 50% reduction of intra tumor Tregs:


Reduced Tregs alters CD8:Treg ratio and correlates with enhanced Teff function

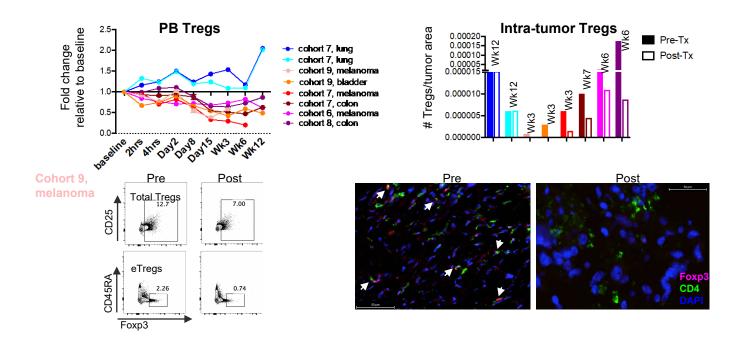
Cohen & Schaer et al. PLoS ONE 2010 May 3;5(5)

First in-human Phase 1 trial with the fully humanized agonist anti-GITR antibody TRX518

Phase 1, open-label, non-randomized, single ascending dose trial


First in-human Phase I trial with fully humanized agonist anti-GITR antibody TRX518

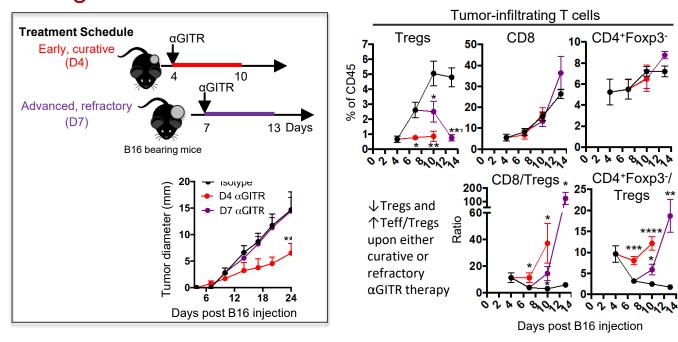
Patients & Samples


TRX518 Dose (mg/kg)						
0.005	0.05	0.5	1	2	4	8
Cohort 3	Cohort 4	Cohort 5	Cohort 6	Cohort 7	Cohort 8	Cohort 9
LUNG	COLON	COLON	COLON	COLON*	COLON*	MELANOMA*
MELANOMA	FIBROMELLAR HEPATOCA	COLON	LUNG	COLON	LUNG	BLADDER*
THYMIC CARCINOMA	GASTRIC ADENOCA	MELANOMA	LUNG	LUNG*	ADENOID CYSTIC	GIST
THYMOMA	UROTHELIAL	OVARIAN	MELANOMA*	LUNG*	ENDOMETRIAL	PANCREAS HEAD ADENOCA
			MELANOMA	LUNG	HEPATOCELLULAR	PNACREATIC
			UROTHELIAL	MELANOMA*	LARYNGEAL	
			LEIOMYOSARCOM A	NEUROENDOCRINE		

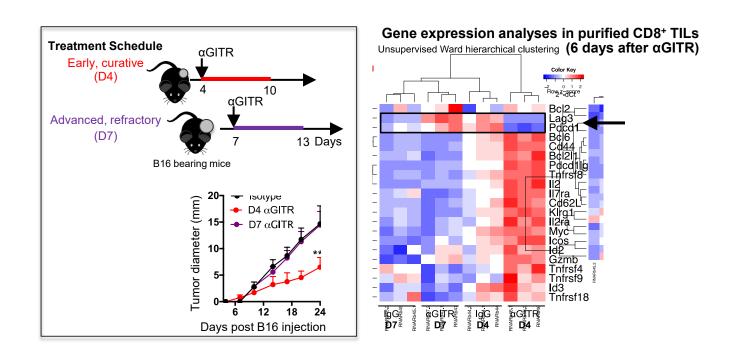
- 37 patients with available pre- and post-therapy (up to 8 time points) PBMC samples for FACS analyses;
- 8 patients with available pre- and post-therapy tumor biopsies for analyses of immune infiltrate (*).

TRX518 preferentially affects Tregs and GITR⁺ Tregs in peripheral blood

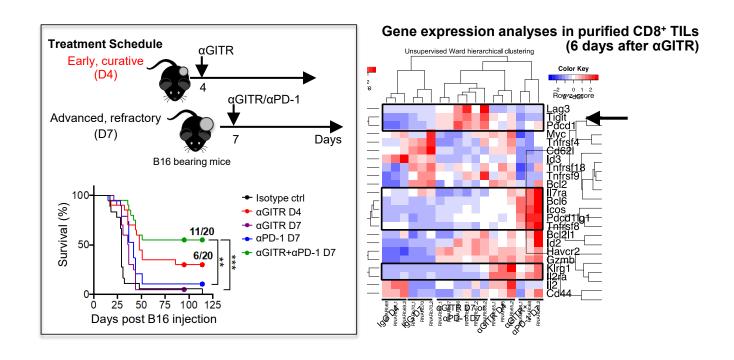
Tregs are similarly modulated in PBMC and tumor after TRX518

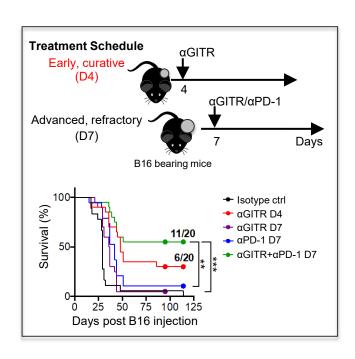

Question

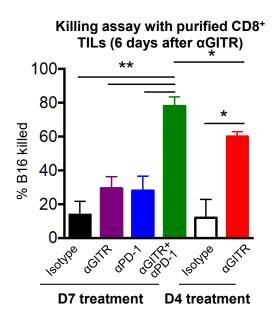
Concordant down-regulation of Tregs in peripheral blood and tumor upon TRX518 was not sufficient to achieve substantial clinical responses in this patient population



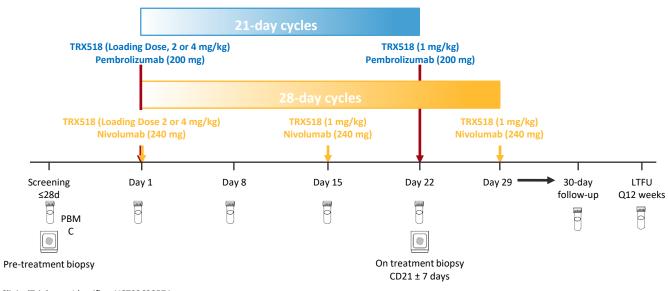
Model in mice the determinants of anti-tumor activity of anti-GITR


Model of response and refractoriness to $\alpha GITR$ – Role of Tregs


Model of response and refractoriness to αGITR – Role of T-cell exhaustion



Overcoming refractoriness to aGITR with PD-1 blockade



Overcoming refractoriness to aGITR with PD-1 blockade

A multi-part Phase 1 multicenter open-label study of TRX518 in combination with pembrolizumab or nivolumab in adults with advanced solid tumors

ClinicalTrials.gov Identifier: NCT02628574.

Phase IB Study of GITR Agonist Antibody TRX518 Singly and in Combination with Gemcitabine, Pembrolizumab, or Nivolumab in Patients with Advanced Solid Tumors

Diwakar Davar¹, Roberta Zappasodi^{2,3,4,5}, Hong Wang⁶, Girish S. Naik⁷, Takami Sato⁸, Todd Bauer⁹, David Bajor¹⁰, Olivier Rixe¹¹, Walter Newman⁷, Jingjing Qi¹², Aliya Holland¹², Phillip Wong¹², Lianna Sifferlen⁷, Diane Piper⁷, Cynthia A. Sirard⁷, Taha Merghoub^{3,4,13,14,15}, Jedd D. Wolchok^{3,4,13,14,15}, and Jason J. Luke¹

ABSTRACT

Purpose: TRX518 is a mAb engaging the glucocorticoid-induced TNF receptor—related protein (GITR). This open-label, phase I study (TRX518-003) evaluated the safety and efficacy of repeated dose TRX518 monotherapy and in combination with gemcitabine, pembrolizumab, or nivolumab in advanced solid tumors.

Patients and Methods: TRX518 monotherapy was dose escalated (Part A) and expanded (Part B) up to 4 mg/kg loading, 1 mg/kg every 3 weeks. Parts C-E included dose-escalation (2 and 4 mg/kg loading followed by 1 mg/kg) and dose-expansion (4 mg/kg loading) phases with gemcitabine (Part C), pembrolizumab (Part D), or nivolumab (Part E). Primary endpoints included incidence of dose-limiting toxicities (DLT), serious adverse events (SAE), and pharmacokinetics. Secondary endpoints were efficacy and pharmacodynamics.

Results: A total of 109 patients received TRX518: 43 (Parts A+B), 30 (Part C), 26 (Part D), and 10 (Part E), respectively. A total of 67% of patients in Parts D+E had received prior anti-PD(L)1 or anti-CTLA-4. No DLTs, treatment-related SAEs, and/or grade 4 or 5 AEs were observed with TRX518 monotherapy. In Parts C-E, no DLTs were observed, although TRX518-related SAEs were reported in 3.3% (Part C) and 10.0% (Part E), respectively. Objective response rate was 3.2%, 3.8%, 4%, and 12.5% in Parts A+B, C, D, and E, respectively. TRX518 affected peripheral and intratumoral regulatory T cells (Treg) with different kinetics depending on the combination regimen. Responses with TRX518 monotherapy+anti-PD1 combination were associated with intratumoral Treg reductions and CD8 increases and activation after treatment.

Conclusions: TRX518 showed an acceptable safety profile with pharmacodynamic activity. Repeated dose TRX518 monotherapy and in combination resulted in limited clinical responses associated with immune activation.

Concluding Thoughts

- Consider: did the drug fail or did the trial fail to evaluate it intelligently?
- Translational research is a team sport; collaborate with all colleagues to reach best conclusions.
- Never stop asking "why?"

Thanks for the support!

Ludwig Cancer Research, Parker Institute, NIH, Swim Across America, Mark Foundation, Melanoma Research Alliance, Dept of Defense, SU₂C, Breast Cancer Research Fdn, Damon Runyon Fdn, ASCO Conquer Cancer Fdn, Sephora

Special Thanks: Patients & their Families