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Al in cancer diagnosis, prognosis and treatment
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Model accuracy
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XAT’s future
research arena

Traditional Statistics Machine Learning

A Data Science Continuum

White-box modelling Black-box modelling
simpler computation, emphasis on high computational complexity, emphasis
introspection, form, causal effects and on speed and quality of prediction,
processes, finding a ‘correct' model finding a 'performant' model
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Assessing models for potential clinical
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> Customers today don't trust Al. They prefer
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Privacy & Security
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Must be

Transparency NS

Must be secure and Security & :
respect the privacy of Privacy PN Inclusion
users

Must not discriminate
against anyone
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Must be someone who
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What if being exploited?
ihe Art of
Explanation

“...science is beautiful when it makes simple

explanations of phenomena...”

How to explain? What to explain?

How to verify?
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