

Innovations in Population-Based Research Approaches to Advance Endometrial Cancer Equity: The Carolina Endometrial Cancer Study

Victoria Bae-Jump, MD, PhD

Professor and Associate Division Director – Gynecologic Oncology

Director, UNC Lineberger Endometrial Cancer Center of Excellence

Medical Director – UNC Lineberger Clinical Trials Office

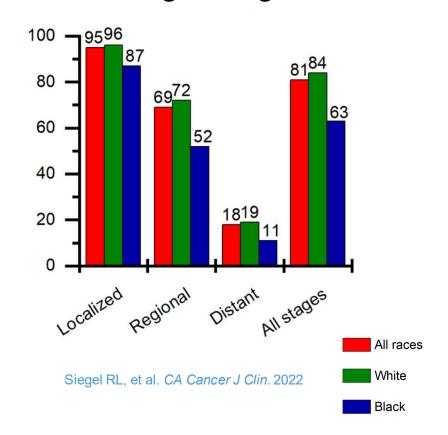
Disclosures

- Merck collaborative grants
- Chimerix drugs for pre-clinical and clinical studies, collaborative grants
- Genentech drugs for pre-clinical and clinical studies, collaborative grants

Endometrial Cancer (EC) and Obesity

- 4th most common cancer among women in the U.S.1
- Increasing in frequency and mortality due to the obesity epidemic, rise in more aggressive EC subtypes.²
- In 2024, 67,880 new cases of endometrial cancer will be diagnosed in the US. ¹
- Obesity, diabetes and insulin resistance are well-known risk factors associated with a higher risk of developing and dying from endometrial cancer.³

³ Chia VM, Newcomb PA, Trentham-Dietz A, Hampton JM. Obesity, diabetes, and other factors in relation to survival after endometrial cancer diagnosis. Int J Gynecol Cancer. 2007;17(2):441-6.

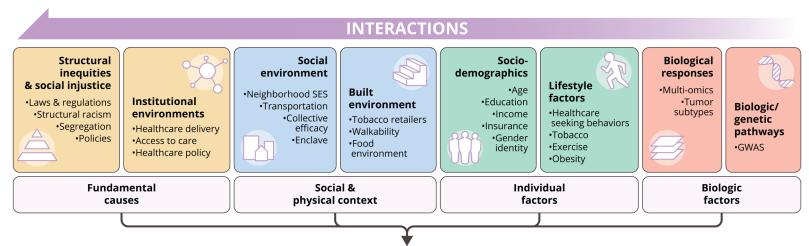

¹ Seigel et al. Cancer Statistics. 2024

²Annual Report to the Nation on the Status of Cancer, 2019

Endometrial Cancer and Racial Disparities

- Incidence rates are <u>increasing 3-fold</u> for Black compared to White and mortality rates are <u>twice as high</u> for Black Women.⁴
- The overall 5-year survival is 81%; yet 5-year survival among Black women is <u>62%</u> vs. <u>83%</u> for White women.
- Black women have <u>the lowest survival</u> <u>rates</u>, regardless of stage or histologic subtype, and mortality rates are increasing disproportionately by race.

5-Year Relative Survival by Race and Stage at Diagnosis



Why are there racial disparities for endometrial cancer?

Inequities in cancer screening and detection, diagnosis, treatment, survivorship, and mortality

The "Cell to Society" model created by the UNC Lineberger Cancer Center, adapted from Warnecke et al. Am J Public Health 2008

- Access to equitable care
- Social determinants of health
- Host environment and response to treatment
- Higher risk of more lethal histologic and molecular subtypes
- Higher rates of obesity and/or diabetes
- Other unknown social and biological factors?

Endometrial Cancer – Type 1 and 2

- Type I (80%)
 - Endometrioid histology
 - Most diagnosed Stage I
 - High 5-year survival
 - Unopposed estrogen stimulation
 - Associated with obesity, diabetes and hypertension

- Type II (20%)
 - Non-Endometrioid serous, clear cell, carcinosarcomas
 - Aggressive
 - Often present in advanced stage
 - Poorer 5-year survival
 - More common in Black patients

 Obesity and diabetes are associated with both endometrioid and nonendometroid endometrial cancers.

Genetic Alterations by Subtype

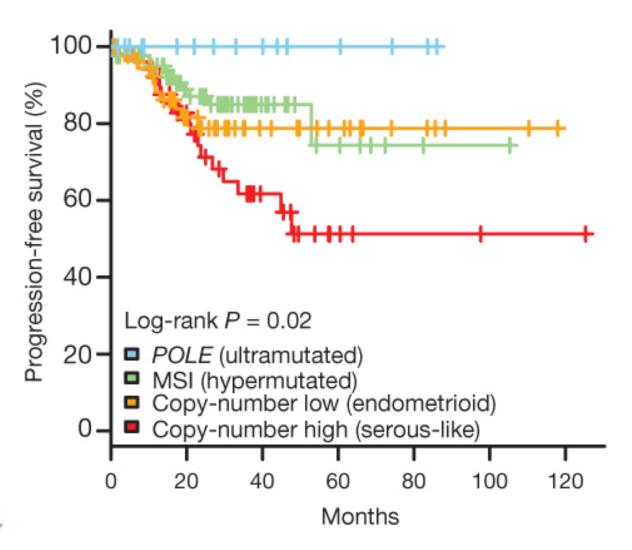
Type 1 - Endometriod

- Microsatellite instability
- PTEN deletions/mutations
- PIK3CA mutations/amplification
- PIK3R1/PI3KR2 mutations
- Activation of K-ras
- ARID1A mutations
- β-catenin mutations

Type II - Non-Endometrioid

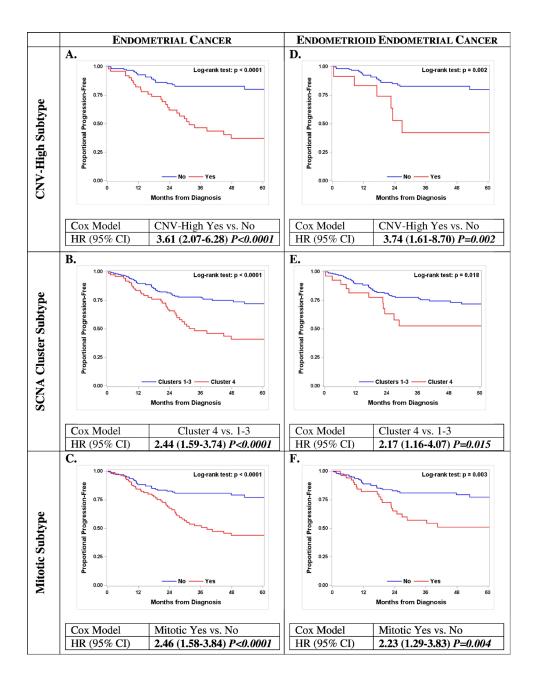
- p53 mutations
- Overexpression of HER-2/neu
- p16 inactivation
- PIK3CA mutations/amplification
- E-cadherin alterations

The Cancer Genome Atlas (TCGA) Project


	POLE (Ultramutated)	MSI (Hypermutated)	COPY-NUMBER LOW	COPY-NUMBER HIGH (Serous-like)
Copy Number Alterations	Low	Low	Low	High
MSI/MLH 1 Methylation	Mixed MSI high, low, stable	MSI High	MSI stable	MSI stable
Mutation Rate	Very High (232 x 104 Mutations/Mb)	High (18 x 104 Mutations/Mb)	Low (2.09 x 104 Mutations/Mb)	Low (2.3 x 104 Mutations/Mb)
Genomic Profile	POLE (100%) PTEN (94%) P1K3CA (71%) P1K3R1 (65%) FBXW7 (82%) AR1D1A (76%) KRAS (53%) AR1D5b (47%) PD1/PD-L1 Overexpression	PTEN (88%) RPL22 (32%) KRAS (35%) P1K3CA (54%) P1K3R1 (40%) AR1D1A (37%) PD1/PD-L1 Overexpression	PTEN (77%) CTNNB1 (52%) P1K3CA (53%) P1K3R1 (33%) AR1D1A (42%) FGFR2 (10.9%)	TP53 (92%) PPP2R1A (22%) FBXW7 (22%) P1K3CA (47%) PTEN (11%) FGFR Amplifications & mutations (7%) HER2 amplified 25%
Histology	Endometrioid	Endometrioid	Endometrioid	Serous, Endometrioid, and Mixed
Grade	Grades 1-3	Grades 1-3	Grades 1-2	Grade 3

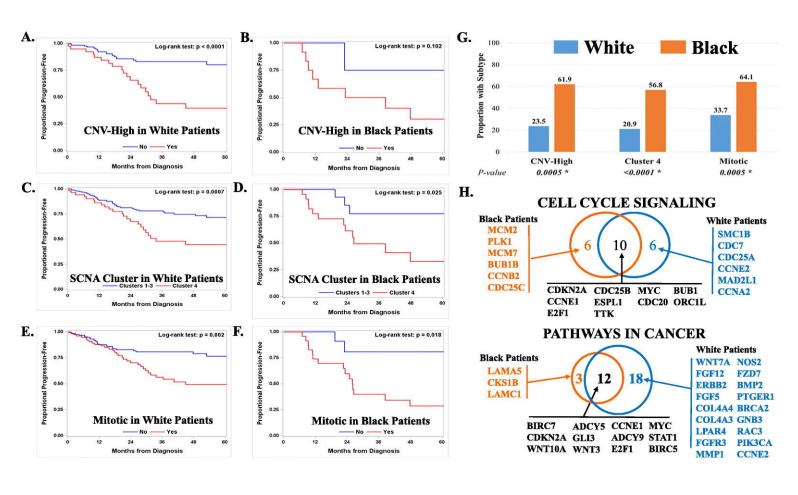
- Classification into Type 1 and 2 was too simplistic.
- The POLE, MSI and CNL clusters were composed mostly of endometrioid ECs.
- Serous and 25% of endometrioid ECs were found in the CNH.
- Clinically actionable targets for treatment differ by subtype.

The Cancer Genome Atlas (TCGA) Project

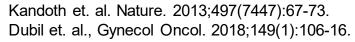


- POLE had the best PFS.
- CNH had the worst PFS than other subtype.

Kandoth et. al. Nature. 2013;497(7447):67-73.


- TCGA identified several aggressive molecular subtypes in EC
- CNH vs POLE, MSI, CNL
- Somatic copy number alteration (SCNA) clusters -Subtype 4 vs 1, 2 and 3
- RNAseq Mitotic Subtype vs Immunoreactive, Hormonal
- 14% Black (46 cases)

Kandoth et. al. Nature. 2013;497(7447):67-73. Dubil et. al., Gynecol Oncol. 2018;149(1):106-16.



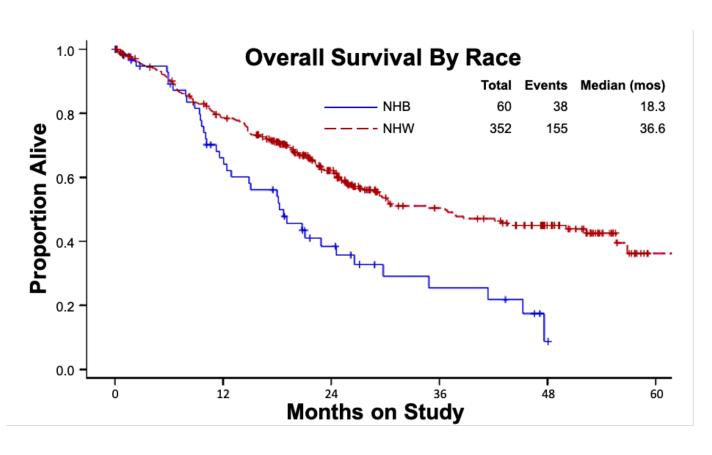
Racial Disparities in Molecular Subtypes of EC – TCGA

- CNH, SCNA cluster subtype 4
 and mitotic subtype all more
 common in Black vs White
 women.
- CNH subtype 62% of Blacks versus 24% of Whites.
- Worse PFS for Black vs White women for each of these subtypes.
- Race associated enrichment in cell signaling pathways (PLK1,BIRC7).

UNCseq – Endometrial Cancer Cohort

- Black vs White patients had a higher BMI (41 vs 34), more grade 3 (52% vs 36%) and non-endometrioid (48% vs 22%) ECs, more often presented at an advanced stage (33% vs 25%) and had a greater risk of recurrence (30% vs 18%).
- TP53 mutations as a surrogate for CNH; CNL defined as MSI stable, POLE wildtype and TP53 wildtype, or more simply TP53 wildtype.
- Higher mutation rate of PIK3CA in serous ECs of White versus Black women.

Jason Merker, MD, PhD Pathology


Modified TCGA classification	Black % (# of cases)	White % (# of cases)	
POLE (ultramutated)	5.9% (3)	6.9% (19)	
MSI (hypermutated)	21.6% (11)	25.5% (70)	
TP53 mutated (CNH)	47.1% (24)	19.3% (53)	
TP53 wildtype (CNL)	25.5% (13)	48.2% (132)	
Total cases	51	274	

Meredith Newton, MD Gyn Onc

GOG286B: Randomized Phase 2/3 Trial of Metformin vs Placebo + Paclitaxel/Carboplatin in Advanced and Recurrent EC

- Black race was associated with worse PFS than White race (HR = 1.5 95%; CI 1.098- 2.024) and worse OS than White race (HR = 2.03 95%; CI 1.429 2.890).
- Response rate also differed 64% overall for White women, 43% for Black women.
- Obesity rates differed 64% of Black women were obese vs 48% of White women.

Annual Meeting of the Society of Gynecologic Oncology, April 2020

GOG286B: Randomized Phase 2/3 Trial of Metformin vs Placebo + Paclitaxel/Carboplatin in Advanced and Recurrent EC

- Differences were noted in the <u>distribution of TCGA subtypes</u> between Black and White women.
- Black vs White women had worse survival for the MSI, TP53 wildtype and TP53 mutant TCGA subtypes.

Jason Merker, MD, PhD Pathology

Molecular Subtype	Black	White	
MSI	12% (OS 36 months)	22% (OS 39 months)	
<i>TP53</i> Wildtype (CNL)	24% (OS 29 months)	42% (OS 56 months)	
TP53 Mutant (CNH)	61% (OS 18 months)	35% (OS 25 months)	

David Corcoran, PhD Genetics

Challenges in Cancer Disparities Research in Endometrial Cancer

- Lack of prospective population-based epidemiologic studies detailing histologic and molecular subtype with race, obesity and related comorbidities, social determinants of health, access and receipt of NCCN recommended treatment and follow-up care.
- Paucity of EC samples from Black women in published, large-scale, non-population-based molecular profiling studies such as The Cancer Genome Atlas (46 Black cases, 291 White cases; Nature. 2013;497(7447):67-73).
- Limited understanding of the impact of obesity and its related comorbidities as modulators of EC progression and treatment efficacy in Black women.

https://unclineberger.org/cecs/

CAROLINA ENDOMETRIAL CANCER STUDY

Andrew Olshan, PhD Epidemiology

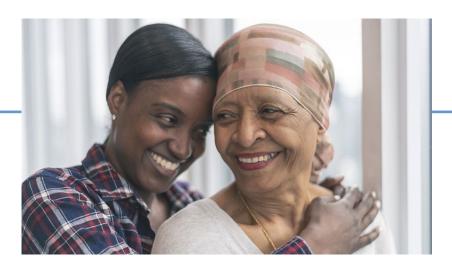
Hazel Nichols, PhD Epidemiology

Victoria Bae-Jump, MD, PhD Gynecologic Oncology

Russell Broaddus, MD, PhD Pathology



Tope Keku, PhD Gastroenterology



Carolina Endometrial Cancer Study

CAROLINA ENDOMETRIAL CANCER STUDY

- NC state-wide population-based prospective study of <a>>1,800 endometrial cancer <a>patients (>500 Black women) opened in February 2021, all 100 NC counties.
- Participant surveys, medical records data, tumor samples, and ongoing follow-up.
- Integrate <u>epidemiologic factors</u> (obesity and its co-morbidities), <u>social</u> <u>determinants of health</u> (social deprivation, structural racism) and <u>tumor biology</u> (genomics, microbiome) as contributors to worse outcomes in Black EC patients.
- Comprehensive picture of this disparity delineate the best social, behavioral and biologic interventions to address.

Carolina Endometrial Cancer Study (CECS)

- Baseline and follow-up telephone interviews (12, 24 months)
 - Information on medical history, weight change, racism, sociodemographic factors, physical activity, access to care, financial impact, quality of life.
- Medical Records and Outcome Assessment
 - Abstraction of medical records related to diagnosis, treatment and outcomes.
- Biospecimen collection
 - Acquisition of FFPE tumor blocks
- Molecular/Microbiota Subtyping
 - NGS (1400 gene panel), RNA sequencing
 - IHC, DNA methylation, 16S bacterial profiling

	Level ¹	Source ²	
Social Deprivation			
Household income (total in previous year)	Individual	CECS Baseline survey	
Insurance status (at time of diagnosis)	Individual	CECS Baseline survey	
Education	Individual	CECS Baseline survey	
Poverty (% below poverty level)	Census tract	ACS	
Education (% attainment level)	Census tract	ACS	
Urban/Rural (RUCA code)	Census tract	ACS	
Employment	Census tract	ACS	
Yost Index	Census tract	ACS	
Area Deprivation Index	Census block group	ACS	
Structural Racism			
Everyday Discrimination Scale	Individual	CECS Baseline survey	
Medical Mistrust Index	Individual	CECS Baseline survey	
Perception of racism in health care settings	Individual	CECS Baseline survey	
Residential segregation			
(Index of Concentration of Extremes, ICE)	Census tract	ACS	

Overall Summary

- Endometrial cancer harbors one of the worse cancer disparities for Black women than any other cancer.
- More aggressive molecular/genomic subtypes seems to drive this disparity in part.
- Why do Black women develop these aggressive molecular subtypes of endometrial cancer? Upstream social determinants? Is obesity a potential driver of these more aggressive molecular subtypes?
- Critical to addressing this disparity is to define the molecular alterations in the ECs of Black women in the context of other social and biologic factors that may drive more aggressive behavior of EC or lead to worse outcomes – Carolina Endometrial Cancer Study (CECS)
- Equally important is the identification of other modifiable, race-driven factors that contribute to disparate outcomes in Black EC patients.
 - Intra-tumoral uterine/gut microbiome UNC Microbiome Study

COLLABORATORS:

- Andrew Olshan, PhD (CECS Co-Lead)
- Hazel Nichols, PhD (CECS Co-Lead)
- Russell Broaddus, MD, PhD
- Tope Keku, PhD
- Bernard Weissman, PhD
- Rebecca Fry, PhD
- Tomi Akinyemiju, PhD
- Jason Merker, MD, PhD
- Adam Pfefferle, MD
- David Corcoran, PhD
- Xianming Tan, PhD
- Chunxiao Zhou, MD, PhD

GRANT SUPPORT:

- The Carolina Endometrial Cancer Study: A population-based survivor cohort - U01CA281026
- Lineberger University Cancer Research Fund
- NIH/NCI 1R21CA220269, 1R21CA267584
- NIH/NCI R37CA226969
- V Foundation
- Foundation for Women's Cancers
- Department of Defense (DOD)
- American Cancer Society (ACS)



The Becky Black Memorial Fund to Fight Endometrial Cancer

Disease	Baseline	12 mo	24 mo
Disease Charecteristics	MR, Lab	MR	MR
Individual Survivor			
Pre-diagnosis symptoms	Q		
SES, insurance, employment, and finances	Q		Q
Medical mistrust/perceived racism/access to care			Q
Comorbidities, medications, and preventive health care NCCN Survivorship concerns-immunizations, COVID-19		Q	Q
Genetic/genomic testing (germline/tumor)	Q, MR		
Treatment, Follow-up Care			
Cancer Treatment (modality, dose, dates)	MR	MR	MR
Surveillance, recurrences, new cancers, SGO symptoms		Q, MR	Q, MR
Cardiac history, symptoms: NCCN Survivorship concerns - cardac toxicity	Q	Q	
Anxiety, Depression: NCCN Survivorship concerns, PROMIS	Q	Q	Q
Hormone-Related symptoms, Pain, Fatigue: NCCN Survivorship concerns		Q	
Behavioral / Lifestyle Factors			
Weight change, Physical activity, Fruits & vegetables: NCCN Survivorship concerns - Healthy Lifestyle; Godin		Q	Q
Sleep: NCCN Survivorship concerns	Q	Q	Q
Quality of Life Outcomes			
Sexual function: NCCN Survivorship concerns; IMPACT		Q	
Lymphadema: NCCN Survivorship concerns; Gynecologic cancer lymphadema questionnaire (GCLQ)		Q	
GI Symptoms: IMPACT (initial measurement of patient-reported pelvic floor complaints tool)		Q	
QoL: FACT-G and FACT-EN at baseline; PROMIS at follow-up	Q		Q

