Session 3: Overview of MCDs in Development and Clinical Practice National Cancer Policy Forum Workshop at NASEM

Wendy Rubinstein, MD, PhD
Senior Scientific Officer, Division of Cancer Prevention, NCI

Disclaimers and Disclosures

- Opinions expressed are mine alone and should not be interpreted as representing the official viewpoint of the U.S. Department of Health and Human Services, the National Institutes of Health, the National Cancer Institute, or the Division of Cancer Prevention.
- My comments are informal and should not be taken as a "signal" for funding priorities.
- If I mention specific products to illustrate my points, these comments should not be taken as an endorsement of said products.

Clinical Chemistry 70:1 90–101 (2024)

Review

Predictive Performance of Cell-Free Nucleic Acid-Based Multi-Cancer Early Detection Tests: A Systematic Review

Elyse LeeVan^a and Paul Pinsky (D^{a,*}

Table 2. Sensitivity, specificity, and AUC.						
Author/reference	Validation	Model ^a	Sample size ^b (cases controls)	Sensitivity, % (95% CI)	Specificity, % (95% CI)	AUC (95% CI)
Chen (9)	Independent	PanSEER	113 207	88 (80–93)	96.1	97
(Phase 2)					(92.5-98.3)	
Chen (9) (Phase 3)	Independent	PanSEER	98 207	95 (89–98)	Same as above	99
Cohen (10)	Cross	CancerSEEK	1005 812	62 (56–68)	99°	91 (90–92)
Constâncio (11)	Cross	PanCancer	223 136	64	69.8	
Cristiano (12)	Cross	DELFI	236 245	73 (67–79)	98°	94 (92–96)
Douville (13)	Cross	Aneu + Mut + Proteins [7]	883 812	75 (72–78)	99°	94
Gao (14)	Independent	MCEDBT-1 [2]	473 473	69 (65–73)	98.9 (97.6–99.7)	-
Haldavnekar (15)	Independent	_	36 6	95 (88–99)	83	_
In' t Veld (16)	Independent	ThromboSeq	1096 146	64 (61–66)	99 (95–100)	91 (89–92)
Jamshidi (17)	Independent	Pan-feature [10]	464 362	36 (31–40)	98	
Kandimalla (18)	Cross	Pan-GI/Git-BS	254 46	_	_	88 (82–94)
Klein (19)	Independent	Galleri	1346 1254	76 (74–79) ^d	99.5 (99–99.8)	_
Lennon (21)	Independent	CancerSEEK Blood test ^c	96 9815	27 (19–37)	98.9 (98.7–99.1)	-
Liu (22)	Independent	_	68 25	84 (74–91)	100	_
Liu (23)	Independent	-	356 610	76 (73–81) ^d	99.3 (98.3–99.8)	-
Ris (24)	Training	DEEPGEN	260 415	43 (37–49)	99°	90 (88–92)
Stackpole (25)	Cross	cfMethyl-Seq	217	81 (69–91)	97.9	97.4 (92.6–99.8)
Sundquist (26)	N/A	n(DNA)	66 136	72 (61–83)	71	78 (70–86)
Zhou (27)	Independent	_	43 24	_	_	91.2 (83.7–98.7)
Zhou (28) (Phase 2)	Cross	SRFD-Bayes [4]	2000 400	92 (81–97)	99.5°	97.6 (97.2–98.0)
Zhou (28) (Phase 3)	Independent	SRFD-Bayes [2]	191 207	38 (31–44)	95°	

^aNumber in brackets indicates total number of models reported on, if >1.

^bFor independent validation, sample size is number in validation set; for cross-validation, sample size is number is total number used is the cross-validation process.

^cSpecificity fixed at the indicated level.

^dSensitivity based on 12 pre-specified cancer types, as shown in Table 2.

NCI-Authored Translational Science Review in CA: A Cancer Journal for Clinicians

Received: 21 December 2023

Revised: 6 February 2024

Accepted: 12 February 2024

DOI: 10.3322/caac.21833

REVIEW ARTICLE

Cancer screening with multicancer detection tests: A translational science review

¹Division of Cancer Prevention, US National Cancer Institute, Rockville, Maryland, USA

²Center for Strategic Scientific Initiatives, US National Cancer Institute, Rockville, Maryland, USA

³Division of Cancer Control and Population Sciences, US National Cancer Institute, Rockville, Maryland, USA

⁴Division of Cancer Epidemiology and Genetics, US National Cancer Institute, Rockville, Maryland, USA

⁵National Institutes of Health Office of Research on Women's Health, Bethesda, Maryland, USA

Clinically available multicancer detection tests in the U.S.

No mandatory, comprehensive resource for laboratory-developed tests (LDTs)*

- LDTs we are aware of:
 - Galleri | Grail
 - OneTest | 20/20 GeneSystems
 - EPISEEK (was Sentinel-10) | Precision Epigenomics
- Currently, no FDA-authorized MCD tests

Volume of MCD testing

- Galleri | Grail 185,000 commercial tests as of March 2024 (U.S.)
- Others unknown

*The FDA's final rule on LDTs, published April 29, 2024, requires that LDTs be registered and listed as medical devices. The FDA expects laboratories to comply by May 6, 2026.

Role of Federal Regulations

Under federal regulations, MCD tests may be used in clinical care as laboratory-developed tests (LDTs) without FDA review.

- LDTs are in vitro diagnostic products intended for clinical use that are designed, manufactured, and used within a single clinical laboratory.
 - They cannot be distributed for use in other laboratories.
- Laboratories offering LDTs are required to show that they measure what they say they can measure.
- MCD tests that are now available as LDTs are not required to show clinical validity (accurately predict the presence of cancer at early or advanced stages) or to show that the tests can be safely used without prompting unnecessary or harmful diagnostic evaluations.

Regulatory Standards Applied by FDA and CLIA

	FDA-reviewed in vitro diagnostics	Laboratory-developed tests overseen by CLIA
Demonstration of analytical performance (accurate and reproducible detection of the analytes of interest) for new tests	Yes	Yes
Demonstration of clinical validity (accuracy of identifying, measuring, or predicting a clinical condition, such as the presence of cancer at early or advanced stages)	Yes	No
External review of moderate-risk and high-risk tests before use on patients	Yes	No
Public reporting of adverse events (e.g., false results leading to unnecessary diagnostic workups)	Yes	No
Review and approval of product labeling to ensure comprehensiveness and accuracy	Yes	No
Review and approval of marketing claims based on supporting evidence	Yes	No
Registration of tests in a public database	Yes	No
Oversight that can recall faulty tests	Yes	No
Evaluation of a test's clinical utility, such as an effect of a test on reducing mortality	No	No

Analytes and Technologies Used to Develop MCDs

 MCD assays use circulating tumor DNA (ctDNA) and other biomarkers analyzed by variable technologies.

Examples of other biomarkers include:

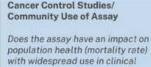
- Cell-free RNA, proteins, metabolites, and glycans.
- Circulating tumor cells.
- Tumor-educated platelets (platelets changed by tumors).
- Cancer stem cells in blood and other biospecimens.

Analytes and technologies used to develop MCDs

Analyte Subanalyte Measurement technology Extracted cancer-related features Cell-free DNA, circulating tumor DNA Whole-genome sequencing Somatic copy number alterations of sequence, fragment end points, i length, allelic imbalance (Jamshic Wan 2019 ^{23.b}) Whole-genome sequencing followed by targeted next-generation sequencing (Keller 2021 ^{24,c}) Targeted quantitative real-time polymerase chain reaction Methylation of the analyte Methylation of the followed by an analyte Reduced representation bisulfite sequencing followed by quantitative real-time polymerase chain reaction Reduced representation bisulfite sequencing followed by quantitative real-time polymerase chain reaction Reduced representation bisulfite sequencing followed by quantitative real-time polymerase chain reaction Targeted sodium bisulfite treatment enrichment Methylation block score (Liang 202:	
circulating tumor DNA Whole-genome sequencing followed by targeted next-generation sequencing (Keller 2021 ^{24,c}) Whole-genome sequencing followed by targeted next-generation sequencing (Keller 2021 ^{24,c}) Targeted quantitative real-time polymerase chain reaction Methylation of the analyte Methylation of the followed by targeted next-generation bisulfite sequencing Reduced representation bisulfite sequencing followed by next-generation sequencing Sequence, fragment end points, in length, allelic imbalance (Jamshid Wan 2019 ^{23,b}) Short and long fragment coverage of chromosomal arm copy numbers (Cr 2019 ^{25,a}), small somatic variants 2022 ^{22,a}) Single nucleotide variants/small inserved deletions (Cohen 2018, ^{26,a} Stack Cancer-specific hypomethylation and hypermethylation and tissue-spe hypomethylation and hypermeth (Stackpole 2022 ^{28,a}), whole-genome methylation pathylation profile and profile (Van Paemel 2021 ^{29,a}) Sodium bisulfite treatment followed by quantitative real-time polymerase chain reaction DNA methylation signal (Vrba 2022)	
next-generation sequencing (Keller 2021 ^{24,c}) chromosomal arm copy number mitochondrial copy numbers (Cr 2019 ^{25,a}), small somatic variants 2022 ^{22,a}) Targeted quantitative real-time polymerase chain reaction Methylation of the analyte Whole-genome bisulfite sequencing Analyte Whole-genome bisulfite sequencing Cancer-specific hypomethylation and hypermethylation and tissue-spe hypomethylation and typermeth (Stackpole 2022 ^{28,a}), whole-genomethylation pattern (Jamshidi 20 Reduced representation bisulfite sequencing Followed by next-generation sequencing Sodium bisulfite treatment followed by quantitative real-time polymerase chain reaction Chromosomal arm copy number mitochondrial copy numbers (Cr 2019 ^{25,a}), small somatic variants deletions (Cohen 2018, ^{26,a} Stack) Cancer-specific hypomethylation and hypermeth (Stackpole 2022 ^{28,a}), whole-genomethylation pattern (Jamshidi 20 Sequenced methylation profile and profile (Van Paemel 2021 ^{29,a})	fragment
reaction Methylation of the analyte Whole-genome bisulfite sequencing Analyte Whole-genome bisulfite sequencing Analyte Cancer-specific hypomethylation and hypermethylation pattern (Jamshidi 20 Reduced representation bisulfite sequencing followed by next-generation sequencing Sequenced methylation profile and or profile (Van Paemel 2021 ^{29,a}) Sodium bisulfite treatment followed by quantitative real-time polymerase chain reaction	changes, ristiano
analyte hypermethylation and tissue-spe hypomethylation and hypermeth (Stackpole 2022 ^{28,a}), whole-gend methylation pattern (Jamshidi 20 Reduced representation bisulfite sequencing followed by next-generation sequencing profile (Van Paemel 2021 ^{29,a}) Sodium bisulfite treatment followed by quantitative real-time polymerase chain reaction	
followed by next-generation sequencing profile (Van Paemel 2021 ^{29,a}) Sodium bisulfite treatment followed by quantitative DNA methylation signal (Vrba 2022 real-time polymerase chain reaction	ecific nylation ome
real-time polymerase chain reaction	copy number
Targeted sodium hisulfite treatment enrichment Methylation block score (Liang 202)	^{30,a})
	1 ^{31,a})
followed by next-generation sequencing Hypomethylation and/or hypermeth for cancer and/or tissue-specific patterns (Liu 2020 ^{32,a})	
Methylation fraction (Liang 2021, ^{31,} 2019, ^{33,a} Chen 2020 ^{34,a})	^{,a} Oxnard
Immunoprecipitation enrichment followed by quantitative real-time polymerase chain shen 2018 ^{36,a}) reaction or next-generation sequencing	ng 2017, ^{35,a}
DNA copy number Next-generation sequencing Copy number variants (Chan 2013, aberrations 2021 ^{24,c})	^{37,a} Keller

Analytes and technologies used to develop MCDs

Analyte	Subanalyte	Measurement technology	Extracted cancer-related features
Cell-free RNA	miRNA	Quantitative real-time polymerase chain reaction with a gene panel	Gene expression (Vykoukal 2022 ^{38,b})
Protein	Plasma proteins	Immunoassays with a protein panel	Quantity of protein (Cohen 2018, ^{26,a} Lennon 2020, ^{27,a} Fahrmann 2019 ^{39,a})
	Serum proteins	Immunoassays with a protein panel	Quantity of protein (Wen 2015, 40, a Wang 2018 41, a)
Metabolites		Ultra performance liquid chromatography, quadrupole time-of-flight mass spectrometry	Feature annotation based on custom libraries of standards (Fahrmann 2019 ^{39,a})
Glycans	Glycosaminoglycans	Capillary electrophoresis with laser-induced fluorescence (Gatto 2018 ^{42,b}) ultra high-performance liquid chromatography—tandem mass spectrometry (Bratulic 2022 ^{43,a})	GAGome features
Extracellular	Total EV RNA	Quantitative real-time polymerase chain reaction	Gene expression (Alen 2023 ^{44,a})
vesicles (EVs)	miRNA	Quantitative real-time polymerase chain reaction	Gene expression (Tengda 2018 ^{45,b})
	Proteins	Aptamer-based proteomics	Protein expression level (Fahrmann 2020 ^{46,a})
		Immunoassay for targeted protein	Quantity of protein (Hinestrosa 2022 ^{47,a}), quantification of protein (Hinestrosa 2022 ^{47,a})
	Proteins of serum EVs	Flow cytometry on isolated exosomes for presence of targeted protein	Count of EVs with target protein (Melo 2015 ^{48,b})
	mRNA	Targeted nanoString nCounter (nanoString Technologies, Inc.)	Gene expression (Fortunato 2022 ^{49,b})



Analytes and technologies used to develop MCDs

Analyte	Subanalyte	Measurement technology	Extracted cancer-related features
Tumor-educated platelets	mRNA	Next-generation sequencing	Differential level of expression (Best 2018 ^{50,a})
Cancer stem cells	mRNA	Quantitative real-time polymerase chain reaction	Gene expression (Tripathi 2021 ^{51,a})
Circulating tumor cells	Chromosomal aberrations	Locus-targeted fluorescence in situ hybridization assay	Circulating tumor cells and total number of abnormality quantities (Katz 2020 ^{52,b})

Stage of Biomarker Development of MCD Tests Using Early Detection Research Network 5-phase Framework

population health (mortality rate) with widespread use in clinical practice or large randomized, controlled clinical trials?

None

Prospective Screening Studies

Does the assay perform accurately in the intended screening population in clinical trials?

Grail/Galleri^{TM 25-28} Exact Sciences/CancerSeek^{TM 20, 29}

Retrospective/ **Longitudinal Studies**

Does the assay accurately identify cancer prior to clinical presentation in serial samples?

20/20 GeneSystems/OneTest^{TM 30, 31} Caris Life Sci/Caris Assure TML GPSai 32 Elypta/MIRAM-SKY33,34

LungLife Al/LungLB=35.36 MDAnderson/McaST 37-40

Singlera Genomics/PanSeer Assay⁴¹

Clinical Assay Development & Validation

Does the assay find known cancers in samples from people with cancer?

Adela Bio/Adela^{TM 42-45} Burning Rock/OverCTM 46

Biological Dynamics/Tr(ACE)47-49 BlueStar Genomics/BluestarMCED 50, 51 Datar Cancer Cenetric/TriNetra 52 Delfi Diagnostics/DELFI TM 53 EarlyDx/cfMethyl-Seq 54

Freenome⁵⁵

Guardant Health/Shield 56 Precision Epigenomics/ Sentinel-10^{™ 57-59} Rivela Diagnostics 60

Preclinical Exploratory Studies

What biomarkers signal which cancers?

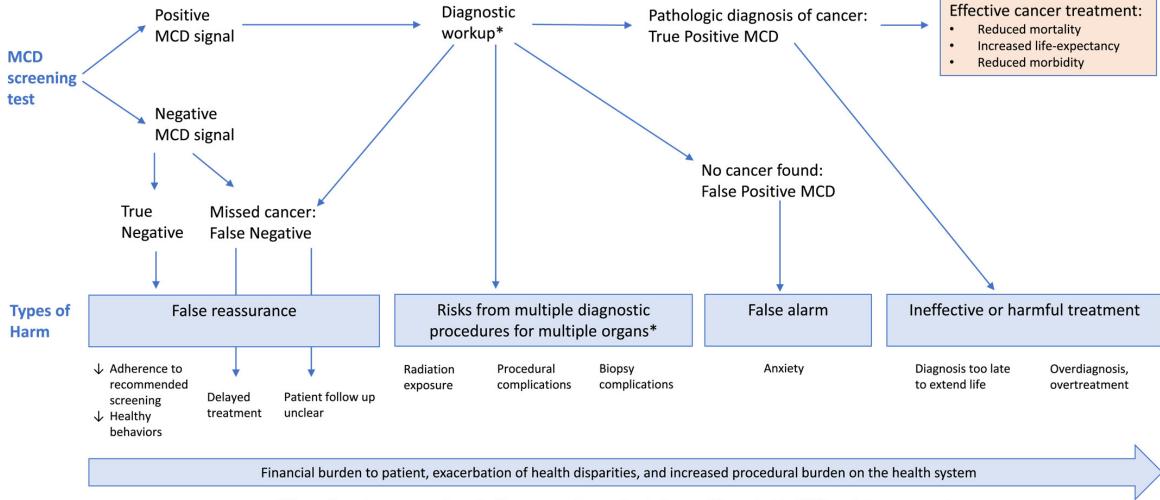
Numerous academic and private industry teams pursuing development

Phase 4: Test Sensitivity drops further due to imperfect downstream diagnostic procedure; Specificity of test may drop.

Phase 3: Test Sensitivity drops due to presence of earlier stage disease in presymptomatic, pre-clinical specimens

<u>Phase 2</u>: Test clinical diagnostic performance is most optimistic

Rubinstein. Patriotis et al. CA A Cancer J Clinicians. March 2024 DOI: (10.3322/caac.21833)


Diagnostic Performance of MCD Tests

- Sensitivity and Specificity
- Average overall Sensitivity of MCD tests: 27% 95%, at Specificities of 95% - 99%
 - Early-stage cancer (e.g., Stage I) Sensitivity: 27% 62%
 - Late-stage cancer (e.g., Stage III) Sensitivity: 60% 87%
- Tissue-of-Origin (TOO) Prediction
- Most MCD tests provide a primary and secondary predictions for possible TOO of a positive MCD signal to help guide the diagnostic workup
- Average accuracy of TOO prediction is ~77% with a range of 68% 86%

Unique Challenges of MCDs

- Defining a meaningful endpoint(s) for clinical trials of MCDs.
 - Cancer mortality has been the benchmark for a meaningful endpoint
 - Stage shift has not been proven as a surrogate endpoint for cancer mortality
- Potential Harms:
 - False reassurance
 - Risks from multiple procedures
 - False alarms
 - Ineffective or harmful treatment

Possible Outcomes from an MCD Screening Test

^{*} Diagnostic workups may require evaluations of several organ sites. An incorrect tissue of origin (TOO) prediction can prompt a diagnostic workup for the wrong cancer, leading to additional procedure-related complications.

Patient perceptions

- Patient testimonials
- Anxiety scales in research studies
- Emerging literature on perceptions of patients and clinicians
 - Samimi et al. Primary care physicians and laypersons' perceptions of multicancer detection clinical trial designs.
 - JNCI Cancer Spectr. 2024 Sep 2;8(5):pkae084. doi: 10.1093/jncics/pkae084.
 - Roybal et al. Perceptions of multi-cancer early detection tests among communities facing barriers to health care.
 - Health Affairs Scholar, 2(9), 2024, qxae102, https://doi.org/10.1093/haschl/qxae102
 - Stay tuned for publications from CSRN investigators

Patient perceptions

Subtheme	Quote
Simple and less invasive is good	"You're not cutting someone open and opening up the body and spreading things, so if this is something that's out there, that going to be useful for us."
One-stop shop to detect multiple cancers is convenient	"I like the idea of sort of one and done. One test sounds like it's pretty easy. You get results and then proceed from there."
A chance to treat it and beat it	"Early is important to me because the theory is the earlier you catch it, the better the results."
Comprehensive information about MCEDs	"And I would want to know how long this has been tested. How long has it been out there? What have been the results?"

Patient perceptions

Subtheme	Quote
Fear of screening outcomes	"You do have the psychological aspect. 'Oh my God, I can't sleep at night. Do I have cancer? Am I gonna die tomorrow?"
Lack of information on procedural aspects of screenings	"A lot of it is just not knowing what the procedure actually is and what's going to happen to you. If you're well informed, it does help."
Untrustworthy biomedical research and technology	"Right now, honestly, people don't trust science and so, to tell someone we have a test out here that's gonna cure and you're gonna know everythingit's not believable. It's almost like, almost far-fetched."
Lack of provider communication about and advocacy for screening	"My doctor didn't even tell me that there's screenings."

NCPF Workshop Topics

- Examples of current and emerging MCD tests.
- Challenges and opportunities to validate MCD tests and determine their clinical utility for detecting cancer and reducing cancer-specific mortality.
- Strategies for cancer care downstream of MCD testing, such as follow-up diagnostic testing and treatment decision-making.
- Limitations of MCD tests, including the burden on patients and health care systems from false-positive test results, overdiagnosis, and overtreatment.
- Research and policy gaps for assessing MCD tests and their impact on cancer care and outcomes and health equity.

Thank You