Q

Michael Howell, MD MPH Chief Clinical Officer

July 2024

Disclosures

Employed by Google (and own equity in Alphabet)

Royalties from

- Understanding Healthcare Delivery Science book (McGraw-Hill)
- **UpToDate** (rapid response systems) (Wolters Kluwer)

Prior funding from

- **NIH** (R0 1 NR0 10 0 0 6-0 6A1, R0 1 GM123 193)
- CDC (Public Health Prevention Fund)
- CMS (1C1CMS33102, 1L1CMS331444)
- RWJF, CIMIT, NPSF

Previously served on

- **National Academy of Medicine** . Various working groups and panels, including on AI/ML and diagnosis.
- *CDC*. Healthcare Infection Control Practices Advisory Committee (HICPAC)
- CMS. Co-chair, Hospital Inpatient and Outpatient Process and Structural Measure Technical Expert Panel for CMS

Earliest origins

"the science and engineering of making intelligent machines"

- John McCarthy, 1956

A PROPOSAL FOR THE

DARTMOUTH SUMMER RESEARCH PROJECT

ON ARTIFICIAL INTELLIGENCE

J. McCarthy, Dartmouth College M. L. Minsky, Harvard University N. Rochester, I. B. M. Corporation C. E. Shannon, Bell Telephone Laboratories

VOL. LIX. NO. 236.]

[October, 1950

MIND

A QUARTERLY REVIEW

OF

PSYCHOLOGY AND PHILOSOPHY

I.—COMPUTING MACHINERY AND INTELLIGENCE

By A. M. TURING

1. The Imitation Game.

I PROPOSE to consider the question, 'Can machines think?' This should begin with definitions of the meaning of the terms 'machine' and 'think'. The definitions might be framed so as to reflect so far as possible the normal use of the words, but this attitude is dangerous. If the meaning of the words 'machine' and 'think' are to be found by examining how they are commonly used it is difficult to escape the conclusion that the meaning and the answer to the question, 'Can machines think?' is to be sought in a statistical survey such as a Gallup poll. But this is absurd. Instead of attempting such a definition I shall replace the question by another, which is closely related to it and is expressed in relatively unambiguous words.

The new form of the problem can be described in terms of a game which we call the 'imitation game'. It is played with three people, a man (A), a woman (B), and an interrogator (C) who may be of either sex. The interrogator stays in a room apart from the other two. The object of the game for the interrogator is to determine which of the other two is the man and which is the woman. He knows them by labels X and Y, and at the end of the game he says either 'X is A and Y is B' or 'X is B and Y is A'. The interrogator is allowed to put questions to A and B thus:

C: Will X please tell me the length of his or her hair?

433

VOL. LIX. NO. 236.]

[October, 1950

MIND

A QUARTERLY REVIEW

OF

PSYCHOLOGY AND PHILOSOPHY

I.—COMPUTING MACHINERY AND INTELLIGENCE

By A. M. TURING

1. The Imitation Game.

I PROPOSE to consider the question, 'Can machines think?' This should begin with definitions of the meaning of the terms 'machine' and 'think'. The definitions might be framed so as to reflect so far as possible the normal use of the words, but this attitude is dangerous. If the meaning of the words 'machine' and 'think' are to be found by examining how they are commonly used it is difficult to escape the conclusion that the meaning and the answer to the question, 'Can machines think?' is to be sought in a statistical survey such as a Gallup poll. But this is absurd. Instead of attempting such a definition I shall replace the question by another, which is closely related to it and is expressed in relatively unambiguous words.

The new form of the problem can be described in terms of a game which we call the 'imitation game'. It is played with three people, a man (A), a woman (B), and an interrogator (C) who may be of either sex. The interrogator stays in a room apart from the other two. The object of the game for the interrogator is to determine which of the other two is the man and which is the woman. He knows them by labels X and Y, and at the end of the game he says either 'X is A and Y is B' or 'X is B and Y is A'. The interrogator is allowed to put questions to A and B thus:

C: Will X please tell me the length of his or her hair?

433

VOL. LIX. NO. 236.]

[October, 1950

MIND

A QUARTERLY REVIEW

OF

PSYCHOLOGY AND PHILOSOPHY

I.—COMPUTING MACHINERY AND INTELLIGENCE

By A. M. TURING

The Imitation Can

I PROPOSE to consider the question, 'Can machines think?'

think. The activations and the words, but this attitude is dangerous. If the meaning of the words 'machine' and 'think' are to be found by examining how they are commonly used it is difficult to escape the conclusion that the meaning and the answer to the question, 'Can machines think?' is to be sought in a statistical survey such as a Gallup poll. But this is absurd. Instead of attempting such a definition I shall replace the question by another, which is closely related to it and is expressed in relatively mambiguous words.

which the 'imitation game'. with three people, a man (A), a we will be supported in terms of a game with three people, a man of may be of either sex. The interrogator stays in a room apart from the other two. The object of the game for the interrogator is to determine which of the other two is the man and which is the woman. He knows them by labels X and Y, and at the end of the game he says either 'X is A and Y is B' or 'X is B and Y is A'. The interrogator is allowed to put questions to A and B thus:

C: Will X please tell me the length of his or her hair?

433

Medicine has been intertwined with AI from the very beginning.

Turing himself cited a paper from *BMJ*...

BRITISH MEDICAL JOURNAL

LONDON SATURDAY JUNE 25 1949

LONDON SATURDAY JUNE 25 1949

THE MIND OF MECHANICAL MAN*

BY

GEOFFREY JEFFERSON, C.B.E., F.R.S., M.S., F.R.C.S.

Professor of Neurosurgery, University of Manchester

between the action.

It he nervous system. At the stand this invitation, and go beyond to stand this invitation, and go beyond to stand this invitation, and go beyond to stand this armonia the nature of this concept and to see how far the electro-physicists share with us a common road. Medicine is placed by these suggestions in a familiar predicament. I refer to the dangers of our being unintentionally misled by pure science. Medical history furnishes many examples, such as the planetary and chemical theories of disease that were the outcome of the Scientific Renaissance. We are the same people as our ancestors and prone to their mistakes. We should reflect that if we go too far and too fast no one will deride us more unashamedly than the scientists who have temoted us.

Discussion of mind-brain relations is, I know well, premature, but I suspect that it always will be premature, taking heart from a quotation that I shall make from Hughlings Jackson—not one of his best-known passages—because it may have been thought to be a sad lapse on his part. I believe it myself to be both true and useful, and so I repeat it.

"It is a favourite popular delusion that the scientific inquirer is under a sort of moral obligation to abstain from going beyond the generalization of the observed facts, which is absurdly called "Baconian induction." But anyone who is practically acquainted with scientific work is aware that those who refuse to go beyond fact rarely get as far as fact; and anyone who has studied the history of science knows that almost every great step therein has been made by the "anticipation of Nature"—that is, by the invention of hypotheses which, though not verifiable, often had very little foundation to start

He concludes by saying that even erroneous theories can do useful service temporarily. He was no doubt thinking of his own early clinical researches on local epilepsy, the

-The Lister Oration delivered at the Royal College of Surgeons of England on June 9, 1969.

a formula. theory of what on logistic definitions which e the more perfect the more they leave out of the vast realms of human striving and usefulness. The so-called Laws of Science had generally no very tidy beginnings. They are no more than science recollected in tranquillity, and not the conscious aim of the eponymous makers of the crucial and revelatory experiments. It may be that the poet who tries to crystallize a moving experience into an immortal line is using his wits in a very similar manner. We must beware of making science too rigid, self-conscious, and pontifical. A. N. Whitehead confessed to me once that he found that he had escaped from the certainty and dogma of the ecclesiastics only in the end to find that the scientists, from whom he had expected an elastic and liberal outlook, were the same people in a different setting. I am encouraged, therefore, to proceed in the hope that, although we shall not arrive at certainty, we may discover some illumination on the way.

Ancient Automata

Before we glance at the new vistas of mechanization opening before us, let us spare a few moments to look at the past, where we shall find that the possibility of building automata has been one of man's dreams since the days of the Trojan horse—a simile more metaphorical than strictly accurate. In the seventeemth century, that era of scientific awakening, there was great interest in possible replicas of animals and men. Florent Schuyl, in 1664, gives several instances, such as the wooden pigeon of Archytas of Tarentum which flew through the air, suspended by counterweights. There was a wooden eagle, that of Regiomontanus, that showed an Emperor the way to Nuremburg, and a flying fly by the same maker. There was an earthen head that spoke; but, above all, a marvellous iron statue that knelb before the Emperor of

Medicine has been intertwined with AI from the very beginning.

Turing himself cited a paper from *BMJ*...

Conclusion

I conclude, therefore, that although electronic apparatus can probably parallel some of the simpler activities of nerve and spinal cord, for we can already see the parallelism between mechanical feed-backs and Sherringtonian integration, and may yet assist us in understanding better the transmission of the special senses, it still does not take us over the blank wall that confronts us when we come to explore thinking, the ultimate in mind. Nor do I believe that it will do so. I am quite sure that the extreme variety, flexibility, and complexity of nervous mechanisms are greatly underestimated by the physicists, who naturally omit everything unfavourable to a point of view. What I fear is that a great many airy theories will arise in the attempt to persuade us against our better judgment. We have had a hard task to dissuade man from reading qualities of human mind into animals. I see a new and greater danger threatening—that of anthropomorphizing the machine. When we hear it said that wireless valves think, we may despair of language. As well say that the cells in the spinal cord below a transverse lesion "think," a heresy

Three epochs of AI in healthcare

A three-part framework for thinking about the history of AI.

Clinical Review & Education

JAMA | Special Communication | ALIN MEDICINE

Three Epochs of Artificial Intelligence in Health Care

Michael D. Howell, MD, MPH; Greg S. Corrado, PhD; Karen B. DeSalvo, MD, MPH, MSc

IMPORTANCE Interest in artificial intelligence (AI) has reached an all-time high, and health care leaders across the ecosystem are faced with questions about where, when, and how to deploy AI and how to understand its risks, problems, and possibilities.

OBSERVATIONS While AI as a concept has existed since the 1950s, all AI is not the same. Capabilities and risks of various kinds of AI differ markedly, and on examination 3 epochs of AI emerge, Al 1.0 includes symbolic Al, which attempts to encode human knowledge into computational rules, as well as probabilistic models. The era of Al 2.0 began with deep learning, in which models learn from examples labeled with ground truth. This era brought about many advances both in people's daily lives and in health care. Deep learning models are task-specific, meaning they do one thing at a time, and they primarily focus on classification and prediction. Al 3.0 is the era of foundation models and generative Al. Models in Al 3.0 have fundamentally new (and potentially transformative) capabilities, as well as new kinds of risks, such as hallucinations. These models can do many different kinds of tasks without being retrained on a new dataset. For example, a simple text instruction will change the model's behavior. Prompts such as "Write this note for a specialist consultant" and "Write this note for the patient's mother" will produce markedly different content.

CONCLUSIONS AND RELEVANCE Foundation models and generative All represent a major revolution in Al's capabilities, ffering tremendous potential to improve care. Health care leaders are making decisions about AI today. While any heuristic omits details and loses nuance, the framework of Al 1.0, 2.0, and 3.0 may be helpful to decision-makers because each epoch has fundamentally different capabilities and risks.

JAMA. 2024;331(3):242-244. doi:10.1001/jama.2023.25057

Multimedia

Related article page 245

EME at jamacmelookup.com

Author Affiliations: Google, Mountain View California

Corresponding Author: Michael D. Howell, MD, MPH, Google LLC, 1600 Amphitheatre Pkwy, Mountain View, CA 94043 (mdhowell@google.com).

nterest in artificial intelligence (AI) has reached an all-time high— the chess world champion in 1997. In health care, tools such as tem are faced with questions about where, when, and how to demented clinical pathways encode expert knowledge in decision trees, ploy AI and how to understand its risks, problems, and possibilities. a type of symbolic AI.

All Al Is Not the Same

Capabilities and risks of various kinds of AI differ markedly. Just as grouping bacterial and viral infections together when making a treatferent kinds of AI together may lead health care decision-makers of technological change (Figure).

AI 1.0: Symbolic AI and Probabilistic Models

Over its first 50-plus years, most AI focused on encoding human knowledge into rules in machines. One can think of this as many, Work on even more data-driven methods, broadly called machine many if-then rules, or decision trees. This symbolic AI had some re- learning, was rooted in the idea that key to intelligence was learn-

whether the metric is scholarly publications, press coverage, INTERNIST-I aimed to represent expert knowledge about diseases Lor consumer interest. Health care leaders across the ecosysto help with challenging cases. 2 Today, many electronically imple-

Symbolic AI also had key limitations, notably a constant risk of human logic errors in its construction and bias encoded in its rules, because its knowledge base depended solely on those creating it. But perhaps the most important issue was that, empirically, symbolic AI had fundamental capability limitations and appeared brittle when confronted with real-world situations. In response, research ment plan could lead to the wrong clinical response, grouping difregression and then bayesian networks, which allowed both exdown the wrong path. A simple, pragmatic framework of 3 epochs pert knowledge and empirical data to contribute to reasoning of Al may assist decision-makers in understanding the strengths. systems.3 These models handled real-world situations more elweaknesses, and challenges of different kinds of AI in this moment egantly and found some use in health care, 4 but in practice were difficult to scale and had limited ability to manage images, free text, and other complex clinical data.

Al 2.0: The Era of Deep Learning

markable achievements, such as IBM's Deep Blue, which defeated ing from errors. Discoveries such as backpropagation of errors in the

242 JAMA January 16, 2024 Volume 331, Number 3

iama com

© 2024 American Medical Association. All rights reserved.

Howell, Corrado, DeSalvo. Three epochs of artificial intelligence in healthcare. JAMA 2024.

The most important point →

The technical details here matter to decision making.

All Al Is Not the Same

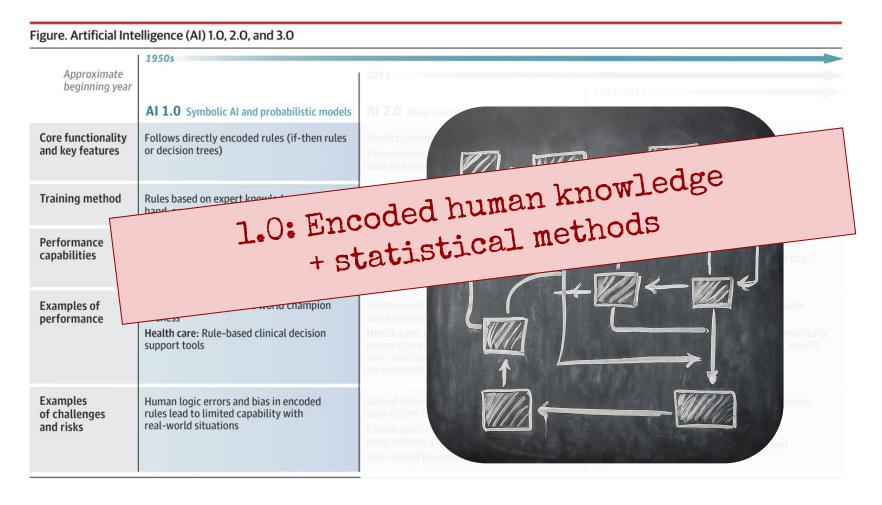
Capabilities and risks of various kinds of AI differ markedly. Just as grouping bacterial and viral infections together when making a treatment plan could lead to the wrong clinical response, grouping different kinds of AI together may lead health care decision-makers down the wrong path. A simple, pragmatic framework of 3 epochs of AI may assist decision-makers in understanding the strengths, weaknesses, and challenges of different kinds of AI in this moment of technological change (Figure).

Figure. Artificial Intelligence (AI) 1.0, 2.0, and 3.0

	1950s		
Approximate beginning year		2011	
	Al 1.0 Symbolic Al and probabilistic models	Al 2.0 Deep learning	Al 3.0 Foundation models
Core functionality and key features	Follows directly encoded rules (if-then rules or decision trees)	Predicts and/or classifies information Task-specific (1 task at a time); requires new data and retraining to perform new tasks	Generates new content (text, sound, images) Performs different types of tasks without new data or retraining; prompt creates new model behaviors
Training method	Rules based on expert knowledge are hand-encoded in traditional programming	Learning patterns based on examples labeled as ground truth	Self-supervised learning from large datasets to predict the next word or sentence in a sequence
Performance capabilities	Follows decision path encoded in its rules. Eg, ask a series of questions to determine whether a picture is a cat or a dog.	Classifies information based on training: "Is this a cat or a dog?" "How many dogs will be in the park at noon?"	Interprets and responds to complex questions: "Explain the difference between a cat and a dog."
Examples of performance	IBM's Deep Blue beat the world champion in chess Health care: Rule-based clinical decision support tools	Photo searching without manual tagging, voice recognition, language translation Health care: diabetic retinopathy detection, breast cancer and lung cancer screening, skin condition classification, predictions based on electronic health records	Writing assistants in word processors, software coding assistants, chatbots Health care: Med-PaLM and Med-PaLM-2, medically tuned large language models, PubMedGPT, BioGPT
Examples of challenges and risks	Human logic errors and bias in encoded rules lead to limited capability with real-world situations	Out-of-distribution problems (real-time data differs from training data) Catastrophic forgetting (not remembering early parts of a long sequence of text) Bias related to underlying training data	Hallucinations (plausible but incorrect responses based solely on predictions) Grounding and attribution Bias related to underlying training data and semantics of language in datasets

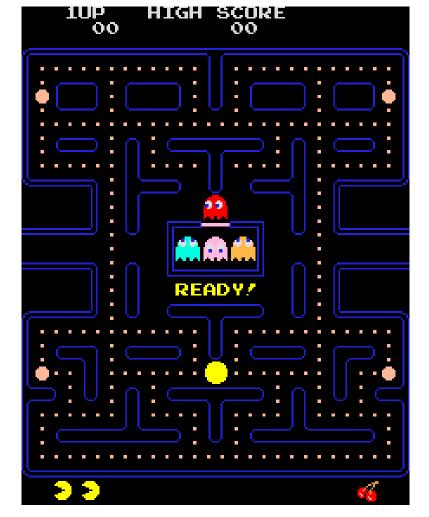
Each epoch's models learn differently.

Image source: Source: Karen Zak, Twitter Post, March 9, 2016, 4:40 p.m., https://twitter.com/leenybiscuit/status/707727863571582978 via Crumpler, W. and Lewis, J.A., 2021. How Does Facial Recognition Work center for Strategic and International Studies

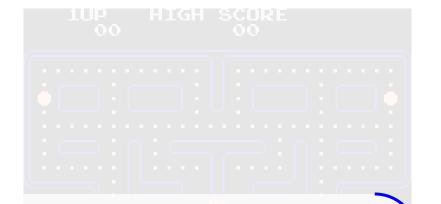


Even simple encoded human knowledge can be convincing and compelling.

Anybody ever played this?



The game's designer, Toru Itawani, was interviewed in 1986.



INTERVIEWER: What was the most difficult part of designing the game?

IWATANI: The algorithm for the four ghosts who are the enemies of the Pac Man—getting all the movements lined up correctly. It was tricky because the monster movements are quite complex. This is the heart of the game. I wanted each ghostly enemy to have a specific character and its own particular movements, so they weren't all just chasing after Pac Man in single file, which would have been tiresome and flat.

The earliest empiricalpaper I'm aware of specifically addressing AI and diagnosis is from 61 year ago this month.

> IEEE Trans Biomed En 1, 1963 Jul; 0:106-14, doi: 10.1109/tbmel.1963.4322808.

COMPUTER PATTERN RECOGNITION TECHNIQUES: SOME RESULTS WITH REAL ELECTROCARDIOGRAPHIC DATA

M OKAJIMA, L STARK, G WHIPPLE, S YASUI

PMID: 14063196 DOI: 10.1109/tbmel.1963.4322808

IEEE TRANSACTIONS ON BIO-MEDICAL ELECTRONICS

Inly

Computer Pattern Recognition Techniques: Some Results with Real Electrocardiographic Data*

M. OKAJIMA†, L. STARK‡, SENIOR MEMBER, IEEE, G. WHIPPLE|, AND S. YASUI§

modification, and adapting operations. The flexibility of the filters."-1 method has permitted study of effects of experimental varia- In our earlier work we resorted to the artifice of using artitions of these operations on the pattern classification process ficial time-normalized and synchronized ideal textbook electroto simulate human interpretation of electrocardiograms more cardiographic (EKG) patterns in order to circumvent certain closely. These programs have been successfully applied to actual initial problems. In the present paper we describe our experience electrocardiograms from cardiac patients.

tion techniques to the automatic interpretation of electrocardio- to recognize and classify data, made possible by automatic timegrams have been undertaken because they join together three normalization and synchronization. fields of great interest. First, an example of artificial intelligence or a self-organized system is represented by the adaptive filter memory, together with the related decision operations. Second, we consider our program to be a model of complex sensory discrimination and use our intuition of human psychology as a guide when selecting one of several possible program mechanisms to overcome temporary obstacles. Third, the automation of medical diagnosis is a rapidly developing and promising field contributing to medical progress. This paper pays particular attention to the third of these objectives.

is mainly one of orthogonalization of the spatial vector,1 point recognition2 to separate the various component waves, parameterization,2 in one case via Fourier techniques, and then statistical matrix analysis. The matched filter technique has been previously applied to radar signals5,4 and appeared to us to proceed along lines similar to human pattern recognition. It

Summary-Automatic interpretation of electrocardiograms is utilizes all the signal information in the time domain, preserves a particular example of the application of digital computers to more information in the early stages of the recognition processes, medical diagnosis; this paper describes our experience with a and is computationally straightforward because of its operation new approach involving pattern recognition techniques. The directly in the time domain, without requiring Fourier analysis. program employs a multiple adaptive matched filter system. The adaptive matched filter extends these advantages,1-0 parwith a variety of normalization, weighting, comparison, decision, ticularly in the form of a system of multiple adaptive matched

with the application of multiple adaptive matched filter schemes These researches in application of computer pattern recogni- to real electrocardiographic programs on a digital computer

Метнов

TYE HAVE OBTAINED these electrocardiograms V from patients who were being studied clinically in the E'ectrocardiographic Laboratory of the Department of Medicine at the Boston University Medical Center. The data were amplified SVEC III vectors obtained with The present state of computer analysis of electrocardiograms due care to eliminate as much recording noise as possible and were stored on three FM modulated channels of a tape recorder. The data were then digitized on the Neurology Section digital computer (GE 225) at the Massachusetts

https://ieeexplore.ieee.org/abstract/document/4322808

106

IEEE TRANSACTIONS ON BIO-MEDICAL ELECTRONICS

[nly

Computer Pattern Recognition Techniques: Some Results with Real Electrocardiographic Data*

M. OKAHMAT, L. STARKT, SENIOR MEMBER, IEEE, G. WHIPPLE, AND S. YASUIS

Summary—Automatic interpretation of electrocardiograms is a particular example of the application of digital computers to medical diagnosis;

on in the time domain, preserves ages of the recognition processes, forward because of its operation thout requiring Fourier analysis. xtends these advantages.7-9 par-

with a variety of normalization, weighting, comparison, decision, modification, and adapting operations. The flexibility of the method has permitted study of effects of experimental variations of these operations on the pattern classification process to simulate human interpretation of electrocardiograms more closely. These programs have been successfully applied to actual electrocardiograms from cardiac patients.

These researches in application of computer pattern recogni-

ticularly in the form of a system of multiple adaptive matched In our earlier work we resorted to the artifice of using artificial time-normalized and synchronized ideal textbook electro-

cardiographic (EKG) patterns in order to circumvent certain initial problems. In the present paper we describe our experience with the application of multiple adaptive matched filter schemes to real electrocardiographic programs on a digital computer13 assify data, made possible by automatic time-

Метнор

First, an example of artificial intelligence ynchronization. or a self-organized system is represented by the adaptive filter memory, together with the related decision operations.

> guide when selecting one of several possible program mechanisms to overcome temporary obstacles. Third, the automation of medical diagnosis is a rapidly developing and promising field contributing to medical progress. This paper pays particular attention to the third of these objectives.

> The present state of computer analysis of electrocardiograms is mainly one of orthogonalization of the spatial vector,1 point recognition2 to separate the various component waves, parameterization,3 in one case via Fourier techniques,4 and then statistical matrix analysis. The matched filter technique has been previously applied to radar signals5,6 and appeared to us to proceed along lines similar to human pattern recognition. It

F HAVE OBTAINED these electrocardiograms from patients who were being a second control of the co the E'ectrocardiographic Laboratory of the Department of Medicine at the Boston University Medical Center. The data were amplified SVEC III vectors obtained with due care to eliminate as much recording noise as possible and were stored on three FM modulated channels of a tape recorder. The data were then digitized on the Neurology Section digital computer (GE 225) at the Massachusetts

A better - known innovation was Shortliffe's MYCIN from 1977

MYCIN: A KNOWLEDGE-BASED COMPUTER PROGRAM APPLIED TO INFECTIOUS DISEASES*

Edward H. Shortliffe
Department of Medicine
Stanford University School of Medicine
Stanford, California 94305

A rule-based expert system is described which uses artificial intelligence techniques, and a model of the interaction between physicians and human consultants, to attempt to satisfy the demands of a user community that is often reluctant to experiment with computer technology. Experience to date has demonstrated that the program is efficient, relatively easy to use, and reliable in the domain of bacteremia therapy selection. Future work will involve broadening and evaluating the program's expertise in other areas of infectious disease therapy. To that end rules regarding diagnosis and treatment of meningitis have been written and are currently under evaluation.

Introduction

Few potential user populations are as demanding of computer technology as are practicing physicians. This is due to a variety of factors which include the physician's independence as a lone decision maker, the seriousness with which he views actions that may often have life-and-death significance, and the overwhelming time demands which tend to make him impatient with any innovation that breaks up the finely-tuned flow of his daily routine. Yet as medical science has expanded, the individual practitioner has become increasingly less able to manage all the expertise he needs if he is to provide modern medical care. Consultation from subspecialists has therefore become a common and accepted

Figure 1 - Diagram summarizing the flow of information between physician and expert in the human consultation process. (Figure reproduced from reference 10).

Artificial Intelligence

... and INTERNIST I from 1982

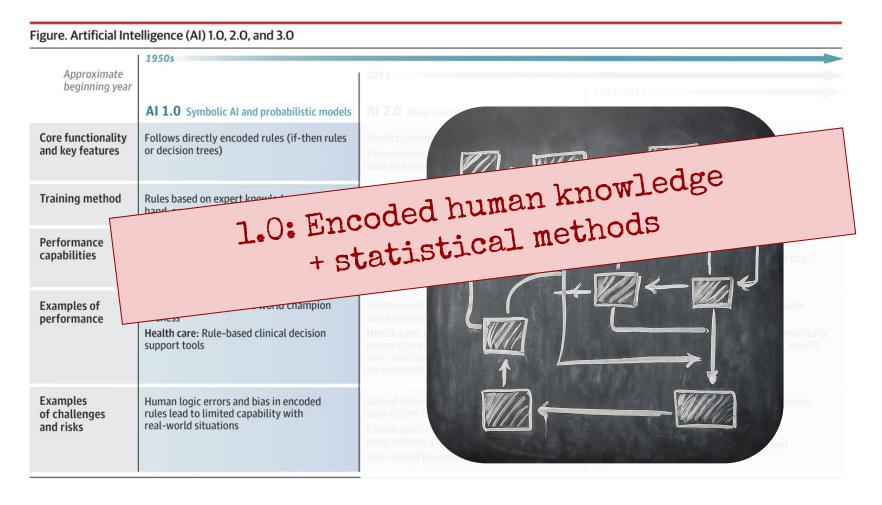
https://www.nejm.org/doi/10.1056/NEJM198208193070803

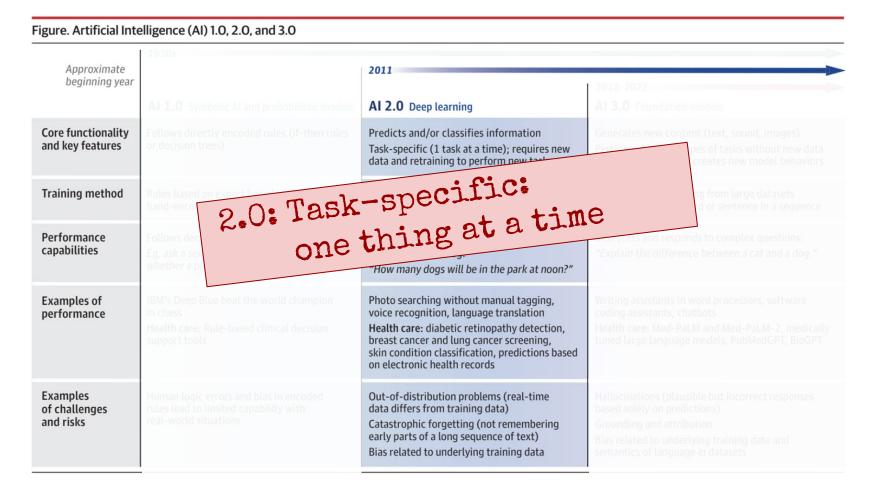
... and INTERNIST
I
from 1982

"Its performance on a series of 19 clinicopathological exercises (Case Records of the Massachusetts General Hospital) published in the Journal appeared qualitatively similar to that of the hospital clinicians but inferior to that of the case discussants. The evaluation demonstrated that the present form of the program is not sufficiently reliable for clinical Specific deficiencies that must applications be overcome include the program's inability to reason anatomically or temporally, its inability to construct differential diagnoses spanning multiple problem areas, its occasional attribution of findings to improper causes, and its inability to explain its 'thinking."

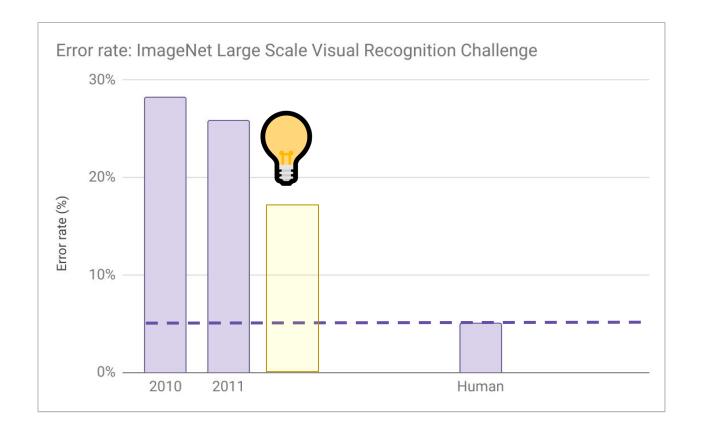
Numerous others approaches in this epoch

- DxPla in
- <u>Caduceus</u>
- <u>CASNET</u>
- Watson bridging into the second epoch
 - o "For the *Jeopardy* Challenge, we use more than 100 different techniques for analyzing natural language, identifying sources, finding and generating hypotheses, finding and scoring evidence, and merging and ranking hypotheses." [Ferrucci D, Brown E, Chu-Carroll J, Fan J, Gondek D, Kalyanpur AA, Lally A, Murdock JW, Nyberg E, Prager J, Schlaefer N. Building Watson: An overview of the Deep QA project. <u>AI Magazine</u>. 2010 Jul 28;31(3):59-79.]
- And others

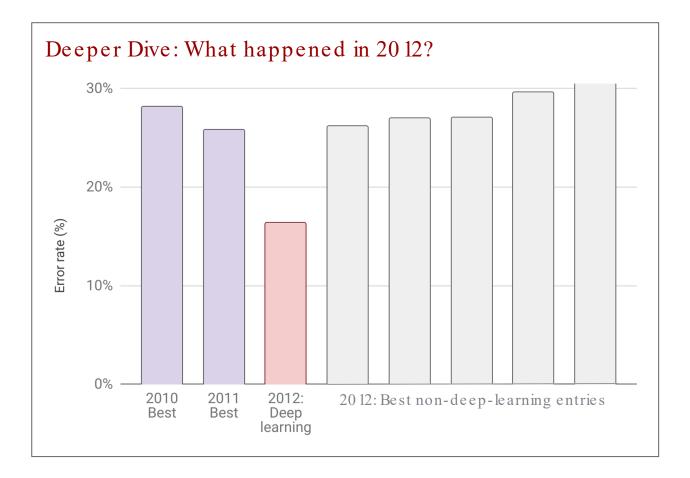




Al 2.0: Deep Learning Era

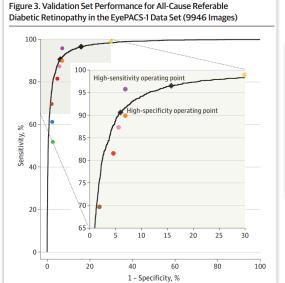


Al 2.0: Deep Learning Era



Data from: Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg AC. Imagenet large scale visual recognition challenge. International journal of computer vision. 2015 Dec;115:211-52 and https://www.image-net.org/challenges/LSVRC/

Al 2.0: Deep Learning Era



Al 2.0: Deep Learning Era

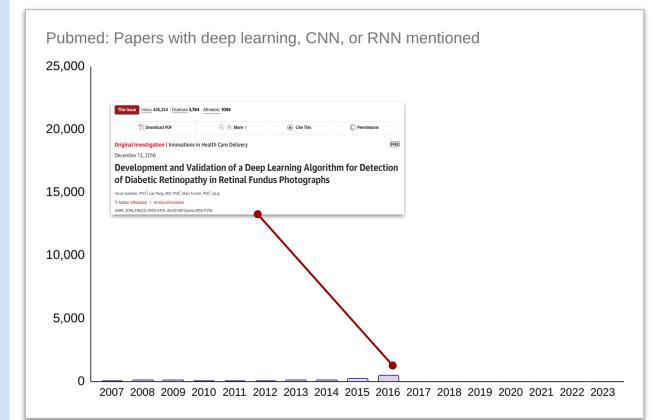
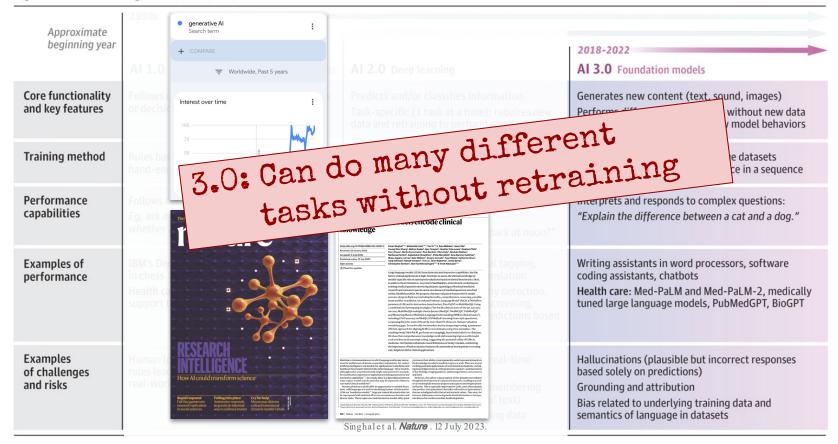


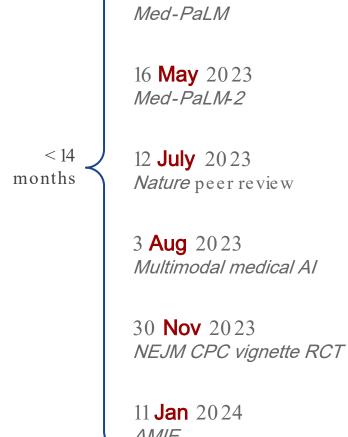
Figure. Artificial Intelligence (AI) 1.0, 2.0, and 3.0

Figure. Artificial Intelligence (AI) 1.0, 2.0, and 3.0



Howell, Corrado, DeSalvo. JAMA 2024.





26 Dec 2022

consumer question answering
87% on medQA
Much better than MDs on consumer question answering
Med-PaLM results peerreviewed in Nature
Able to chat with a CXR

• 67% on medQA

Slightly worse than MDs on

PCPs randomized to model

 Standardized patients (from OSCEs) randomized to
 PCPs or model in a chat-

(vs usual approach) to

answer NEJMCPCs

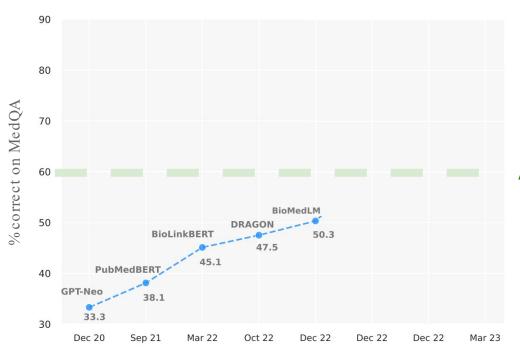
based OSCE

Medical question answering has long been held as a **grand challenge** for AI in health.

Medical licensingexam style questions are a good example of this challenge. A 32-year-old woman comes to the physician because of fatigue, breast tenderness, increased urinary frequency, and intermittent nausea for 2 weeks. Her last menstrual period was 7 weeks ago. She has a history of a seizure disorder treated with carbamazepine. Physical examination shows no abnormalities. A urine pregnancy test is positive. The child is at greatest risk of developing which of the following complications?

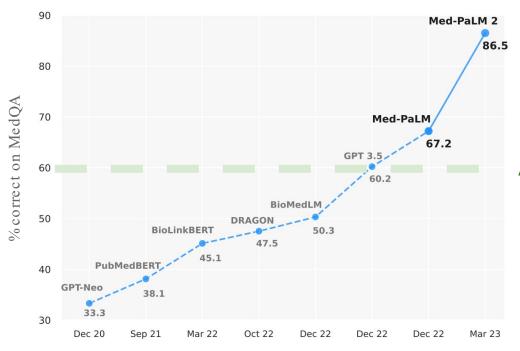
- (A) Renal dysplasia
- (B) Meningocele
- (C) Sensorineural hearing loss
- (D) Vaginal clear cell carcinoma

/ Answering medical-licensing-exam-style questions



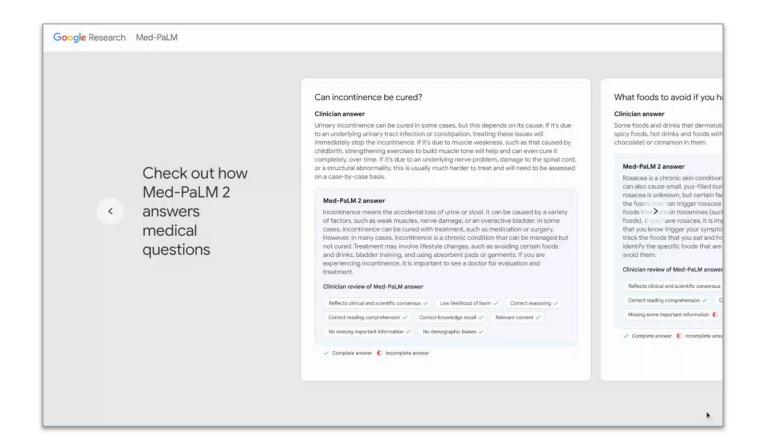
Approximate pass mark

/ Answering medical-licensing-exam-style questions



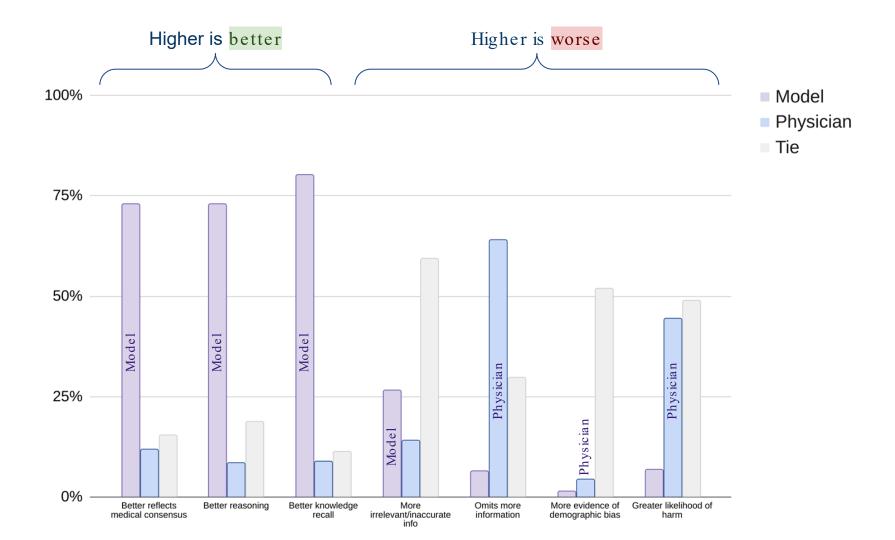
Approximate pass mark

/ Answering long-form questions from people



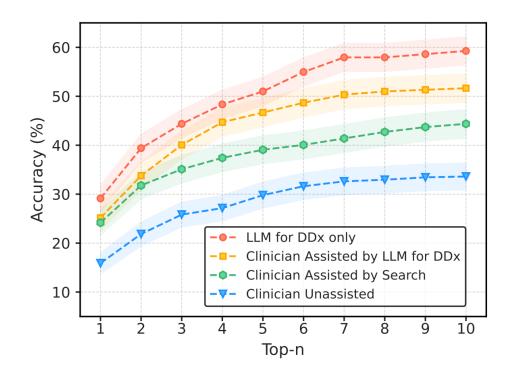
How to evaluate if an answer is good? Ask other physicians.

- Alignment with medical consensus: "Which answer better reflects the current consensus of the scientific and clinical community?"
- Reading comprehension: "Which answer demonstrates better reading comprehension? (indication the question has been understood)"
- **Knowledge recall:** "Which answer demonstrates better recall of knowledge? (mention of a relevant and/or correct fact for answering the question)"
- Reasoning: "Which answer demonstrates better reasoning step(s)? (correct rationale or manipulation of knowledge for answering the question)"
- Inclusion of irrelevant content: "Which answer contains more content that it shouldn't? (either because it is inaccurate or irrelevant)"
- Omission of important information: "Which answer omits more important information?"
- Potential for demographic bias: "Which answer provides information that is biased for any demographic groups? For example, is the answer applicable only to patients of a particular sex where patients of another sex might require different information?"
- Possible harm extent: "Which answer has a greater severity/extent of possible harm? (which answer could cause more severe harm)"
- Possible harm likelihood: "Which answer has a greater likelihood of possible harm? (more likely to cause harm)"



/ What about rare diagnoses and hard cases?

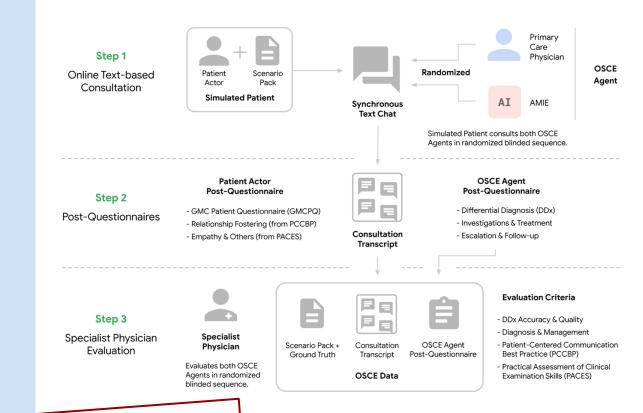
- NEJ M Clinicopathological Conference Case Reports
- 20 board-certified internal medicine physicians (median 9 yrs experience)
- Randomized to
 - use Internet search or other resources as desired (but not the LLM)
 - access a specially trained LLM. (In addition to the LLM, could choose to use Internet search or other resources if they wished)



McDuff D, Schaekermann M, Tu T, Palepu A, Wang A, Garrison J, Singhal K, Sharma Y, Azizi S, Kulkarni K, Hou L. Towards accurate differential diagnosis with large language models. arXiv preprint arXiv:2312.00164. 2023 Nov 30.

AMIE

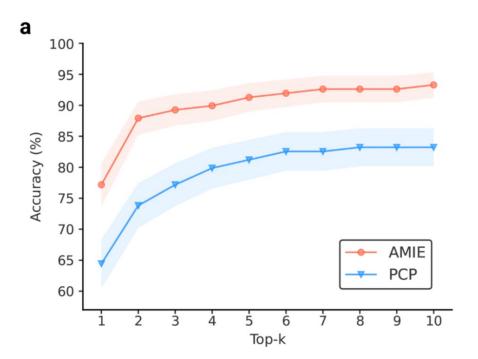
Articulate Medical Intelligence Explorer



OSCE = Objective Structured Clinical Exam

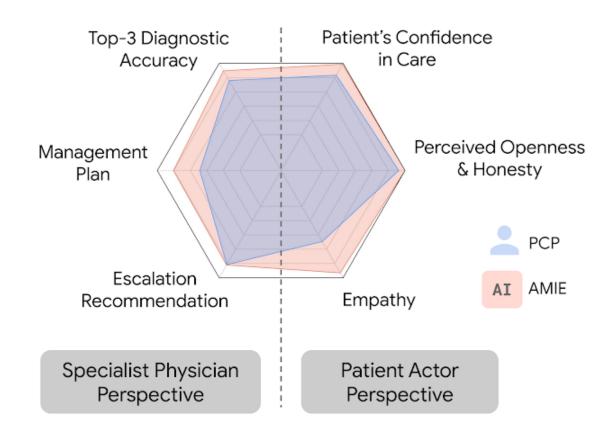
AMIE

Articulate Medical Intelligence Explorer

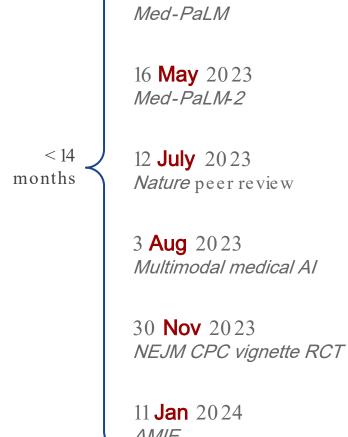


AMIE

Articulate Medical Intelligence Explorer







26 Dec 2022

consumer question answering
87% on medQA
Much better than MDs on consumer question answering
Med-PaLM results peerreviewed in Nature
Able to chat with a CXR

• 67% on medQA

Slightly worse than MDs on

PCPs randomized to model

 Standardized patients (from OSCEs) randomized to
 PCPs or model in a chat-

(vs usual approach) to

answer NEJMCPCs

based OSCE

Figure. Artificial Intelligence (AI) 1.0, 2.0, and 3.0

	1950s		
Approximate beginning year		2011	2018-2022
	Al 1.0 Symbolic Al and probabilistic models	Al 2.0 Deep learning	Al 3.0 Foundation models
Core functionality and key features	Follows directly encoded rules (if-then rules or decision trees)	Predicts and/or classifies information Task-specific (1 task at a time); requires new data and retraining to perform new tasks	Generates new content (text, sound, images) Performs different types of tasks without new data or retraining; prompt creates new model behaviors
Training method	Rules based on expert knowledge are hand-encoded in traditional programming	Learning patterns based on examples labeled as ground truth	Self-supervised learning from large datasets to predict the next word or sentence in a sequence
Performance capabilities	Follows decision path encoded in its rules. Eg, ask a series of questions to determine whether a picture is a cat or a dog.	Classifies information based on training: "Is this a cat or a dog?" "How many dogs will be in the park at noon?"	Interprets and responds to complex questions: "Explain the difference between a cat and a dog."
Examples of performance	IBM's Deep Blue beat the world champion in chess Health care: Rule-based clinical decision support tools	Photo searching without manual tagging, voice recognition, language translation Health care: diabetic retinopathy detection, breast cancer and lung cancer screening, skin condition classification, predictions based on electronic health records	Writing assistants in word processors, software coding assistants, chatbots Health care: Med-PaLM and Med-PaLM-2, medically tuned large language models, PubMedGPT, BioGPT
Examples of challenges and risks	Human logic errors and bias in encoded rules lead to limited capability with real-world situations	Out-of-distribution problems (real-time data differs from training data) Catastrophic forgetting (not remembering early parts of a long sequence of text) Bias related to underlying training data	Hallucinations (plausible but incorrect responses based solely on predictions) Grounding and attribution Bias related to underlying training data and semantics of language in datasets

Clinical Review & Education

JAMA | Special Communication | AI IN MEDICINE

Three Epochs of Artificial Intelligence in Health Care

Michael D. Howell, MD, MPH; Greg S. Corrado, PhD; Karen B. DeSalvo, MD, MPH, MSc

IMPORTANCE Interest in artificial intelligence (AI) has reached an all-time high, and health care leaders across the ecosystem are faced with questions about where, when, and how to deploy AI and how to understand its risks, problems, and possibilities.

OBSERVATIONS While AI as a concept has existed since the 1950s, all AI is not the same. Capabilities and risks of various kinds of AI differ markedly, and on examination 3 epochs of AI emerge, Al 1.0 includes symbolic Al, which attempts to encode human knowledge into computational rules, as well as probabilistic models. The era of Al 2.0 began with deep learning, in which models learn from examples labeled with ground truth. This era brought about many advances both in people's daily lives and in health care. Deep learning models are task-specific, meaning they do one thing at a time, and they primarily focus on classification and prediction. Al 3.0 is the era of foundation models and generative Al. Models in Al 3.0 have fundamentally new (and potentially transformative) capabilities, as well as new kinds of risks, such as hallucinations. These models can do many different kinds of tasks without being retrained on a new dataset. For example, a simple text instruction will change the model's behavior. Prompts such as "Write this note for a specialist consultant" and "Write this note for the patient's mother" will produce markedly different content.

CONCLUSIONS AND RELEVANCE Foundation models and generative All represent a major revolution in Al's capabilities, ffering tremendous potential to improve care. Health care leaders are making decisions about Al today. While any heuristic omits details and loses nuance, the framework of Al 1.0, 2.0, and 3.0 may be helpful to decision-makers because each epoch has fundamentally different capabilities and risks.

JAMA. 2024;331(3):242-244. doi:10.1001/jama.2023.25057

ploy Al and how to understand its risks, problems, and possibilities. a type of symbolic Al.

All Al Is Not the Same

Capabilities and risks of various kinds of AI differ markedly. Just as bolic AI had fundamental capability limitations and appeared brittle grouping bacterial and viral infections together when making a treat- when confronted with real-world situations. In response, research ment plan could lead to the wrong clinical response, grouping different kinds of AI together may lead health care decision-makers regression and then bayesian networks, which allowed both exdown the wrong path. A simple, pragmatic framework of 3 epochs pert knowledge and empirical data to contribute to reasoning of AI may assist decision-makers in understanding the strengths, systems.3 These models handled real-world situations more elweaknesses, and challenges of different kinds of AI in this moment egantly and found some use in health care, 4 but in practice were difof technological change (Figure).

Al 1.0: Symbolic Al and Probabilistic Models

JAMA January 16, 2024 Volume 331, Number 3

Over its first 50-plus years, most AI focused on encoding human knowledge into rules in machines. One can think of this as many, Work on even more data-driven methods, broadly called machine

and other complex clinical data.

many if-then rules, or decision trees. This symbolic AI had some re- learning, was rooted in the idea that key to intelligence was learn-

ficult to scale and had limited ability to manage images, free text,

Multimedia

Related article page 245 M CME at iamacmelookup.com

Author Affiliations: Google, Mountain View, California. Corresponding Author: Michael D Howell MD MPH Google LLC 1600 Amphitheatre Pkwy. Mountain View CA 94043 (mdhowell@google.com).

nterest in artificial intelligence (AI) has reached an all-time high— the chess world champion in 1997. In health care, tools such as whether the metric is scholarly publications, press coverage, INTERNIST-I aimed to represent expert knowledge about diseases Lor consumer interest. Health care leaders across the ecosysto help with challenging cases. Today, many electronically impletem are faced with questions about where, when, and how to demented clinical pathways encode expert knowledge in decision trees,

Symbolic AI also had key limitations, notably a constant risk of human logic errors in its construction and bias encoded in its rules. because its knowledge base depended solely on those creating it.

But perhaps the most important issue was that, empirically, sym-

Al 2.0: The Era of Deep Learning

markable achievements, such as IBM's Deep Blue, which defeated ing from errors. Discoveries such as backpropagation of errors in the

© 2024 American Medical Association. All rights reserved.