NATIONAL Sciences
ACADEMIES Engineering
Medicine

Moderate alcohol and cancer

Ned Calonge, Chair and Ian Saldanha Committee on Review of Evidence on Alcohol and Health NATIONAL Sciences Engineering Medicine

Review of Evidence on Alcohol and Health

Consensus Study Report

Committee, consultants and staff

Bruce N. Calonge (Chair). Associate Dean for Public Health Practice

Professor of Epidemiology Colorado School of Public Health Professor of Family Medicine University of Colorado School of Medicine

Andrew W. Brown

Associate Professor Department of Biostatistics University of Arkansas for Medical Sciences

Carlos A. Camargo, Jr.

Professor Emergency Medicine, Medicine and Epidemiology Harvard University

Patricia A. Cassano

Alan D. Mathios Professor Division of Nutritional Sciences Cornell University

Patrick M. Catalano

Professor in Residence Reproductive Endocrinology Unit Harvard University

NATIONAL Sciences Engineering Medicine

Kathryn E. Coakley

Assistant Professor
College of Population Health
University of New Mexico Health
Sciences Center

Luc Djousse

Associate Professor Medicine and Nutrition Harvard University

Jo L. Freudenheim

SUNY Distinguished Professor Department of Epidemiology and Environmental Health Associate Dean for Faculty Affairs School of Public Health Professions University at Buffalo

Rebecca A. Hubbard

Carl Kawaja and Wendy Holcombe Professor of Public Health Professor of Biostatistcs and Data Science School of Public Health Brown University

Michelle K. McGuire

Professor of Nutrition
Director of the Margaret Ritchie School of Family and
Consumer Sciences
University of Idaho

lan J. Saldanha

Associate Professor of Epidemiology and Health Policy and Management Bloomberg School of Public Health Johns Hopkins University

Susan M. Smith

Harris-Teeter Dickson Foundation Distinguished Professor in Nutrition University of North Carolina at Chapel Hill

Linda G. Snetselaar

Professor
Department of Epidemiology and Endocrinology/
Metabolism
Colleges of Public Health and Medicine
University of Iowa

Edith V. Sullivan

Professor Department of Psychiatry and Behavioral Sciences Stanford University School of Medicine Deepa Handu Lisa Moloney Mary Rozga Academy of Nutrition and Dietetics

Katrina B. Stone Study Director

Alice Vorosmarti
Associate Program Officer

Sarah Poncet Research Associate

Jennifer Stephenson

Research Associate

Rebecca Morgan Senior Librarian

Andi Reiser Senior Program Assistant

Ann L. YaktineDirector. Food and Nutrition Board

Former Staff

Takyera RobinsonAssociate Program Officer *(until November 2023)*

Jennifer Mouser
Senior Program Assistant (until June 2024)

The Committee's Task and Approach

Congress asked the USDA to contract with the National Academies to convene an expert committee to undertake a review of the current scientific evidence on the relationship between consumption of alcohol and health outcomes—including "certain cancers"

The committee focused on moderate alcohol consumption, defined as consuming alcoholic beverages up to the limit defined by the *Dietary Guidelines* for *Americans*, meaning two drinks or 28 grams of alcohol in a day for men and one drink or 14 grams of alcohol in a day for women

The Committee developed a list of inclusion and exclusion criteria to identify published literature published in English since 2010 and contracted with the Academy of Nutrition and Dietetics to conduct systematic reviews (SR)

Levels of Certainty

The committee based its framework for assigning certainty to conclusions on methods from the U.S. Preventive Services Task Force:


- High certainty: Evidence includes consistent results from good quality studies in relevant populations assessing effects on health outcomes; the conclusion is unlikely to be affected by future studies. High certainty is unlikely to be assigned without a randomized controlled trial (No conclusions were issued with high certainty)
- Moderate certainty: Evidence is sufficient to determine effects on health outcomes but is constrained by issues raised in the quality assessment of the evidence.
- Low certainty: Evidence is insufficient to assess effects on health outcomes;
 additional information from future studies may allow for assessment.

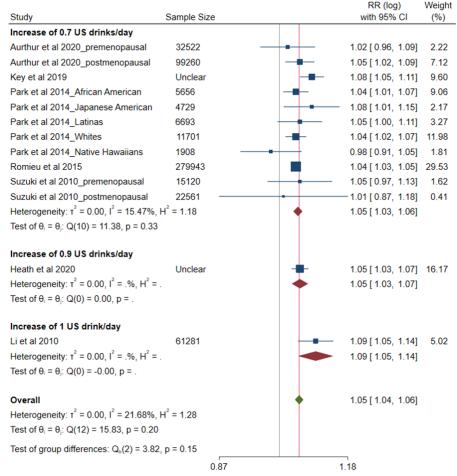
Abstainer Bias

- A key criteria for studies included in the review was that the comparison group did not combine former drinkers with never drinkers
- This avoids "abstainer bias"—former drinkers can include individuals
 who stopped drinking due to health reasons and this can bias results,
 such as overestimating potential benefits of moderate drinking
- Therefore, results in this report are not directly comparable to past evidence and reviews that did not address abstainer bias

Cancer (Chapter 5)

- Includes
 - Breast (female)
 - Oral, pharyngeal, laryngeal, esophageal
 - Colon, rectal
- Excludes
 - Studies that exclusively examine cancerrelated mortality, prevalence, survivorship, or recurrence of cancer
- 25 eligible studies screened from 20,190

Breast Cancer (Female)


FIGURE 5-2 Associations between moderate alcohol consumption and breast cancer compared to never consuming alcohol

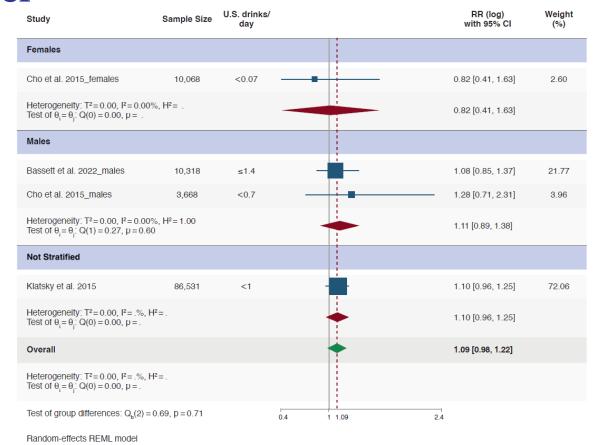
Oh. d.	0	LIO deimber/des		RR (log)	Weight
Study	Sample Size	US drinks/day		with 95% CI	(%)
Kawai et al 2011	14406	≥0.4 - <1.1		- 1.21 [0.71, 2.07]	2.11
Klatsky et al 2015	86531	<1	-	1.10 [1.00, 1.20]	73.28
Li et al 2010	Unclear	0.6-0.99		1.12 [0.92, 1.37]	15.09
White et al 2017	Unclear	<1		1.06 [0.82, 1.37]	9.52
Overall			•	1.10 [1.02, 1.19]	
Heterogeneity: τ ² =	0.00 , $I^2 = 0.00\%$	$_{0}$, $H^{2} = 1.00$			
Test of $\theta_i = \theta_j$: Q(3)	= 0.23, p = 0.97				
Test of $\theta = 0$: $z = 2$.	42, p = 0.02			_	
			1	[—] 2	

Random-effects REML model

Breast Cancer (Female)

FIGURE 5-3 Meta-analysis of relationship between increasing alcohol consumption by 10–14 grams (0.7-1.0 U.S. drinks/day) and breast cancer

Breast Cancer (Female)


FIGURE 5-4 Meta-analysis on association between higher and lower moderate alcohol consumption and breast cancer

Study	Sample Size	U.S. drinks/ day (exposure)	U.S. drinks/ day (reference)		RR (log) with 95% Cl	Weight (%)
Key et al. 2019	Unclear	0.6–1.1	0.2-0.5		1.05 [1.02, 1.09]	66.49
Romieu et al. 2015	225,293	0.4-1.1	≤0.4		1.06 [1.01, 1.11]	33.51
Overall					1.05 [1.02, 1.08]	
Heterogeneity: $T^2 = 0.00$, $I^2 = 0.00$,	= 0.75	1.00				
Random-effects REML mod	iel		1	1.05	1.2	

Colorectal Cancer

FIGURE 5-5 Meta-analysis on associations between moderate alcohol consumption and colorectal cancer compared to never consuming alcohol

Cancer Conclusions

Conclusion 5-1: The committee concludes that compared with never consuming alcohol, consuming a moderate amount of alcohol was associated with a higher risk of **breast cancer** (*moderate certainty*).

Conclusion 5-2: The committee concluded that among moderate alcohol consumers, higher versus lower amounts of moderate alcohol consumption were associated with a higher risk of **breast cancer** (*low certainty*).

Conclusion 5-3: The committee determined that no conclusion could be drawn regarding the association between moderate alcohol consumption compared with lifetime non-consumers and risk of **colorectal cancer**.

Research Gaps – Methodological Challenges

- Exposure (alcohol) measurement
 - Standard drink sizes 14 grams is a "standard drink" in the U.S.
 - Alcoholic beverage type predominantly wine/predominantly beer/predominantly spirits
 - Drinking patterns number/timing/frequency/amount (e.g., 1 per day vs. 7 on a night)
 - Intake reporting self-reporting (often underreported) vs. biochemical markers (expensive for large-scale studies) vs. sales/taxation records
- Comparison groups
 - Inclusion of former drinkers in nondrinker groups (abstainer bias)

Research Gaps – Methodological Challenges

- Analysis issues
 - Confounders & effect modifiers e.g., age, sex, genetic ancestry, SES, education, diet
 - Mediators avoidance of adjustment for mediators (may mask/lessen true effects)
- Causal inference study designs
 - Challenges with randomized trials costs, long duration, blinding, ethical issues
 - Mendelian randomization no known genes adequately capture differences in alcohol intake

Research Gaps – Cancer-specific gaps

Outcome	Research Gaps (Future studies should)	
Cancer	Breast: Stratify by menopausal status	
	Colorectal: Include larger sample sizes for greater statistical power	
	 Other sites: Evaluate oral, pharyngeal, laryngeal, esophageal, liver, gastric, pancreas, prostate, urinary bladder, renal (kidney), and endometrial cancer 	