Metabolic reprogramming in 3D ex-vivo lung adenocarcinoma cancer models
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Figure 3 A-C: Representative flow cytometry dot plots of EpCam and Sca1 markers for primary tumor,
microtumors, and organoids for the K mouse model. D-F: Quantification of AT2 and BASC cell

N populations in primary tumors, microtumors, and organoid models. N = 3-4 mice per condition. Data
 effluent shown as mean £ SD.
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Figure 4 A — C: UMAPs of primary tumors, microtumors, and organoids for all mouse models obtained
from single-cell RNA sequencing. D — G: Proportion of major cell types for all genotypes. Cell types are
described in the legend above. H: Heatmap showing the z-scores of various gene signatures in malignant
epithelial cells for the primary tumor, microtumors, and organoids for all genotypes. N = 1 — 4 mice per
model per genotype.
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Figure 7 A: Representative CD45 (magenta) immunofluorescence image of a lung
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Figure 2 A-D: Representative immunofluorescence images of mouse microtumors stained for Ki67. Actin A = ; NES metastatic patient tumors and microtumors.
was stained with phalloidin (white) and nuclei with Hoechst 33342 (cyan). E-H: Representative CD45 = "ex . Epithelial Mesenchymal Transition
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