Dielectrophoretic Analysis of Peripheral Blood Mononuclear Cells in Stages III and IV Breast Cancer Models

 $N\Lambda TION\Lambda L$ ΛCΛDEMIES Medicine

Policy Forum

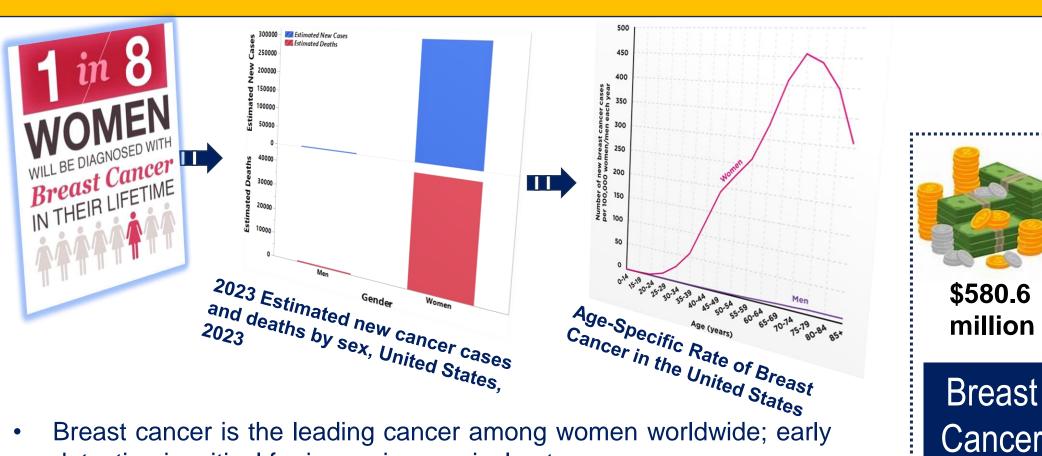
Sciences

Poster Session - Cancer Engineering: The Convergence of

Engineering and Health to Advance Cancer Research and Care

Raphael Oladokun¹, Timothy Eubank², Soumya Srivastava¹

¹Department of Chemical & Biomedical Engineering, ²Department of Microbiology, Immunology, & Cell Biology


ABSTRACT

- Peripheral blood mononuclear cells (PBMCs), produced from hematopoietic stem cells (HSCs), are crucial in surveilling for signs of infection, including cancer.
- Early detection of breast cancer remains a clinical challenge, especially in younger patients and those with dense breast
- Dielectrophoresis (DEP) provides a label-free approach to detect tumor-induced bioelectric changes in circulating peripheral blood mononuclear cells (PBMCs).
- PBMCs were isolated from FVB/N MMTV-PyMT+ mice (stages III and IV) and wild-type controls to evaluate their DEP profiles.

· Key DEP parameters measured included membrane conductance, cytoplasm

- conductivity, membrane permittivity, membrane capacitance, and crossover frequencies. · Significant differences in DEP properties were observed between cancer and control groups, with membrane conductance higher in cancerous PBMCs (p < 0.05).
- These findings suggest DEP-based biomarkers may distinguish tumor-bearing mice from healthy controls, supporting DEP's potential as a non-invasive diagnostic tool for breast cancer detection.

MOTIVATION

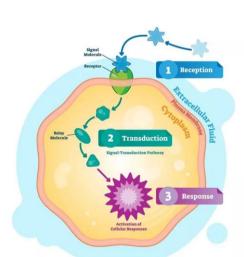
- Breast cancer is the leading cancer among women worldwide; early detection is critical for improving survival outcomes.
- Breast cancer deaths are typically due to metastasis of cancer cells from the breast to other parts of the body.
- The spread is a result of late detection, poor diagnosis, and lack of effective treatment.

OBJECTIVES

- Long-term goal: To non-invasively diagnose breast cancer early
- This technology will minimize false positives and negatives often seen in standard screening methods like mammography.
- This is adaptable as a point-of-care screening tool.
- To realize the long-term goal, we are probing the dielectric properties of the peripheral blood mononuclear cells (PBMCs) from peripheral blood sources of MMTV-PyMT mice at stage III and stage IV.

\$580.6

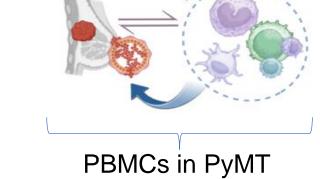
million

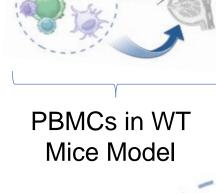

Projects

NATIONAL CANCER INSTITUTE

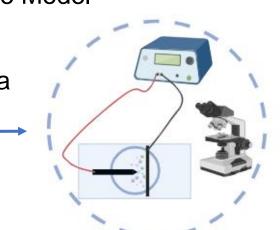
2022

HYPOTHESIS


Changes triggered in the subcellular components of PBMCs at the onset of carcinoma regulate dielectric properties, affecting the bioelectric signals aiding in the detection of breast cancer.


Bio Signaling

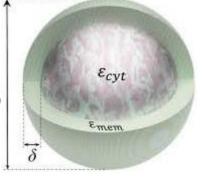
 Reception Transduction Response



different

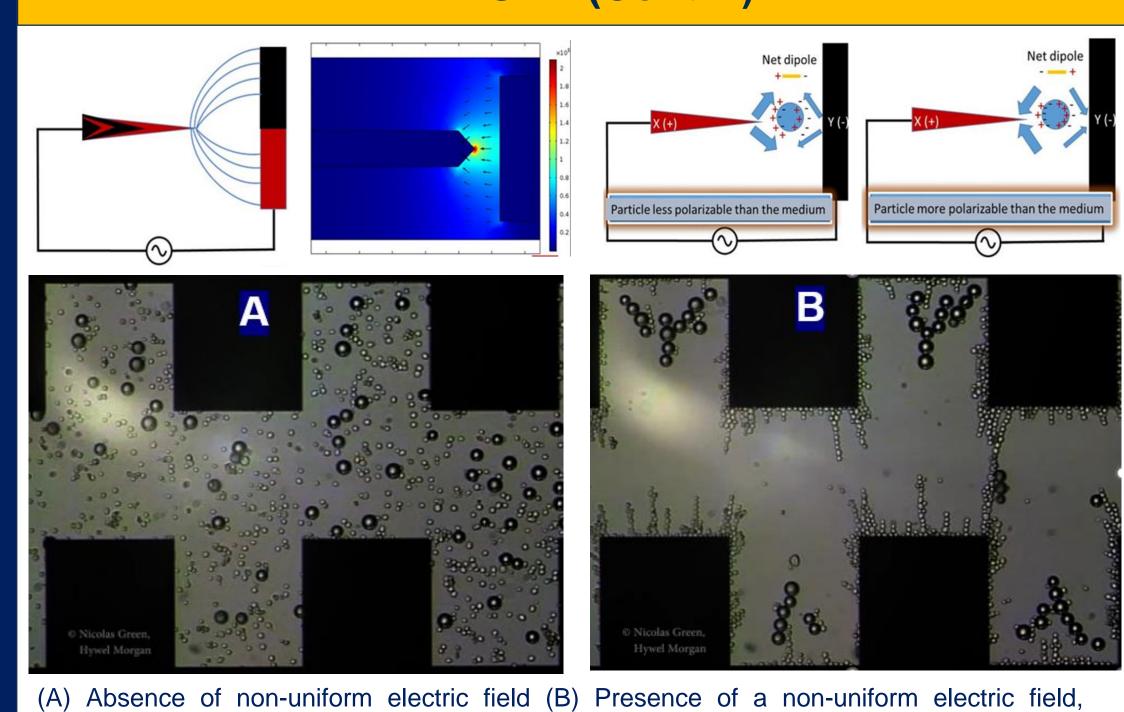
Mice Model detected via **DEP** properties of DEP PBMCs in PyMT and WT

mice models will be

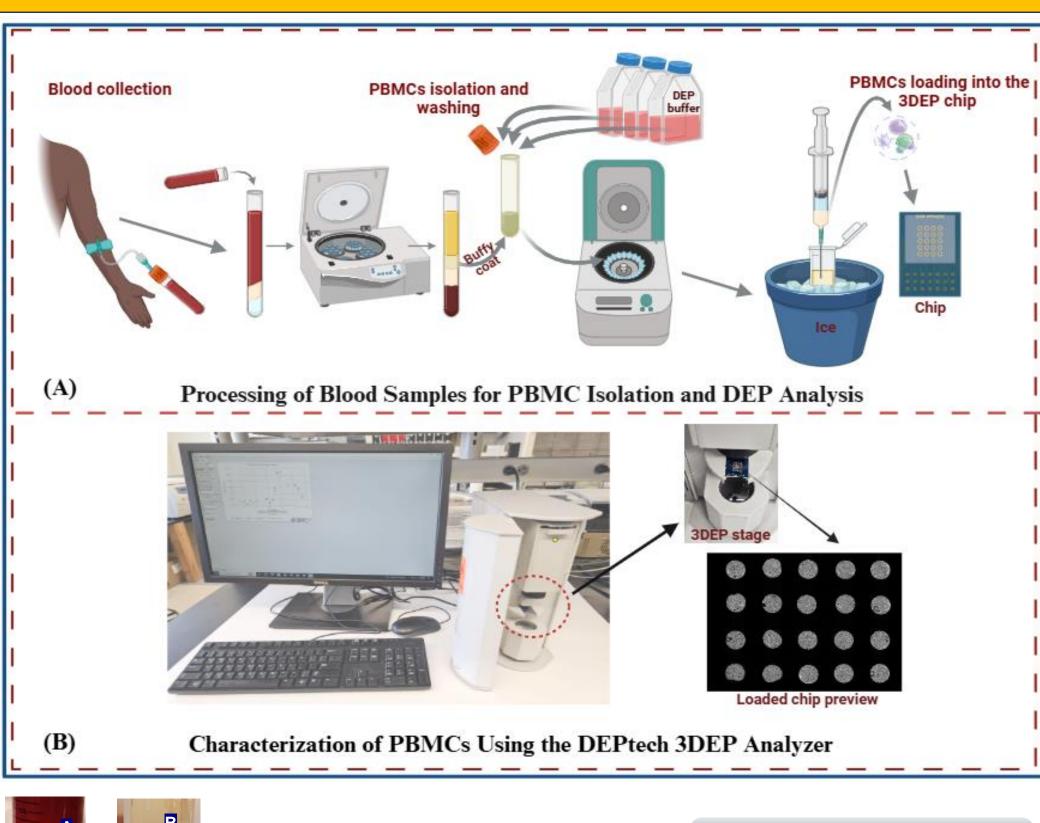

DIELECTROPHORESIS THEORY

Single Shell Model $F_{DEP} = 2\pi R^3 \, \epsilon_0 \, \epsilon_m \, Re[CM] \nabla E^2$

C, r, sp-mem, mem, p, G, and m represent capacitance, radius, specific membrane, membrane, particle (cell), conductance, $-R G_{sp-mem}$ and medium, respectively.

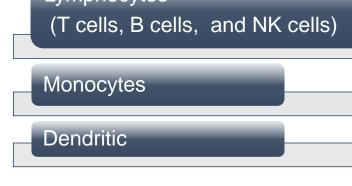

 $8\pi RC_{mem}$ $extbf{CM} = rac{\sigma_p^* - \sigma_m^*}{\sigma_p^* + 2\sigma_m^*} \quad or \quad rac{arepsilon_p^* - arepsilon_m^*}{arepsilon_p^* + 2arepsilon_m^*}$

 $\varepsilon_{\rm p} > \varepsilon_{\rm m}$ - Positive DEP (pDEP) $\varepsilon_{p} < \varepsilon_{m}$ - Negative DEP (nDEP)



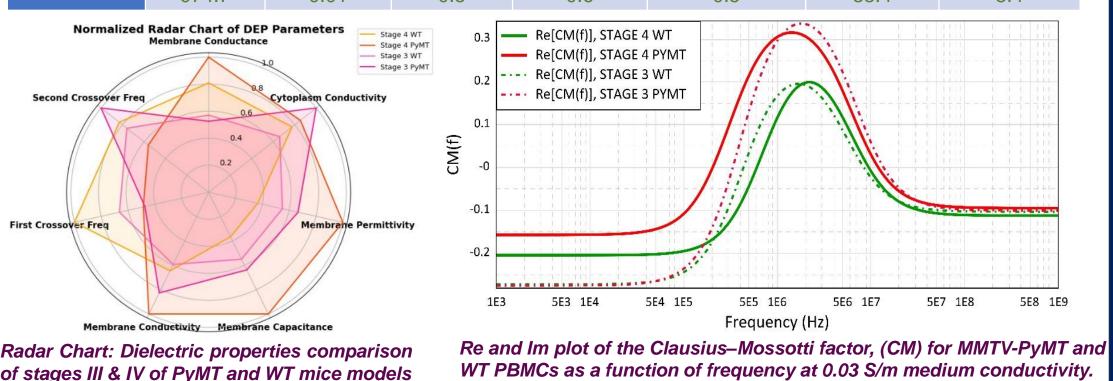
R = radius of the particle C_{mem} = membrane capacitance G_{mem} = membrane conductance ε_m = permittivity of the medium ε_p = permittivity of the particle

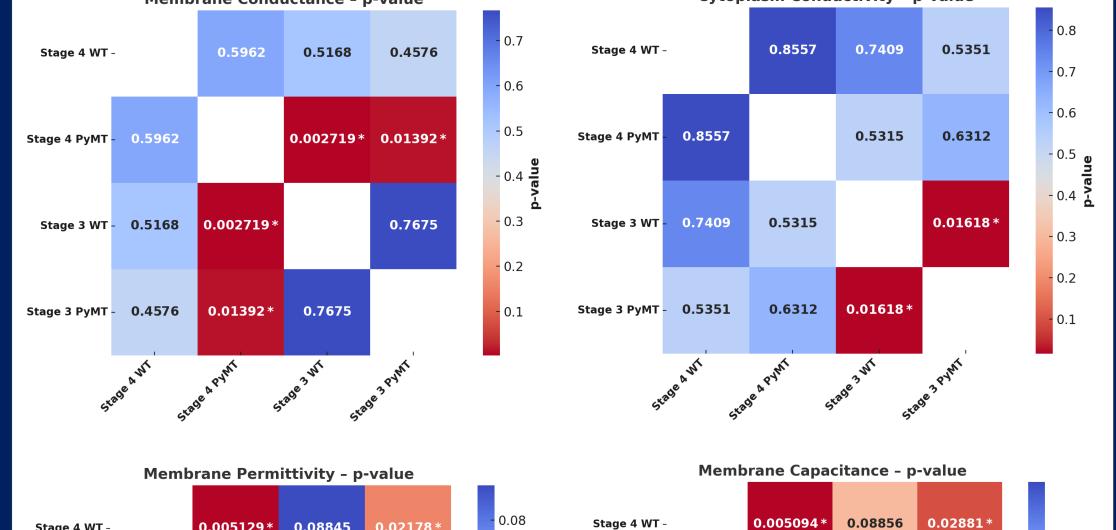
THEORY (Cont...)

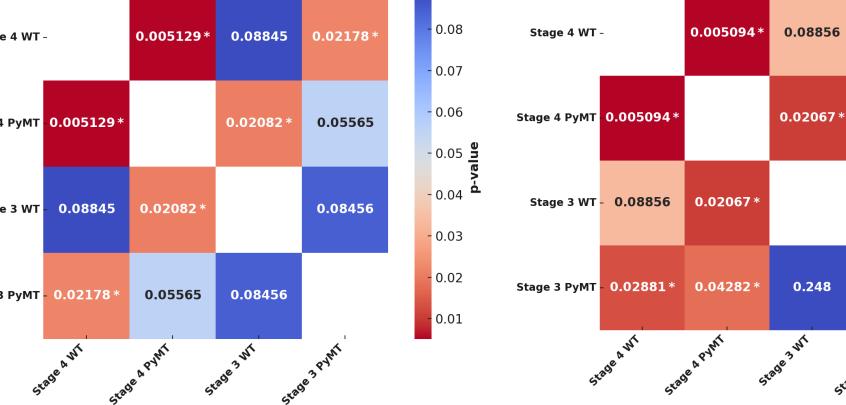

MATERIALS & METHODS

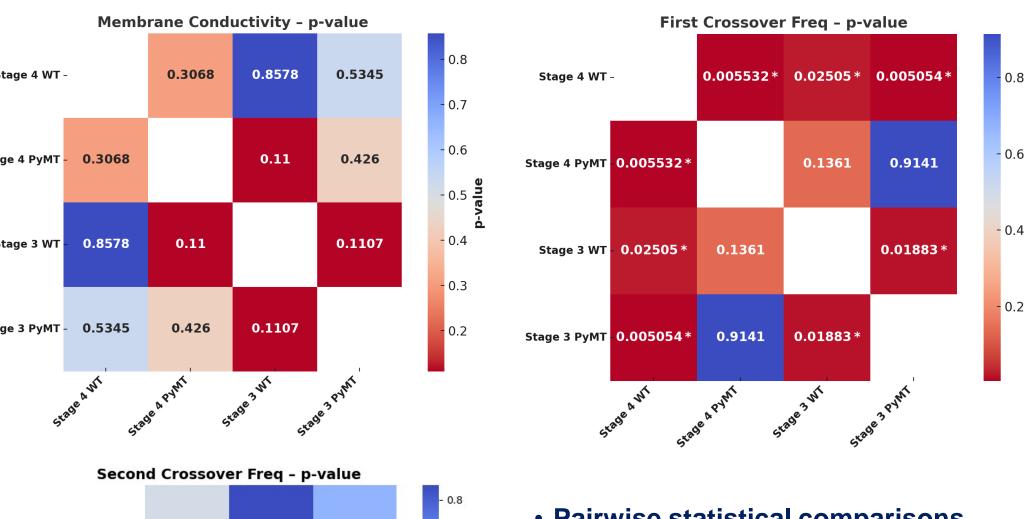
of stages III & IV of PyMT and WT mice models

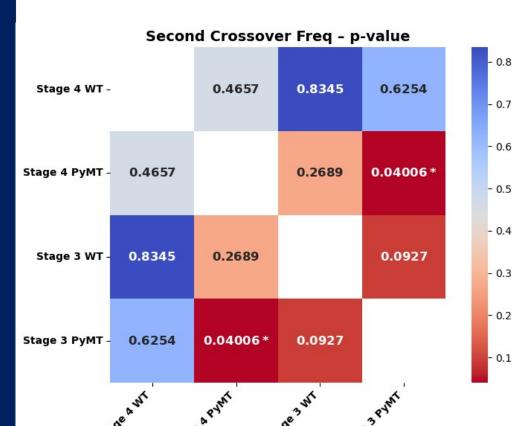
Nicholas Green and Hywel Morgan [1]


(A) Whole blood suspended on ficoll media (B) Separated **PBMC** buffy coat

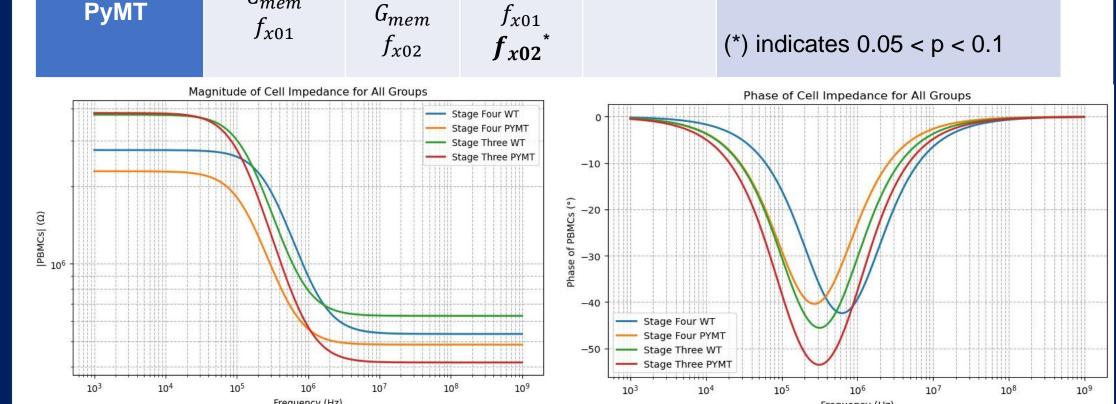

RESULTS & DISCUSSIONS

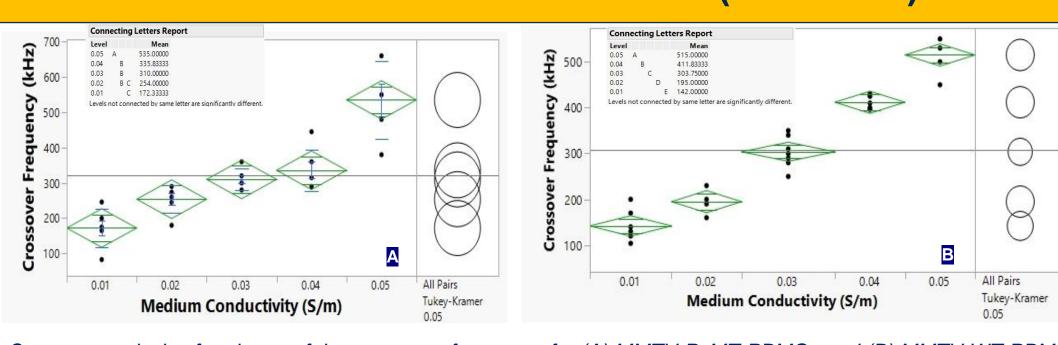

Table 1: Average, SEM, and STDEV.P of the estimated DEP-based biomarkers for distinguishing paired mouse model groups

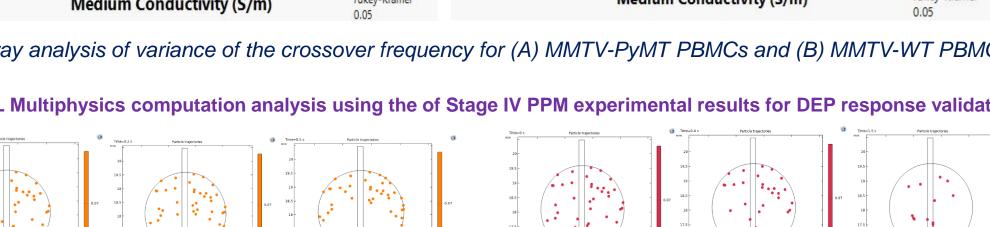

Stage Group	Membrane conductanc e G_{mem} (S/m ²)	Cytoplasm conductivity , σ_{cp} (S/m)	Membrane permittivity, ε_{mem}	Membrane capacitance, C_{mem} (mF/m²)	Membrane conductivity, σ_{mem} (S/m) (*E- 5)	First Crossover Frequency, f_{x01} (kHz)	Second Crossover Frequency, f_{x02} (MHz)
	Mean	Mean	Mean	Mean	Mean	Mean	Mean
	SEM	SEM	SEM	SEM	SEM	SEM	SEM
	STDEV.P	STDEV.P	STDEV.P	STDEV.P	STDEV.P	STDEV.P	STDEV.P
STAGE IV WT	2481.2 1137.5 1608.7	0.04 0.02 0.03	1.5 0.3 0.5	1.4 0.3 0.5	2.2 1.02 1.5	700.1 92.8 92.8	11.2 6.8 6.8
STAGE IV PyMT	3068.2 308.5 534.3	0.04 0.01 0.03	4.0 0.8 1.1	3.9 0.8 1.1	3.5 0.7 1.5	340.7 102.5 145.0	7.6 3.1 4.4
STAGE III WT	1750.7 336.8 583.3	0.03 0.01 0.01	2.2 0.2 0.4	2.1 0.2 0.4	2.1 0.5 1.1	465.0 47.7 82.7	10.3 1.6 2.8
STAGE III PyMT	1611.5 562.7 974.7	0.05 0.01 0.01	2.7 0.3 0.5	2.5 0.3 0.6	2.9 0.3 0.5	332.4 62.5 88.4	13.5 2.4 3.4

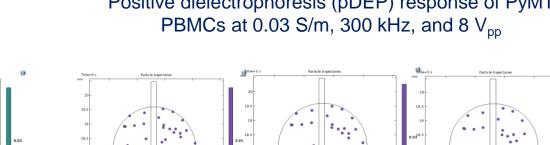


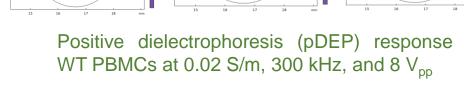
RESULTS & DISCUSSIONS (CONT....)

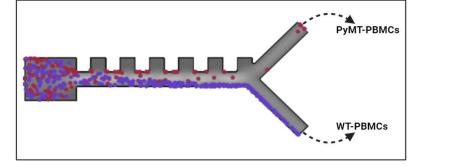





- Pairwise statistical comparisons (using Python) were conducted across the four groups, with results visualized as p-value heatmap charts.
- Statistically significant DEP biomarkers (p < 0.05) are highlighted in the table; values marked with an asterisk (*) denote 0.05 .


Group	STAGE IV WT	IV PyMT	STAGE III WT	STAGE III PyMT	DIELECTRIC PARAMETER (BIOMARKERS)		
STAGE IV WT		$egin{array}{c} arepsilon_{mem} \ f_{x01} \end{array}$	$oldsymbol{arepsilon_{mem}}^* \ oldsymbol{C_{mem}}^* \ f_{x01}$	$egin{array}{c} arepsilon_{mem} \ f_{x01} \end{array}$	Membrane conductance G_{mem} Cytoplasm conductivity, σ_{cp}		
STAGE IV PyMT	$egin{aligned} \mathcal{C}_{mem} \ \mathcal{E}_{mem} \ f_{x01} \end{aligned}$		$egin{aligned} & C_{mem} \ & & & & & & & & & & & & & & & & & & $	$egin{aligned} \mathcal{E}_{mem}^{}^{}^{} & & & \\ \mathcal{E}_{mem}^{}^{} & & & & \\ \mathcal{G}_{mem}^{} & & & & \\ f_{x02}^{} & & & & \end{aligned}$	Membrane permittivity, ε_{mem} Membrane capacitance, C_{mem}		
STAGE III WT	$oldsymbol{\mathcal{C}_{mem}}^{*} \ oldsymbol{arepsilon_{mem}}^{*} \ f_{x01}$	$egin{aligned} & C_{mem} \ & E_{mem} \ & G_{mem} \end{aligned}$		σ_{cp} $oldsymbol{arepsilon_{mem}}^*$ f_{x01} $oldsymbol{f_{x02}}^*$	Membrane conductivity, σ_{mem} First Crossover Frequency, f_{x01}		
STAGE III PyMT	$egin{aligned} arepsilon_{mem} \ f_{x01} \end{aligned}$	$egin{aligned} \mathcal{C}_{mem} \ oldsymbol{arepsilon_{mem}}^* \ G_{mem} \ f_{x02} \end{aligned}$	$oldsymbol{arepsilon_{mem}}^* \ \sigma_{cp} \ f_{x01} \ oldsymbol{f_{x02}}^*$		Second Crossover Frequency, f_{x02} (*) indicates 0.05		
	gnitude of Cell Impedanc		F11111	Phase of Cell Impedance for All Groups			
Stage Four WT 0							


RESULTS & DISCUSSIONS (CONT....)



PBMCs at 0.02 S/m, 200 kHz, and 8 V_{pp}

. /

DEP response of PyMT and WT-PBMCs at 0.02 S/m, 250 kHz, and 8 V_{pp}. (●) represents PyMT-PBMCs, experiencing pDEP, and (•) represents WT-PBMCs, experiencing nDEP. The distinct responses of the cells under the same electric field suggest a favorable separation frequency region for the two cell types.

* COMSOL computational modeling for separating PyMT and WT PBMCs at 175 μm/s, 250 kHz, and 8 Vpp

• Future work 1: Future work will apply

DEP profiling to earlier cancer stages (I

• Future work 2: Integrate computer vision

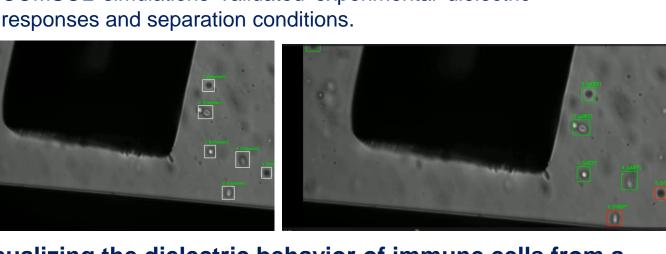
and machine learning to automate DEP

• Future work 3: Develop a microfluidic

device for DEP-based biomarker profiling

as a rapid, point-of-care diagnostic tool for

and II) and human PBMC samples..


response tracking and classification.

breast cancer detection

* Stage IV PPM estimated dielectric properties of MMTV-PyMT and MMTV-WT PBMCs.

CONCLUSIONS & FUTURE OUTLOOK

- Successfully identified dielectric differences between PyMT PBMCs (cancer) and WT (control) mice in stages
- Stage III and IV PyMT PBMCs showed higher membrane capacitance (C_{mem}) and membrane
- conductance (G_{mem}) compared to WT controls. Crossover frequencies (f_{x01}, f_{x02}) were significantly altered in PyMT PBMCs, supporting their use as DEP-
- based biomarkers. Stage IV PyMT PBMCs exhibited the most "leaky" membrane, reflected by the lowest impedance (Z).
- Pairwise statistical analysis confirmed significant differences in key DEP properties between cancer and
- control groups (p < 0.05). Distinct dielectrophoretic responses at 0.02 S/m, 250 kHz, and 8 Vpp indicate optimal conditions for separating PyMT from WT PBMCs.
- COMSOL simulations validated experimental dielectric responses and separation conditions.

Visualizing the dielectric behavior of immune cells from a breast cancer model using computer vision

K-means clustering on PCA-

reduced dielectrophoresis data

ACKNOWLEDGMENTS

Graduate and undergraduate researchers in MESA and Eubank's labs

NATIONAL Sciences ACADEMIES Engineering Medicine

REFERENCES

- Morgan, H. and N. Green, Dielectrophoresis, in Encyclopedia of Microfluidics and Nanofluidics, D. Li, Editor. 2013, Springer US: Boston, MA. p. 1-11.
- CA Cancer J Clin. 2021: 71: 7- 33. https://doi.org/10.3322/caac.21654
- Breast Cancer Society (https://www.breastcancer.org/types/invasive-ductal-carcinoma)
- Susan Komen (2023). https://www.komen.org/breast-cancer/risk-factor/age/
- Society for Immunotherapy of Cancer (https://www.sitcancer.org/clinician/resources/melanoma/immune-system)
- Christenson, J.L., et al., MMTV-PyMT and Derived Met-1 Mouse Mammary Tumor Cells as Models for Studying the Role of the Androgen Receptor in Triple-Negative Breast Cancer Progression. Hormones and Cancer, 2017. 8(2): p. 69-77. Biologydictionary.net Editors. "Cell Signaling." Biology Dictionary, Biologydictionary.net, 04 May. 2017,
- https://biologydictionary.net/cell-signaling/
- Oladokun, R., Smith, C., Eubank, T., & Srivastava, S. (2024). Dielectric Signatures of Late Carcinoma Immune Cells Using MMTV-PyMT Mammary Carcinoma Models. ACS Omega. https://doi.org/10.1021/acsomega.4c04210