

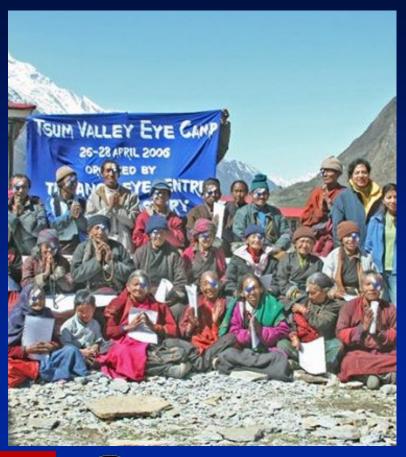
Smartphones and Tablets


Secure Internet Web Sites

Melbourne Rapid Fields (MRF) Visual Field Testing

Web-based and In-clinic

Screening for Glaucoma

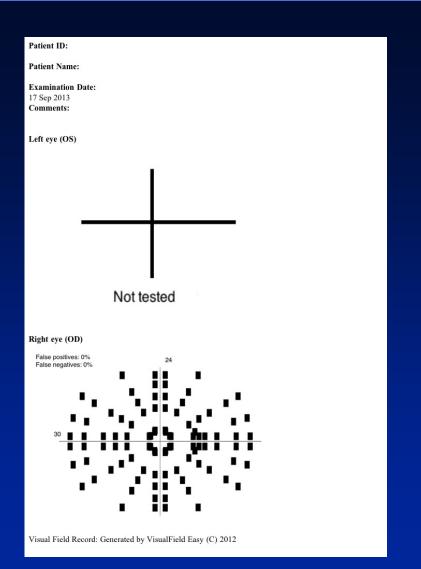

- Controversial Cost-benefit ratio is not favorable for general screening.
- > However, can target "at risk" populations (persons of African descent, hispanic latinos, elderly, persons with limited or no access to traditional eye and health care)
- ➤ The purpose of this study was to perform visual field screening in Nepal using a low-cost program available on the iPad tablet and a modified tablet based test in comparison to the 24-2 SITA Standard procedure on the Humphrey Field Analyzer.

Johnson, Thapa, Kong, Robin – American Journal of Ophthalmology, 2017, 147-154.

Remote Locations

The Perimeter

Background luminance is 31.5 asb (10 cd/m2)


96 test locations (right eye format is shown to the right) – the left eye is a mirror image of the right eye format.

Target size is a Goldmann Size V (1.73 deg diameter)

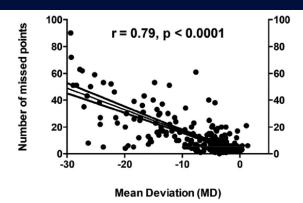
Target luminance is 250 asb, 80 cd/m2, or 16 dB.

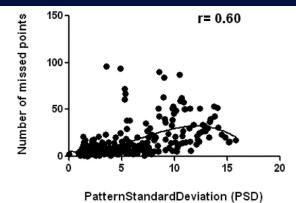
Each quadrant is tested one at a time (upper right, upper Left, lower left, lower right).

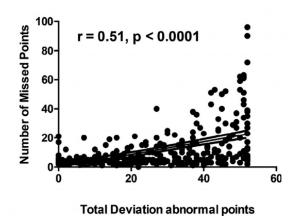
A red fixation point moves from one corner of the display to another.

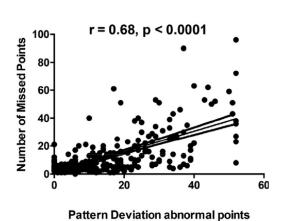
Participants

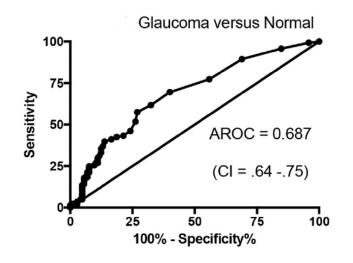
- > Inclusion Criteria:
 - Complete Eye Exam (anterior segment biomicroscopy, ophthalmoscopy of the optic nerve head, retinal nerve fiber layer and macula, 20/60 or better visual acuity, fundus photography, no other ocular, neurologic or systemic diseases other than glaucoma or diabetic retinopathy.
- More than 400 eyes evaluated with Visual Fields Easy. Most participants also underwent Humphrey Field Analyzer 24-2 SITA Standard tests for comparison purposes.
 - 210 Normal Control Eyes, 198 with HFA results
 - > 183 Glaucoma Eyes, 160 with HFA results
 - > 18 Diabetic Retinopathy Eyes, 15 with HFA results

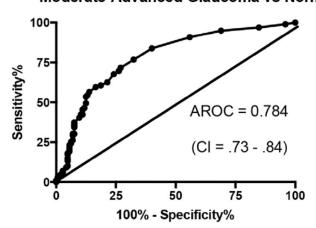

TABLE. Descriptive Statistics of Visual Field Loss Severity

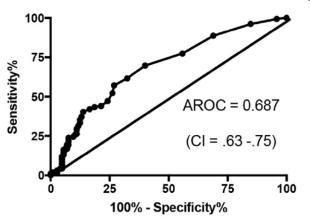

	Average Age	Visual Field Loss ^a (% of Cases)				
Group	(Standard Deviation, Range)	Mild	Moderate	Advanced		
Normal	42.42 (15, 18–78)	84.3%	10.1%	5.6%		
Glaucoma	54.7 (14.7, 18-82)	52.3%	36.8%	21.9%		
Diabetic retinopathy	54.3 (5.6, 45–64)	73.4%	20.2%	6.6%		

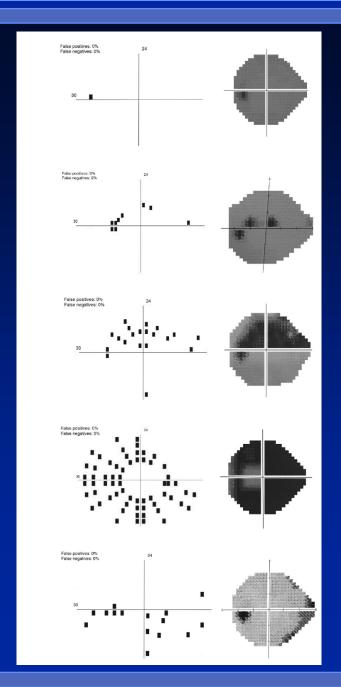

^aVisual field loss quantified with the Humphrey Field Analyzer SITA Standard 24-2 program. Mild: mean deviation (MD) no worse than −6 dB; moderate: MD between −6 and 0−21 dB; advanced: MD worse than −12 dB.







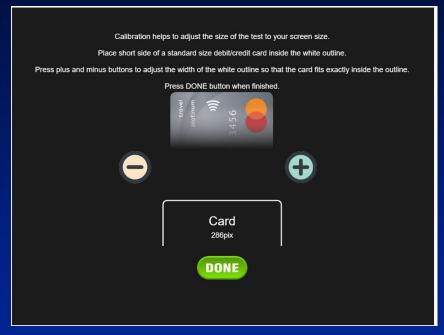



Combined Glaucoma and Diabetic Retinopath

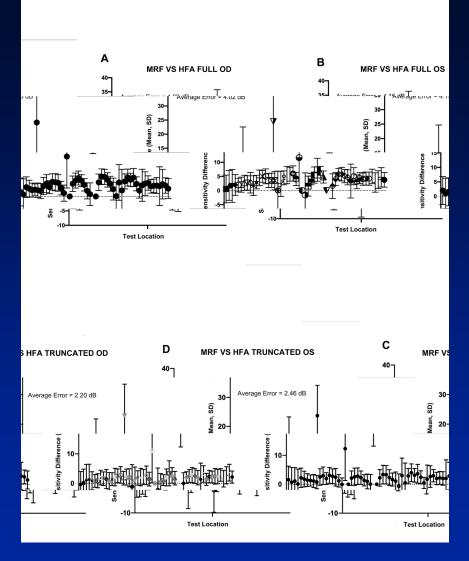
100% - Specificity%

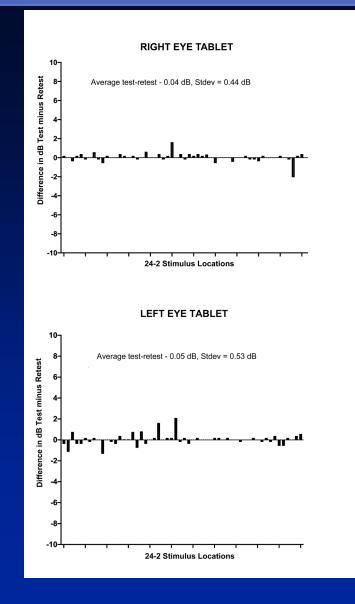
PURPOSE

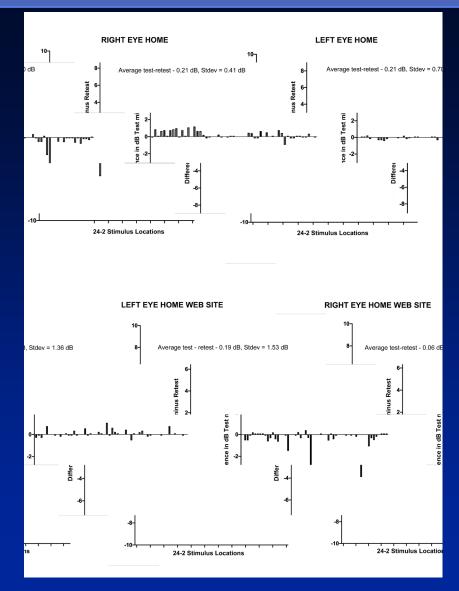
To determine the relationship between tablet-based and internet web site-based versions of the Melbourne Rapid Fields (MRF) visual field procedure and to assess the test-retest reliability of both procedures in a group of healthy participants with normal visual function. Comparison with the 24-2 SITA Standard test (Humphrey Field Analyzer) were also performed.

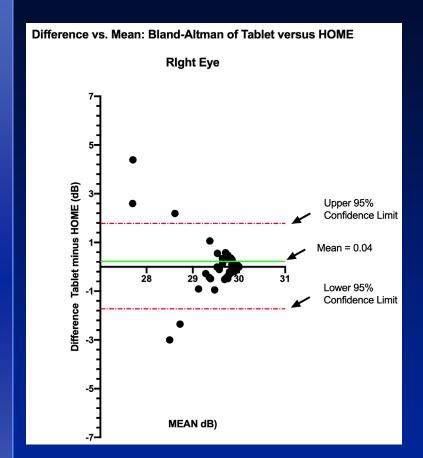

METHODS

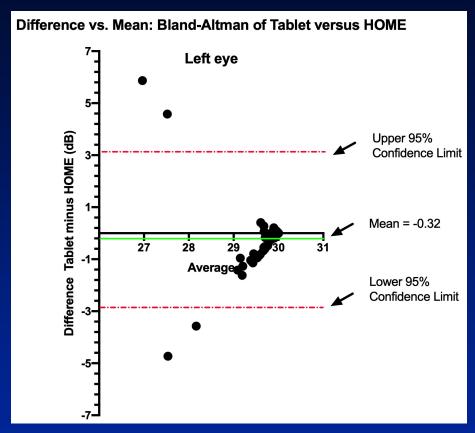
- > Forty healthy normal participants (33 female, 7 male; average age = 24)
- > Melbourne Rapid Fields (MRF)
 - > Zippy Estimation of Sequential Thresholds (ZEST, a Bayesian Test strategy)
 - **Background luminance of 16 apostilbs (5 candelas per meter squared)**
 - > Target size increased as a function of greater eccentricities, resulting in a flat sensitivity visual field profile (a "mesa" of vision, rather than a hill of vision)
- > Testing at 33 cm for tablet and internet web site. Standard distance refractive correction used for all tests.
- > Microsoft Surface used for tablet testing.
- > Internet web site used clinic computer (test) and participant's display system at home (retest)

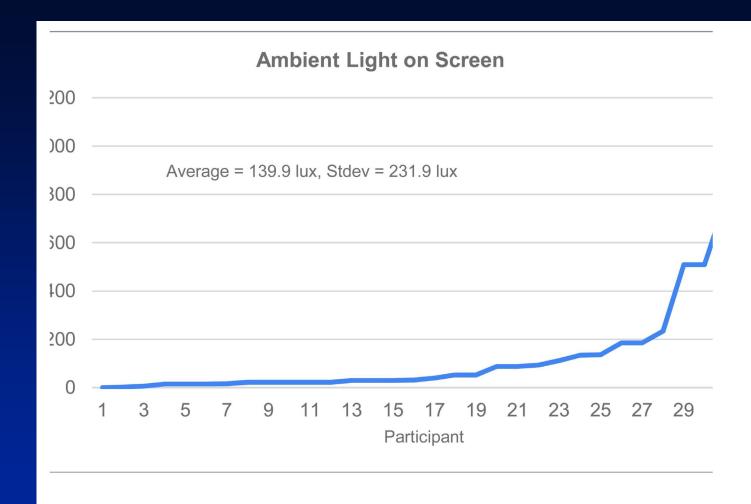












Virtual Reality Headsets

There are a Lot of Virtual Reality Headsets

Vivid Vision Perimetry

> VF 200 Palm Scan

> VisALL Perimeter

Heru

> OLLEYES

> C3FA

> M&S Smart System

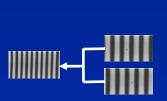
> IMO Smart Perimetry

Virtual Field

Available Visual Field Tests on some Virtual Reality Headsets

> 24-2 Test

Frequency



Esterman Binocular

> Ptosis Test

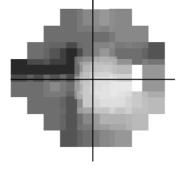
ID: : CENTRAL 24-2 THRESHOLD TEST

Fixation Monitor: Eye Tracker Fixation Target: Central False Pos Errors: 0/4 (0%) False Neg Errors: 2/4 (50%)

Fixation Losses: 0 (No Blindspot Test)

Test Duration: 6m7s

Stimulus: III, White Background: 15.8 ASB Strategy: S-Zest 31 Jul 2022 10:25AM Age:


Eye: Right

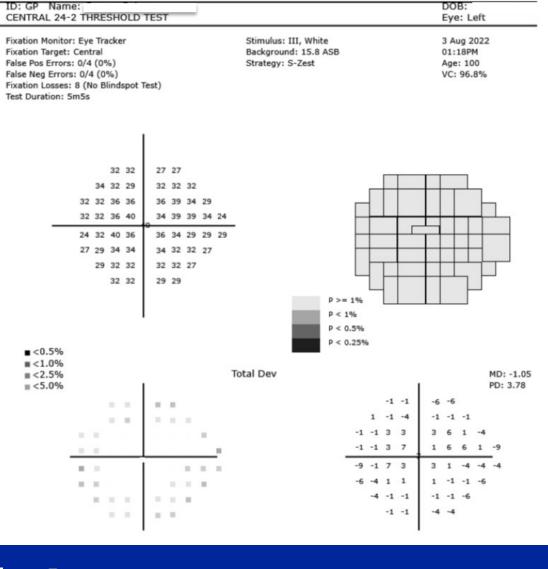
DOB:

VC: 40.82%

Fovea: 22.6

			7	10	13	10		
		7	7	7	7	10	10	
	7	4	1	7	13	7	7	4
1	1				2 ²²			13
7	7	10	7	222	² 7 ₀	30		13
	7	7	4	22	27	27	22	19
		7	4	10	17	17	19	
			4	7	10	13		

<0.5%
 <1.0%
 <2.5%
 <5.0%


Total Dev

What are the Important factors for testing?

- > Calibration how was intensity measured?
- > Test retest reliability how consistent is it?
- > Ambient lighting does it affect testing?
- Refractive error How tolerant of blur?
- Validation does it compare to clinical test?
- Comparison Do different methods give the same results?

Limitations of Portable Testing

- > Dynamic Intensity range is smaller than conventional clinical visual field testing devices
- Elderly individuals or those with significant vision impairment may have difficulty with the test
- > Without eye tracking testing is difficult
- A demonstration test is helpful
- > A hard copy printout is necessary
- > Validation of the test is essential
- > Tablets and web sites are not appropriate for testing now
- > Headsets will work, but not all headsets are alike.

CONCLUSIONS

- Tablet and internet web sites have high test-retest reliability.
- Results are highly comparable for tablet and web site.
- > Test time is shorter than SITA Standard and slightly longer than SITA Fast.
- > Dynamic intensity range is slightly smaller than for the Humphrey Field Analyzer.
- > High correlations with the Humphrey Field Analyzer.
- **Easy to sanitize.**
- > Testing can be performed at non-clinical sites & at home.

Future Studies

> Add more tests (visual acuity, contrast sensitivity, glare disability, visual acuity in noise, etc)

> Large study of headsets in India (5,000 patients)

Refinement of test strategies and implementation of AI approaches (both for analysis and acquisition of sensitivity values)

Introduction

- **❖** Visual field testing is an important diagnostic procedure for detection and monitoring of glaucomatous damage.
- **❖** Most automated perimetry devices employ a hemispherical bowl with a chin rest to test one eye at a time, which can be challenging for older patients with posture difficulties (kyphotic, rheumatoid arthritis, etc).
- **❖** Current automated perimetry testing requires a separate room in the clinic with trained personnel administering the test.
- **❖** The purpose of this investigation was to evaluate the performance of a visual field test using a virtual reality headset in comparison to a similar test on the

Humphrey Field Analyzer.

B

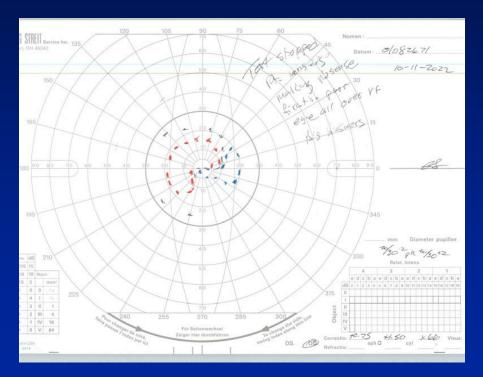
Background is 3 dB lower than the HFA

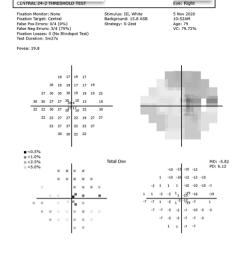
Dynamic range is 30 dB

Target size increases at greater stimulus eccentricities

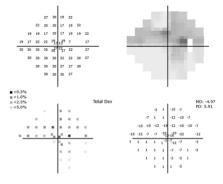
Uses a modified ZEST Procedure (locations that are different from all horizontal and vertical neighbors are repeated, and post processing - neighborhood analysis

Photo obtained with Permission from the participant





Kyphotic 81 year old glaucoma patient With a painful spinal cord injury


She could not perform HFA or Goldmann, but did well with the headset when in a comfortable position.

CENTRAL 24-2 THRESHOLD TEST	_	Eye: Right
Fixation Monitor: Eye Tracker Fixation Target: Central False Pos Errors: 2/4 (50%)	Stimulus: III, White Background: 15.8 ASB Strategy: S-Zest	22 Nov 2020 08:46AM Age: 79
False Neg Errors: 0/4 (0%) Fixation Losses: 3 (No Blindspot Test)		VC: 82.68%

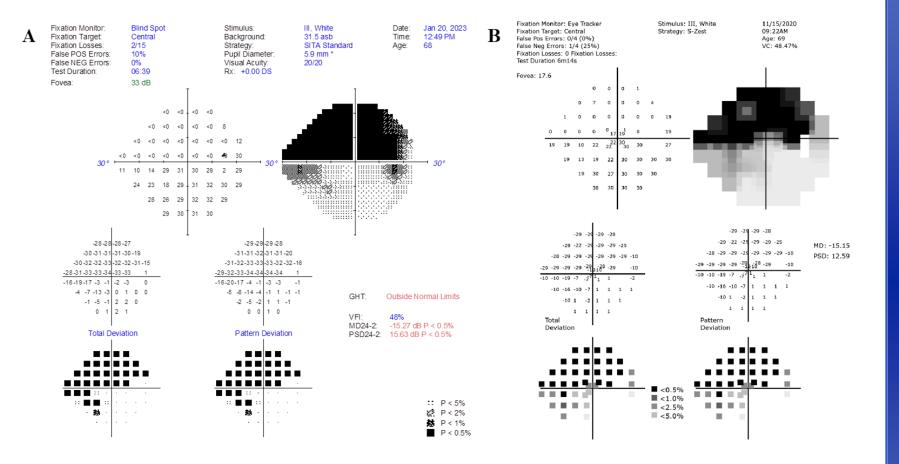
Fovea: 20.5

Methods

- **❖81** eyes of 45 glaucoma patients were tested with the 24-2 procedure on the Smart System Virtual Reality (SSVR) headset (M&S Technologies) with a Zippy Estimation of Sequential Thresholds (ZEST) strategy compared to the 24-2 SITA Standard test on the Humphrey Field Analyzer. Eye tracking enabled (TOBII system, 60 Hz, 0.25 deg accuracy)
- **❖** Mean Deviation (MD), Pattern Standard Deviation (PSD) and test time were assessed, along with a survey concerning preferences, comfort and other properties of the two devices.
- **❖** Parametric (t test), nonparametric (Wilcoxin signed rank) and Bland- Altman analyses were performed.
- All participants had a comprehensive exam, including history review, applanation tonometry, optic disc evaluation,

visual acuity, slit lamp evaluation.

University of Iowa Health Care


Demographics	(n = 81)
Age (Mean±SD)	73.70±8.27
Sex	n (%)
Male	16 (35.56)
Female	29 (64.44)
Ethnicity	
White	44 (97.78)
Hispanic or Latino	1 (2.22)
Eye Tested	
OD	40 (49.38)
OS	41 (50.62)
Glaucoma Diagnosis	
Normal Tension	31 (38.27)
Primary Open Angle	27 (33.33)
Pseudoexfoliative	10 (12.35)
Mixed-Mechanism	6 (7.41)
Steroid-Induced	3 (3.70)
Chronic Angle Closure	2 (2.47)
Aphakic	2 (2.47)
Glaucoma Severity (Hodapp-Parrish-Anderson)	
Early	25 (30.86)
Moderate	22 (27.16)
Severe	34 (41.98)
Spherical Equivalent (Mean±SD)	
OD	-0.72±1.98
OS	-0.63±1.85
Total	-0.67±1.90

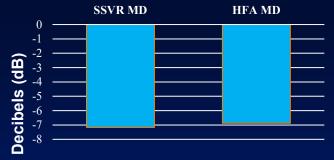
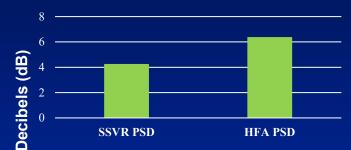
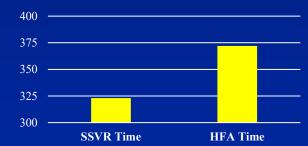

Results

Table 2. Comparison of visual field indices between the Smart System Virtual Reality Headset and the Humphrey Field Analyzer.

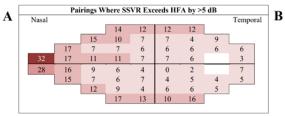

SSVR	HFA	p	
-7.17±6.36	-6.88±6.78	0.297	
-0.29	±2.49		
-5.171	to 4.59		
4.26±2.37	6.38±4.51	<0.001*	
-2.11:			
-7.62 1	-7.62 to 3.40		
323.44±72.27	372.20±61.44	<0.001*	
-48.75	±56.48		
-159.45	to 61.95		
	-7.17±6.36 -0.29 -5.17± 4.26±2.37 -2.11 -7.62± 323.44±72.27 -48.75	-7.17±6.36	

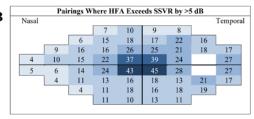
SSVR = Smart System Virtual Reality Headset, HFA = Humphrey Field Analyzer, MD = Mean deviation, PSD = Pattern standard deviation, LOA = Limits of Agreement


Mean Deviation (MD)

Pattern Standard Deviation (PSD)

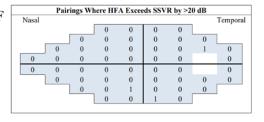
Test time (seconds)







^{*} indicates a statistically significant difference (p<0.05)

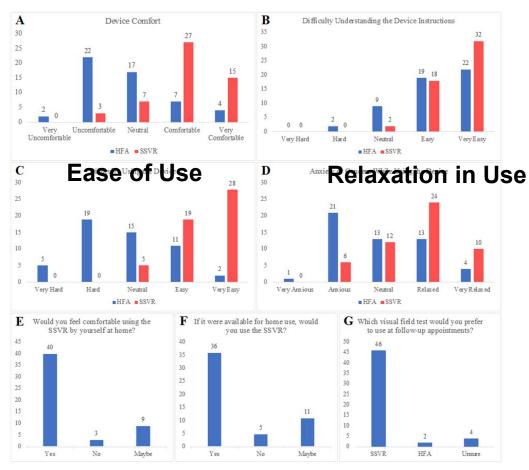


	o ub	4 Dy ~1	eds HF.	VK EXC	iere 55	imgs w	rai	
Tempora								Nasal
		5	3	4	3			
	0	2	2	5	4	7		
2	1	3	2	2	2	5	9	
0		2	2	2	3	4	9	13
3		2	0	3	2	8	4	11
2	2	5	3	2	1	3	3	
	2	4	2	3	4	3		
_		4	4	2	5			

E	Pairings Where SSVR Exceeds HFA by >20 dB										
L	Nasal								Tempor	al	
				1	0	2	0				
			0	0	0	0	0	0			
		1	0	0	0	1	1	0	0		
	7	1	0	0	0	0	0		0		
	2	0	0	0	1	0	0		1		
		0	0	0	0	0	2	0	0		
	_		0	0	0	1	0	0			
				0	0	0	0				

Between 0-9 pairs differ
Between 10-19 pairs differ
Between 20-29 pairs differ
Between 30-39 pairs differ

Between 0-9 pairs differ
Between 10-19 pairs differ
Between 20-29 pairs differ
Between 30-39 pairs differ
Between 40-49 pairs differ



Comfort

Understanding Instructions

Use at Home Use SSVR Test Preference

Discussion

- **❖** VR headsets can provide a useful means of performing visual field testing.
- *Additional modules (visual acuity, contrast sensitivity, stereoacuity, ptosis fields, Esterman binocular field, etc) can also be added.
- **Eye tracking can be performed, and head movements are not affecting the test procedure.**
- **❖** Results compare well with current SITA Standard results on the Humphrey Field Analyzer, with the exception of pattern standard deviation.
- **❖** Initial results appear to be promising.

Conclusion

- **Advantages**
 - *Testing can be performed anywhere, including at home.
 - **❖** Patients prefer it and it is comfortable and easy to use.
 - **❖** Patients with postural difficulties (arthritis, spinal injuries) can do the test when in a comfortable position.
 - ❖ Both eyes can be tested at the same time.
- **Disadvantages**
 - **Dynamic range is smaller than for the HFA.**
 - **❖ Stimulus size varies and hill of vision becomes plateau or mesa of vision.**
 - **Separation of widespread and local loss is not as good.**

Future Developments

- **Customize headset for vision testing purposes**
 - **Software enhancements**
 - **Use of AI and statistical approaches to optimize testing and assessment.**
 - **Provide tutorials and practice for new users.**
 - *Make test procedure more interactive.
 - ***** Hardware enhancements
 - **❖ Improve eye tracking accuracy and speed.**
 - **Use different displays (eg, OLEDs) for larger dynamic range.**
 - **❖** Implement procedures similar to the HFA.

Thank you for your attention !!

Contact Information
Chris A. Johnson
chris-a-johnson@uiowa.edu
319-400-2987

