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Artificial Intelligence

Use of computers to perform tasks that require objective reasoning and understanding

Multiple domains
* Machine learning, deep learning, natural language processing, etc.
* Subdomains

Narrow (task specific) vs general/generative

“Three Epochs”

Figure. Artificial Intelligence (Al) 1.0, 2.0, and 3.0
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Howell MD, Corrado GS, DeSalvo KB. Three epochs of artificial intelligence in health care. JAMA. 2024,331(3):242-244.
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Foundation models

Shared representations
Generative Al, foundation models

A=) Task-agnostic,

= multimodal, never-
=)= before-seen tasks
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Unstructured and structured data
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A multimodal generative Al copilot for
human pathology
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Assess the tissue morphology in this
LI A, prostate resection. What Gleason
) Thx patterns are present?

Human

<[ The tissue morphology in this prostate resection reveals a

combination of two distinct Gleason patterns. The first pattern is
characterized by the presence of small, well-formed glands, which
is indicative of Gleason pattern 3. The second pattern is
characterized by the presence of fused glands, which is indicative
of Gleason pattern 4. The presence of both patterns within the
same tissue sample suggests a Gleason score of 7 (3+4), which is
a moderately aggressive form of prostate cancer.

PathChat
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Al and Clinicians

e Continuum of interaction

* Assist vs Automate
* Task-dependent

* Patient and physician
autonomy

* Human (clinician/patient)
“in the loop”

Adler-Milstein J, Aggarwal N, Ahmed M, et al. Meeting the Moment: Addressing Barriers and Facilitating Clinical Adoption of Artificial Intelligence in Medical Diagnosis. NAM Perspect. 022:10.31478/202209c.

Assistive Al algorithms

Autonomous Al algorithms

Event
monitoring

Response
execution

Fallback

Domain,
system, and
population
specificity

Liability

Example

Level 1

o

Data presentation

Al

Clinician

Not applicable
Low

Clinician

Al analyses mammogram
and highlights high-risk
regions

Level 2

Clinical decision-support

Al

Clinician and Al
Clinician

Low

Clinician

Al analyses mammogram
and provides risk score
that is interpreted by
clinician

Level 3

000000

1]

Conditional automation

Al

Al

Al, with a backup clinician
available at Al request

Low

Case dependent

Al analyses mammaogram
and makes
recommendation for
biopsy, with a clinician
always available as
backup

Level 4

gopooo

pooooo

ooopog

toooo0
High automation

Al

Al

Al

Low

Al developer

Al analyses mammogram
and makes biopsy
recommendation, without
a clinician available as
backup

Level §

Full automation

Al

Al

Al

High

Al developer

Same as level 4, but
intended for use in all
populations and systems
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Triadic Patient-Clinician-AI Teams

* Tri-directional exchange
* Patient-clinician-Al collaboration

policy Makerg

\_\ealthcure Sysfem

* Augmented intelligence

Physical
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* Cognitive offloading
* Determinants, consequences
e Administrative, clinical

* Reskilling, upskilling, deskilling

Heulfhcure Sys*e‘“

Policy Makers

1. James CA, Singh K, Valley TS, Wiens J. Issue Brief 13. Reimagining health care teams: leveraging the patient-clinician-Al triad to improve diagnostic safety. Rockville, MD: Agency for Healthcare Research and Quality; July 2023.
2. Grinschgl S, Neubauer AC. Supporting cognition with modern technology: distributed cognition today and in an Al-enhanced future. Frontiers in Al. 2022.
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Integration

A

* Critical appraisal

* Foundational statistics/Epi

* ML Methods

* Model development, evaluation

* Data types/sources
* Population/Public health
* Governance, law, policy

« Bias, ethics Health Evidence-

Systems Based

Sciences Medicine

Artificial * Liaise, facilitate (patient/Al)

Inte"igence . Workflow|ntegrat|o.n/|mplementatlon
* Documentation

* Summarization

* Decision support

* Model benefits & risks

* OQutput interpretation & * Al-based clinical tools
application * Consumer facing

* Information management Clinical * Clinician facing

. C|inica| Sk|||s ¢ Communication with and about Al
Reasoning

1. James CA, Wheelock KM, Woolliscroft JO. Machine learning: the next paradigm shift in medical education. Acad Med. 2021.96(7): 954-957.
2. James CA, Wachter RM, Woolliscroft JO. Preparing Clinicians for a Clinical World Influenced by Artificial Intelligence. JAMA. 2022;327(14):1333-1334.
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D.A.T.A.

Data Augmented, Technology Assisted

Medical Decision Making
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Thank You!

“Medicine is the science of uncertainty and the art of probability”

- William Osler
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