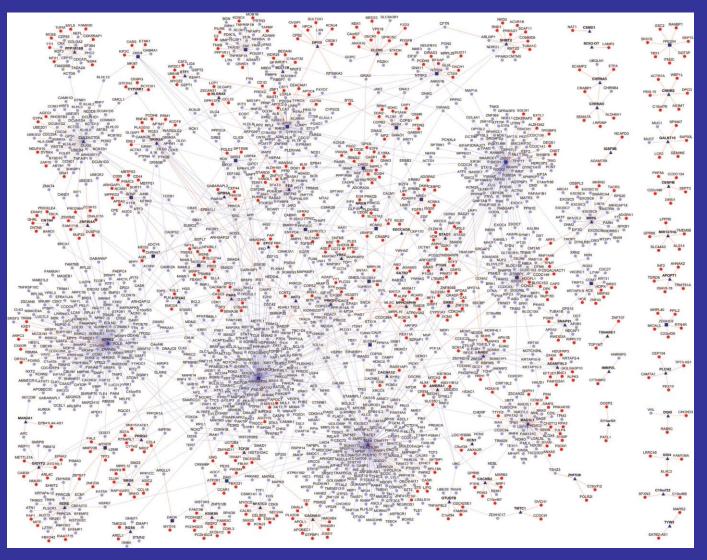
From Big Data to Smart Data

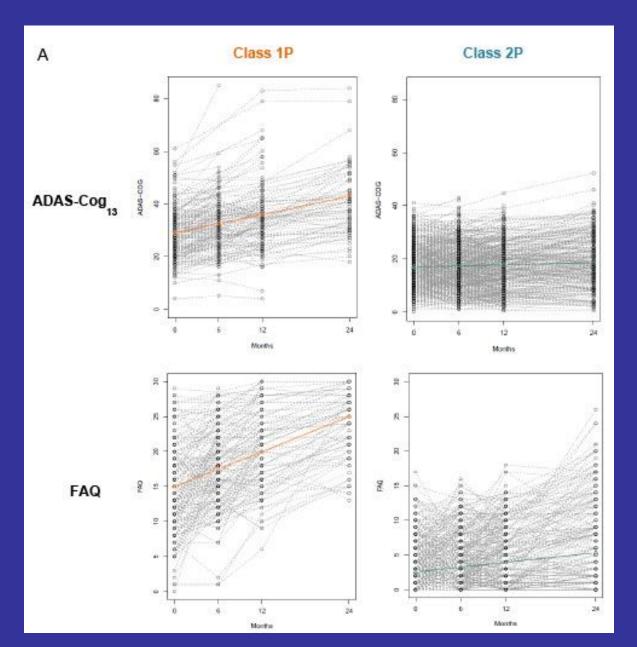
Computational Quantitative Systems Pharmacology Modeling of Brain Circuits

Hugo Geerts, PhD, Bach.Med., Pharma MBA

In Silico Biosciences, Inc. (ISB)
University of Pennsylvania

Computer Modeling in Health Care & Life Sciences

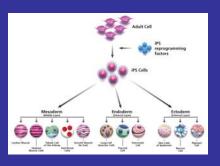



Meet Watson

Watson is a technology that understands all forms of data and reasons and learns at scale.

From "Generic" Schizophrenia Interactome ...

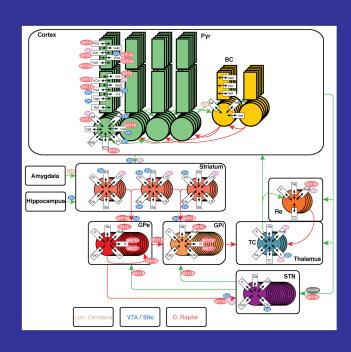
To "Individual" patient trajectory

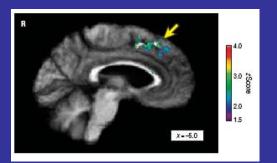


Comedications
Genotypes
Different drug metabolism
Different comorbidities
Different pathology trajectory

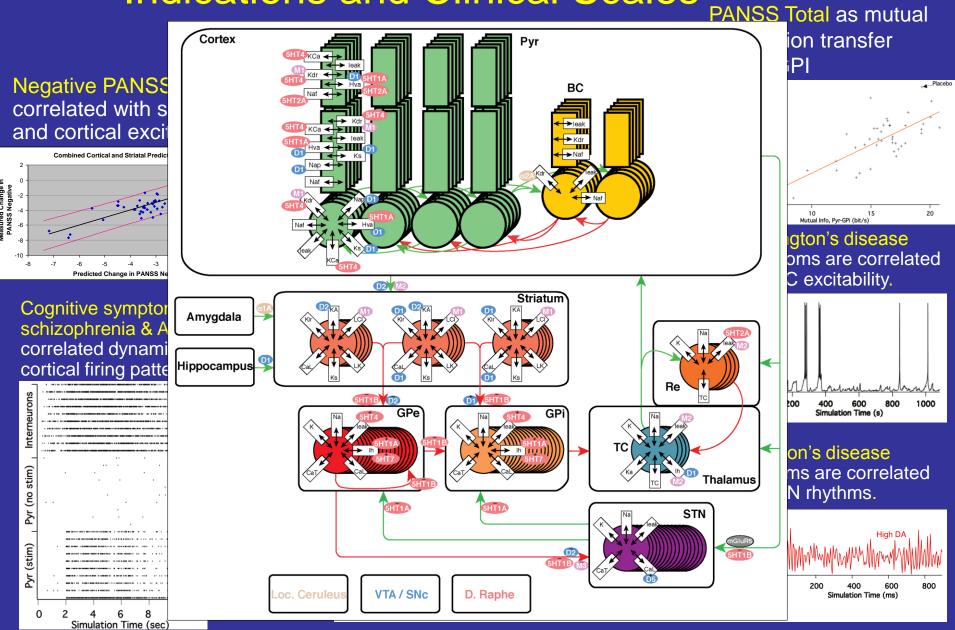
What can Pharma learn from Successful Industries (aeronautics, micro-electronics)?

- Formalize 'collective knowledge'
 - From information to knowledge (Big Data to Smart Data)
 - Use advanced modeling & simulations (CAD) approach to capture community-wide expertise & knowledge
 - Develop virtual in silico before actual physical prototype
- Embrace complexity
 - Circuit analysis: networks give rise to emergent properties that are not explained by single targets
 - Non-linear processes need mathematical modeling
- Failure analysis
 - More Extensive study of failed clinical trials needed
- Make output 'actionable' for Pharma R&D
 - Incomplete biology knowledge : sensitivity analysis, Pareto optimization, fuzzy statistics


Quantitative Systems Pharmacology Integrates Various Modalities



Humanized
Cellular & Synaptic
Biology


Effect on Neuronal Circuits in non-human species

Human Clinical Data

In Silico Disease Model for Different Indications and Clinical Scales

How comprehensive is the QSP platform?

- For existing CNS-active drugs, representations of:
 - D1, D2, D3, D4
 - 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2B, 5-HT2C, 5-HT3, 5-HT4, α 1A, α 2A, α 7 nAChR, α 4β2 nAChR, M1 mAChR, M2 mAChR
 - GABA-A α1, GABA-A α2, NMDA-NR2A, NMDA-NR2B, NMDA-NR2C AMPA
 - AChE, COMT, SERT, NET and DAT
 - mGluR2, mGluR5, 5-HT6, 5-HT7, NK3, GlyT1, H3
- Intracellular target implementation
 - cAMP-cGMP pathway (PDE10)
- Azheimer Disease Modification
 - Beta-amyloid dynamics and their effect on cognition
- Common Genotypes based on imaging
 - COMTVal158Met, 5-HTTLPR s/l, APOE, D2DRTaq1A1, CACNA1C
- Calibrated Clinical Outcome
 - Schizophrenia: PANSS Total, PANSS Negative, Cognition
 - Alzheimer's Disease: ADAS-Cog, NPI
 - Parkinson's & Huntington's Disease : UPDRS
- Tau Pathology Modeling (in Preparation)

Quantitative Systems Pharmacology Provides Actual Value for Pharma R&D

Vol.2, No.3, 83-98 (2013) http://dx.doi.org/10.4236/aad.2013.23012 Advances in Alzheimer's Disease

Research Report

DOI 10.3233/JPD-130211

Journal of Parkinson's Disease 3 (2013) 569-580

Systems pharmacology modeling in neuroscience: Prediction and outcome of PF-04995274, a 5-HT₄ partial agonist, in a clinical scopolamine impairment trial

Timothy Nicholas¹, Sridhar Duvvuri¹, Claire Leurent¹, David Raunig^{1,3}, Tracey Rapp¹, Phil Iredale¹, Carolyn Rowinski¹, Robert Carr², Patrick Roberts², Athan Spiros², Hugo Geerts² Phenotypic Screening of the Prestwick Library for Treatment of Parkinson's Tremor Symptoms using a Humanized Quantitative Systems Pharmacology Platform

Athan Spiros^a, Patrick Roberts^{a,b} and Hugo Geerts^{a,c,*}

OPEN ACCESS Freely available online

Blinded Prospective Evaluation of Computer-Based Mechanistic Schizophrenia Disease Model for Predicting **Drug Response**

Hugo Geerts^{1*}, Athan Spiros¹, Patrick Roberts¹, Roy Twyman², Larry Alphs³, Anthony A. Grace⁴

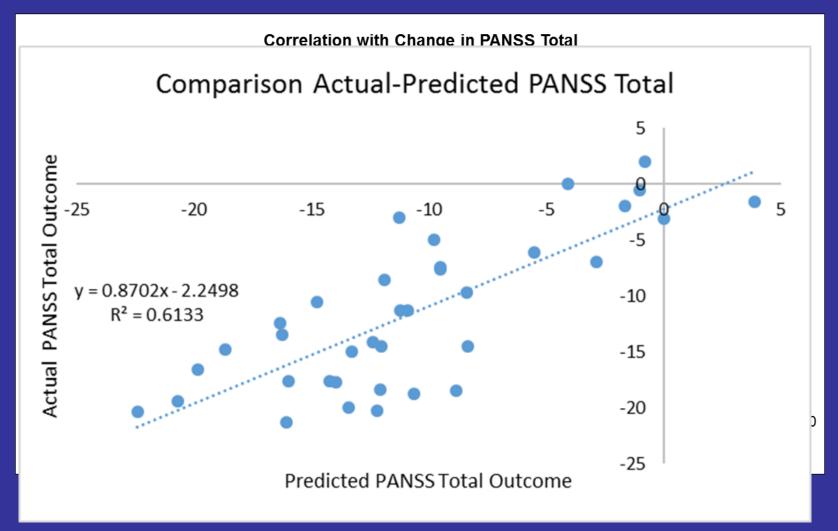
Citation: CPT Pharmacometrics Syst. Pharmacol. (2014) 3, e111; doi:10.1038/psp.2014.7 © 2014 ASCPT All rights reserved 2163-8306/14

www.nature.com/psp

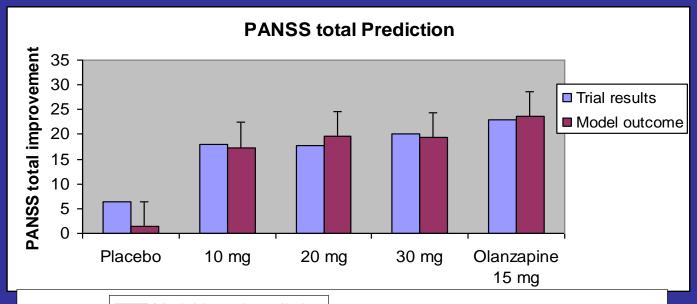
ORIGINAL ARTICLE

Prediction of Efficacy of Vabicaserin, a 5-HT₂₀ Agonist, for the Treatment of Schizophrenia Using a Quantitative **Systems Pharmacology Model**

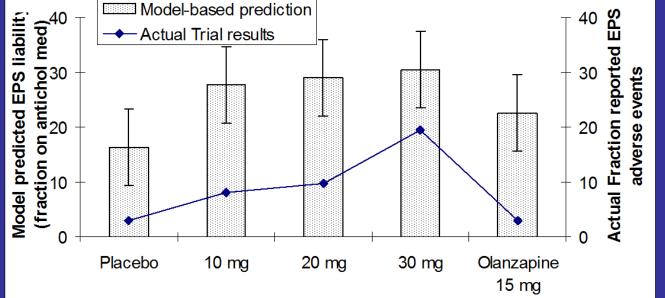
Original Paper


Understanding responder neurobiology in schizophrenia using a quantitative systems pharmacology model: Application to iloperidone

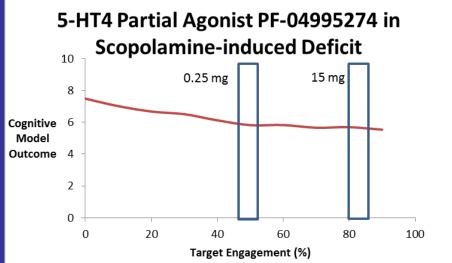
Hugo Geerts^{1,2}, Patrick Roberts^{1,3}, Athan Spiros¹ and Steven Potkin⁴

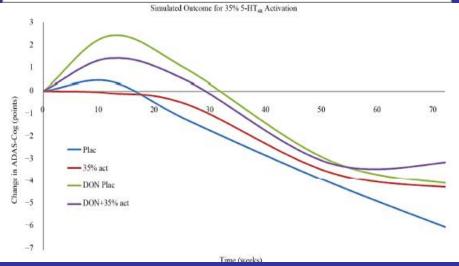


Journal of Psychopharmacology © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav DOI: 10.1177/0269881114568042 jop.sagepub.com (\$)SAGE

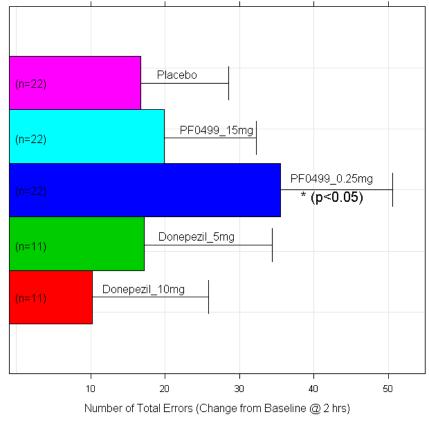

Calibration and Validation PANSS Total

First Blinded Prediction of Clinical Outcome in Schizophrenia Could Have Saved Large Investment

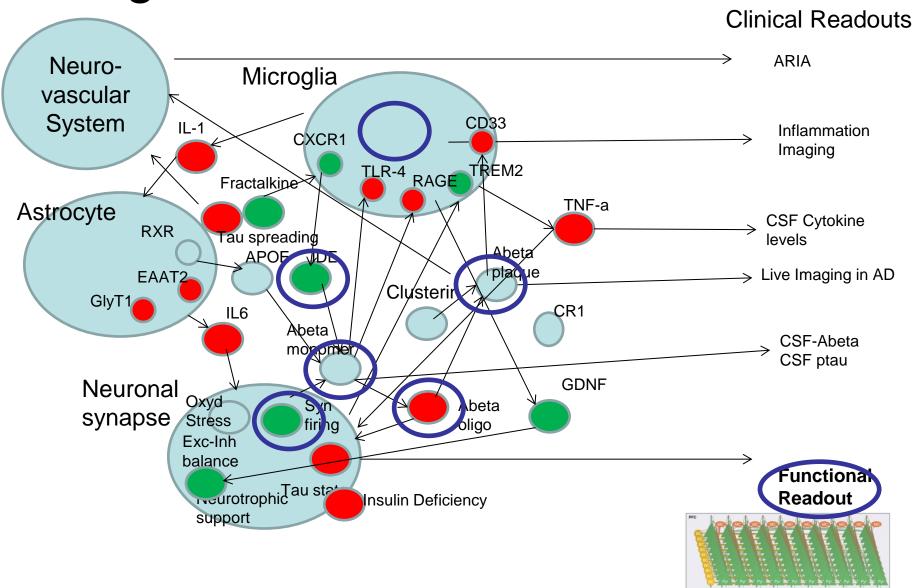

Geerts 2012 PlosOne

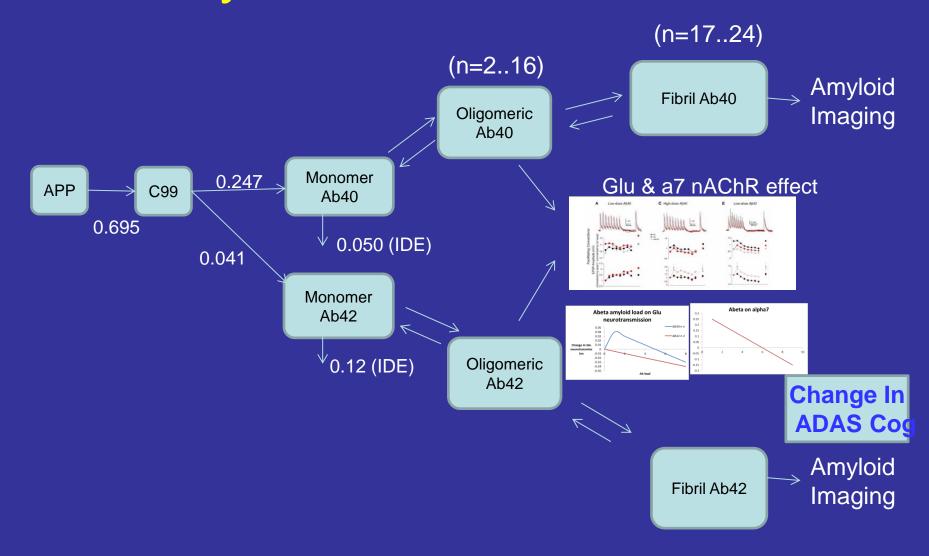


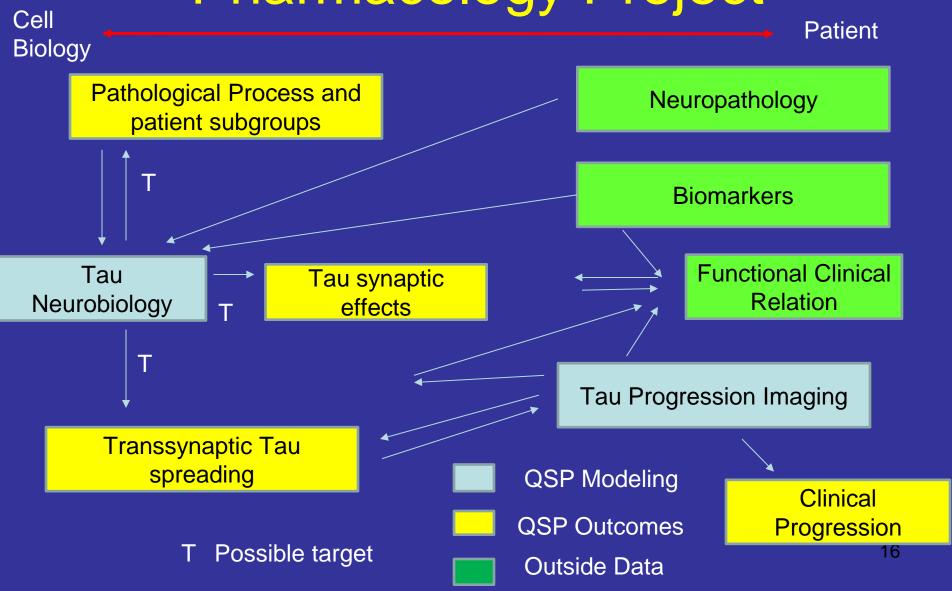
Effect of Comedications in Clinical Trial in CIAS


	Stand-					
	alone	DON5	DON10	GAL8	GAL16	GAL24
MEM	0.13	0.16	0.08	0.18	0.07	0.02
RIS NoSmok	0.10	0.05	0.11	0.09	0.10	0.14
QUE NoSmok	0.06	-0.01	-0.05	0.00	0.00	-0.01
QUE400 NoSmok	0.09	0.03	-0.03	0.01	-0.07	0.06
QUE600 NoSmok	0.10	0.03	-0.01	0.01	-0.07	0.09
OLA NoSmok	0.08	0.23	0.29	0.09	0.21	0.07
ARI NoSmok	0.23	0.09	0.13	0.12	0.04	-0.01
HAL NoSmok	0.12	0.16	0.18	0.16	0.21	0.16
MEM-SMOK	0.13	0.12	-0.01	0.13	0.23	0.12
RIS SMOK	0.09	0.04	0.07	0.07	0.08	0.18
QUE SMOK	0.02	0.00	-0.02	-0.01	-0.03	-0.03
QUE400 SMOK	0.05	0.00	-0.03	0.00	-0.04	-0.04
QUE600 SMOK	0.01	-0.02	-0.02	-0.02	-0.03	-0.02
OLA SMOK	0.02	0.00	-0.02	-0.01	-0.03	-0.03
ARI SMOK	0.11	0.05	0.03	0.05	0.04	-0.03
HAL SMOK	0.21	0.20	0.16	0.12	0.16	0.13

QSP Model Correctly Predicted Unexpected Ph 1 Clinical Outcome






Linking Amyloid Modulation To Cognition in Alzheimer's Disease

Amyloid Modulation

Tau Quantitative Systems Pharmacology Project

QSP Support for Key Pharma R&D Questions

Preclinical

- Target Identification' to 'validation'
- Rationally designed multitarget pharmacology
- In what direction and how much do we need to change pathway of Interest for a clinically meaningful outcome?
- Support selection of clinical candidate

Clinical

- Dose-response monotonic or inverse U-shape?
- Target Engagement
- Optimal dose vs MTD
- Impact of genotypes on clinical dose-response
- Impact of comedications on clinical dose-response
- Selection of patient population : targeted therapies

The Human Avatar

A Humanized Quantitative Systems Pharmacology Approach

Athan Spiros
Patrick Roberts
Ruggero Scorcione
Leif Finkel
John Dani
Robert Carr