Knowledge Generation with EHR Data

* How much can be learned at the population level?
* How are findings validated?
* How much can be learned at the patient level?
* Are there “Patients like me?”
 What can be done with the information?
 How can we optimize (accelerate) learning healthcare system
activities?
* Embedded randomization
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Learning Healthcare System Tool Kit

* Infrastructure
—EHR Data
—EHR Application
—Sophisticated Analytics
« Embedded clinical trials - ability to perform experiments
—At low cost
—Iteratively
—At large scale
—Pragmatically
*Translatable results

 Decision support modules



Traditional Observational Health Research
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Observational Research with Guideline Implementation
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Local Learning and Implementation
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Integration of Randomization into Clinical Care
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Point of Care Clinical Trials
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Exemplars

* Insulin Study
—Randomization to sliding scale or weight based insulin regimens

—Recruitment from EHR without a registry or data warehouse

* Diuretic Comparison Study
—Randomization to hydrochlorothiazide or chlorthalidone

—Recruitment from Corporate Data Warehouse

* Precision Oncology Program

—DNA targeted sequence with subsequent enrollment into matched
clinical trial

—Recruitment from the Precision Oncology Clinical Data Repository



Local Learning Through Experiments
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Publications

traditional translational processes
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