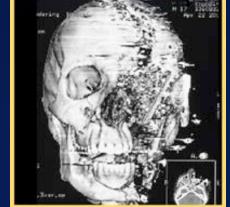
Cellular Therapies Skin and Musculoskeletal Tissues Challenges and Opportunities

Anthony Ratcliffe, PhD
Synthasome, Inc
San Diego, CA

Application Opportunities Repair to Replacement

- Skin
 - Chronic wounds
 - Burns
 - EpidermolysisBulosa

Neuromuscular diseases


- Articular Cartilage
 - OA
 - Trauma/sports

- Bone
 - Craniofacial trauma, tumor
 - Long bones trauma, tumor, atrophy (OP)

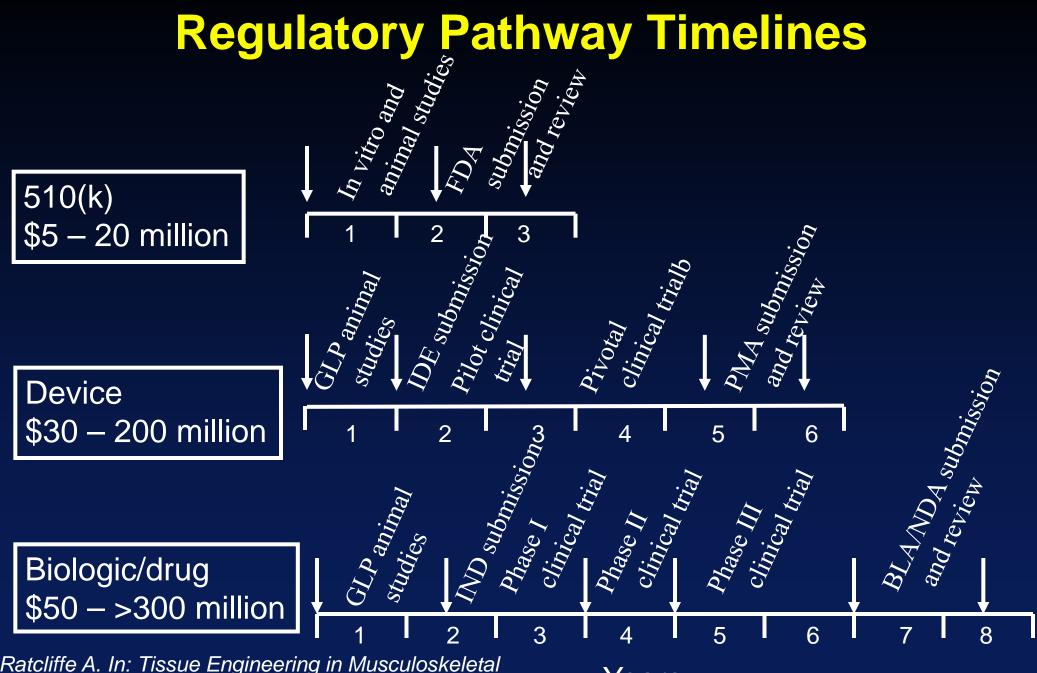
- Tendon and Ligament
 - Sports, Foot and Ankle, Hand
 - Rotator cuff, ACL, Achilles

Cell-Based Products for Skin and Musculoskeletal Tissues

Carticel
Genzyme
1997

Transcyte ATS/S&N 1997

Apligraf Organogenesis

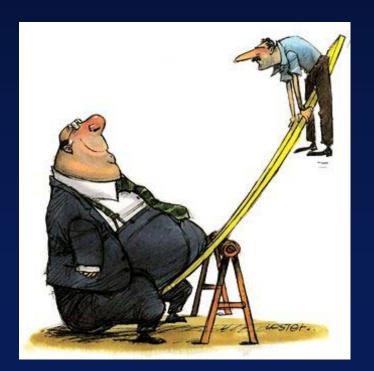

Deennaagaaft

AAS/Sabed Biohealing
20007

Orcel Ortec 2001

Ratcliffe A. In: Tissue Engineering in Musculoskeletal Clinical Practice, Sandell and Grodzinsky, Eds, AAOS. 2004

Years


Allografts

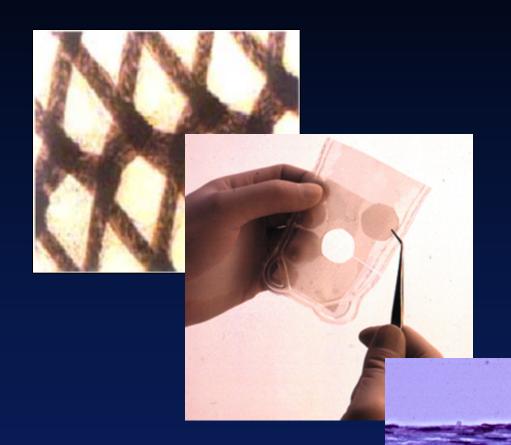
- Cost: <\$50,000</p>
- Skin
 - -Skin substitutes for wound healing
 - -Amniotic membrane for wound healing
- Bone
- Articular cartilage
- Tendon and ligament

Return on Investment (ROI)

Development costs

- R&D Costs
- Time to market
- Risk

Income


- Price per unit
- # procedures/year
- Anticipated acceptance rate
- Reimbursement

Cost to manufacture and sell

- Manufacturing costs
- Overhead
- Sales and marketing costs
- Licensing fees

A Living, Bioengineered, Human Dermal Replacement

Clinical need

- Diabetic ulcers
 - -800,000 / yr in the US
 - Venous ulcers
 - -700,000 / yr in the US
 - Pressure sores
 - > 1,500,000 / yr

Healing Diabetic Foot Ulcers Using Dermagraft® as a Dermal Replacement

Week 0

Week 1

Week 3

Week 5 Week 8 Week 10

Dermagraft implanted weekly for eight weeks

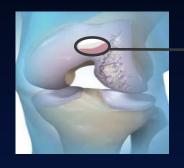
Balance Challenges with Opportunities

- Cost Increase efficiencies, Standards
- Time Streamline studies required
- Technical difficulty Cell source, Standards
- Clinical uncertainty Improved clinical databases
- Regulatory uncertainties Standards
- Manufacturing Scalability, Standards
- Predicted market opportunity Availability of data
- International opportunities Harmonization

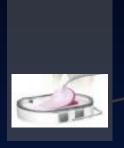
Research and Cell Culture Scale-up

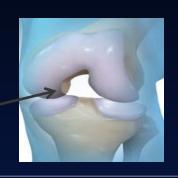
Innovative Manufacturing

 Automated manufacturing capabilities, efficient


> Supports high-volume production (bioreactor design), scaleable

> > Provides product consistency, reproducible


- Economic
- Safe


AESCULAP Biologics

NOVOCART® 3D Manufacturing Process

Patient biopsy

Automated cell growth & scaffold seeding

Final Product

Implant for lesion repair

Digest

Proliferation

Cell Collection + Scaffold Loading

Disposable Integrated Process

NOVOCART® 3D Commercial Scale-out

Cocoon™ Tree

Cocoon™ Orchard

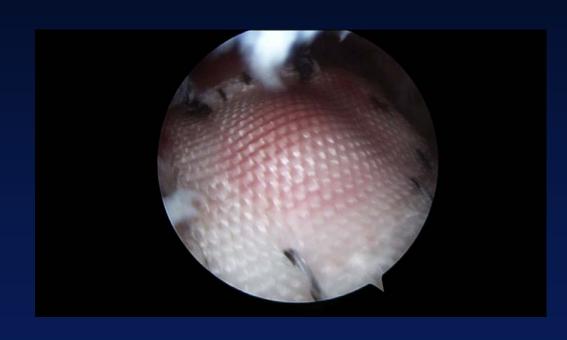
Standard Model of Osteochondral Repair NIH Funded, ASTM Standard

No Repair

Repair with osteochondral plug, 4 and 12 months

Autologous versus Allogeneic

- Very different business models
- Autologous
 - Minimally manipulated?
 - What are the minimum requirements for a cell preparation to be effective?
- Allogeneic
 - Cell expansion to make a cell bank and generate numbers of cells required (Passage 6?)
 - Exhaustive testing of cell bank to ensure cells are safe
 - What are the minimum requirements for a cell preparation to be effective?


Biomimetics for Repair and Replacement

Present

- Biomaterials can be used to replicate mechanical properties of tissues
- Requires host to provide cells and active repair

Ideal

 Combine cells and ECM with biomaterial within single product

A challenge is to develop treatment that is therapeutically effective.

A challenge is to develop product that is commercially successful.

To have clinical impact, the challenge is to develop a product that is therapeutically effective and commercially successful.