

Using Sentinel to Evaluate Effectiveness or Efficacy

Richard Platt MD, MS
Harvard Pilgrim Health Care Institute and
Harvard Medical School
for the Sentinel Investigators
September 19, 2017

- Background
- Coordinating Center
- · Privacy and Security
- The Sentinel System Story

- Distributed Database and Common Data Model
- Complementary Data Sources
- Routine Querying Tools
- Validations and Literature Reviews

- Assessments of Drugs
- Assessments of Vaccines, Blood, & Biologics

- FDA Safety Communications
- · Publications and Presentations
- Sentinel Initiative Events
- Report Finder

Latest Postings

SPOTLIGHT

 Sentinel Initiative Public Workshop - Ninth Annual Tue. 11/08/2016

■ STUDY PROTOCOLS & SURVEILLANCE PLANS

 Influenza Vaccines and Birth Outcomes Protocol (PRISM)

Fri, 01/20/2017

 Identify and Evaluate Manufacturer-Level Drug Utilization and Switching Patterns in Sentinel Mon. 12/12/2016

■ MODULAR PROGRAMS

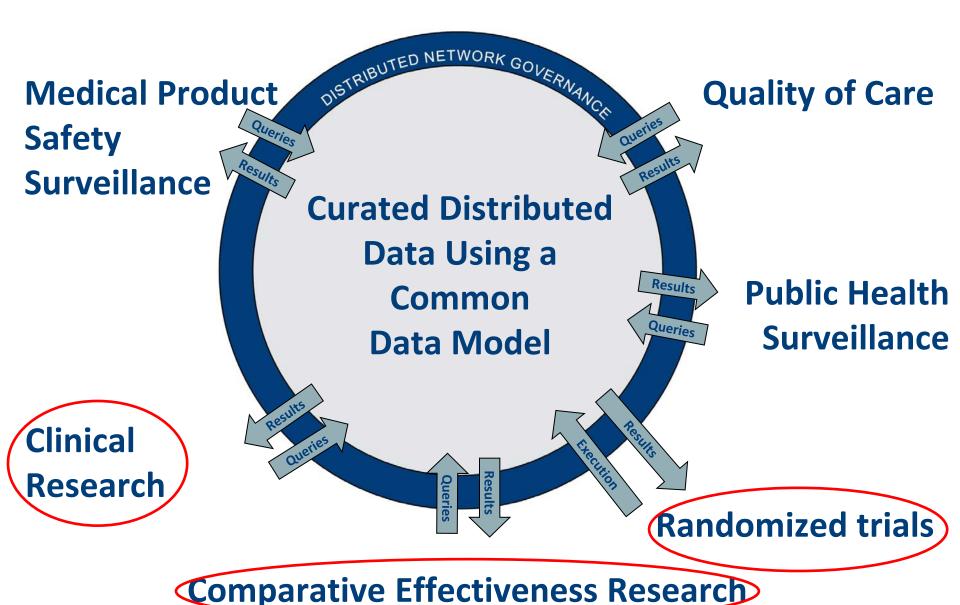
 Querying Tools: Overview of Functionality and Technical Documentation

Tue: 12/27/2016

Influenza antiviral drug use 2010-2015
 Mon. 10/31/2016

Disclosures

None related to this presentation



Sentinel's charge

Assess the use, safety, and <u>effectiveness</u> of regulated medical products by using electronic healthcare data plus other resources

Create data, informatics, and methodologic capabilities to support these activities

Sentinel partner organizations

Lead – HPHC Institute

DEPARTMENT OF POPULATION MEDICINE

Data and scientific partners

Scientific partners

Numerous data elements are available

Administrative

Enrollment
Person ID
Enrollment start & end dates
Drug coverage
Medical coverage
Medical record availability

Dispensing
Person ID
Dispensing date
National drug code (NDC)
Days supply
Amount dispensed

Encounter
Person ID
Service date(s)
Encounter ID
Encounter type & provider
Facility
Etc.

Diagnosis
Person ID
Service date(s)
Encounter ID
Encounter type & provider
Diagnosis code & type
Principal discharge diagnosis

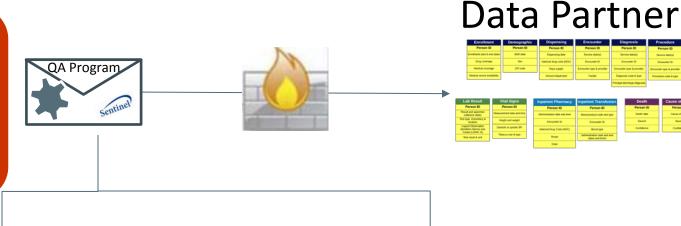
Procedure
Person ID
Service date(s)
Encounter ID
Encounter type & provider
Procedure code & type
Etc.

Cillical	
Lab Result	Vital S
Person ID	Perso
Result and specimen collection dates	Measurement (
Test type, immediacy & location	Height an
Logical Observation Identifiers Names and	Diastolic & s
Codes (LOINC ®)	Tobacco us

∕ital Signs
Person ID
rement date and time
leight and weight
stolic & systolic BP
bacco use & type
Etc.

Registry				
Death	Cause of Death	State Vaccine		
Person ID	Person ID	Person ID		
Death date	Cause of death	Vaccination date		
Source	Source	Admission Type		
Confidence	Confidence	Vaccine code & type		
Etc.	Etc.	Provider		
		Etc.		

Inpatient			
Inpatient Pharmacy	Inpatient Transfusion		
Person ID	Person ID		
Administration date and time	Administration start and end date and time		
Encounter ID	Encounter ID		
National Drug Code (NDC)	Transfusion administration ID		
Route	Transfusion product code		
Dose	Blood Type		
Etc.	Etc.		


Test result & unit

Etc.

The quality assurance process

Send a standard QA program to check DP's data in waiting

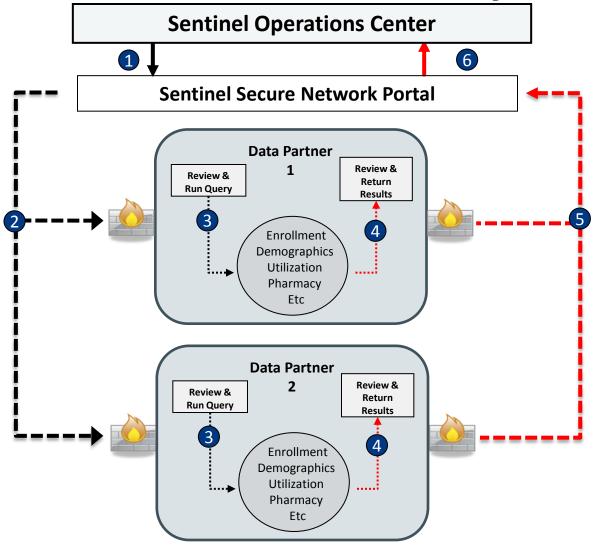
Compliance Checks

Level 1: Completeness, validity, accuracy

Level 2: Cross-variable and cross-table integrity

Judgment Call Checks

Level 3: Trends:


consistency

Level 4: Logical:

plausibility, convergence

Sentinel distributed analysis

- User creates and submits query
- Data Partners retrieve query
- Data Partners review and run query against their local data
- Data Partners review results
- Data Partners return results via secure network
- 6 Results are aggregated and returned

Sentinel distributed database*

Population with well-defined person-time for which most medically-attended events are known

- 425 million person-years of observation time
- 43 million people currently accruing new data
- 5.9 billion dispensings
- 7.2 billion unique encounters
- 42 million people with >1 laboratory test result

* As of January 2017

Sentinel and effectiveness/efficacy

- Plain Sentinel
- Sentinel with full text medical record adjudication
- Sentinel linked to registries
- Sentinel linked to EHRs
- Sentinel and patient generated data
- Sentinel as a home for clinical trials

Sentinel distributed data alone

Prospective Surveillance Pilot of Rivaroxaban Safety

Elizabeth Chrischilles
College of Public Health, University of Iowa

Workgroup

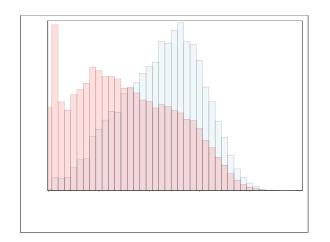
- Leads: Elizabeth Chrischilles, Ryan Carnahan
- Co-investigators: Joshua J. Gagne, Bruce Fireman, Jennifer Nelson, Sengwee Toh, Azadeh Shoaibi, Marsha E. Reichman, Shirley Wang, Michael Nguyen, Rongmei Zhang, Rima Izem, Margie R. Goulding, Mary Ross Southworth, David J. Graham, Candace Fuller, Hannah Katcoff, Tiffany S. Woodworth, Catherine Rogers, Ryan Saliga, Nancy D. Lin, Cheryl N McMahill-Walraven, Vinit P. Nair, Nandini Selvam
- Many thanks are due to Data Partners who provided data used in the analysis

Propensity Score Matching (1/2)

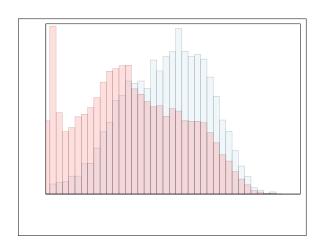
- Variable ratio propensity score (PS) matching (each new rivaroxaban user matched to up to 10 new warfarin users)
- Using nearest neighbor algorithm, matching caliper
 0.05
- PS estimation and matching within Data Partner

Propensity Score Matching (2/2)

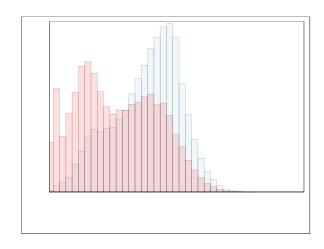
- 70+ confounders:
 - Age, sex, year of index date
 - Combined comorbidity score
 - Health service utilization
 - Counts of encounters by setting
 - Number of drugs
 - Procedures and diagnoses:
 - Risk factors for bleeding and schemic stroke
 - Medications:
 - Oral cardiovascular agents,
 - Medications that increase bleeding risk,
 - Interacting medications

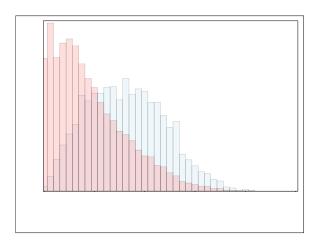

Statistical Analysis

- Cox regression stratified by Data Partner and matched set to estimate hazard ratio
- Sequential testing
 - Group sequential design, multiple looks, flat boundary
 - Initial threshold for signal (5 looks): Wald z-score > 2.37 (P<0.018)
 - Revised signaling threshold (2 looks): Wald z-score >2.06 (P<0.039)
 - To reflect change of number of looks and amount of information at each look
 - Delay due to tool refinements
- End-of-surveillance analysis (one-time estimation)
 - Included only diagnosis codes in primary position

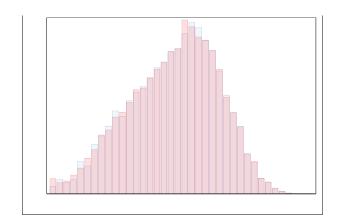


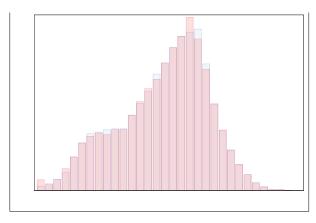
Histograms of Propensity Scores, Unmatched Cohort, 4 Data Partners, Gastrointestinal Bleeding Analysis Cohort


Data Partner 1

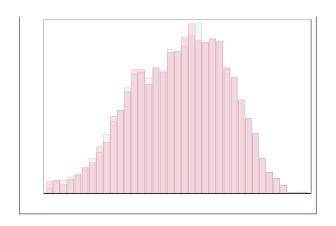

Data Partner 3

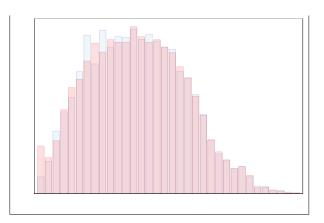
Data Partner 2


Data Partner 4



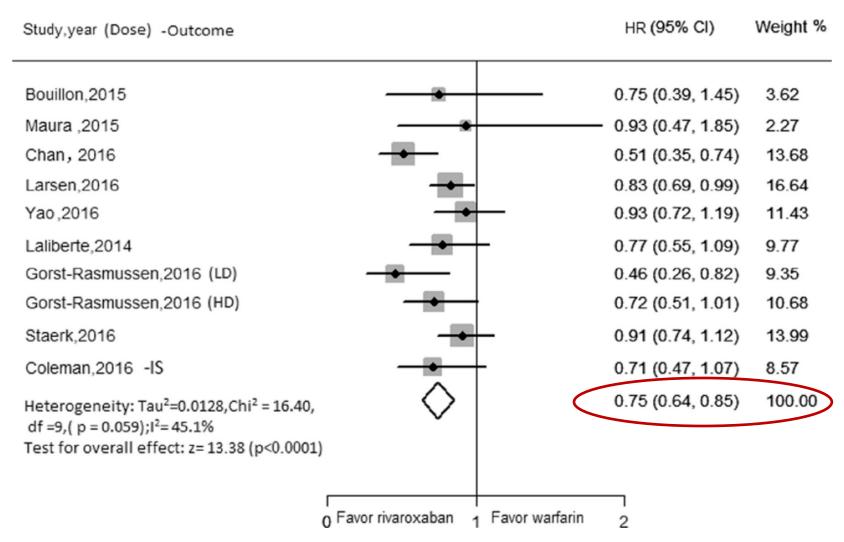
Histograms of Propensity Scores, Propensity Score-Matched Cohort, 4 Data Partners, Gastrointestinal Bleeding Analysis Cohort


Data Partner 1


Data Partner 2

Data Partner 3

Data Partner 4



Rivaroxaban vs Warfarin: Comparing Sentinel to ROCKET-AF

	Hazard Ratio (95% CI)	
	ROCKET-AF ¹	Sentinel
GI Bleed	1.61 (1.30-1.99)	1.47 (1.29-1.67)
Intracranial hemorrhage	0.67 (0.47-0.93)	0.71 (0.50-1.01)
Ischemic stroke	0.94 (0.75-1.17)	0.61 (0.47-0.79)

¹ROCKET-AF compared rivaroxaban with warfarin for stroke prevention in non-valvular atrial fibrillation Patel NEJM 2011;364:883

Rivaroxaban compared with warfarin in risk of stroke/TE in AF patients.

Ying Bai et al. Stroke. 2017;48:970-976

Sentinel with chart review



Risk of Intussusception after Rotavirus Vaccination: Results of the Mini-Sentinel/PRISM* Study

W. Katherine Yih, PhD, MPH

Sentinel Initiative Public Workshop 2014

Background

- RotaShield, first vaccine for prevention of rotavirus infection in infants, licensed in 1998
 - Withdrawn in 1999 due to risk of intussusception, a form of bowel obstruction
- For RotaTeq and Rotarix, no increased risk in clinical trials of >60,000 children each
 - But post-licensure studies in other countries later suggested increased risk of intussusception after both
- In 2010, FDA's Center for Biologics Evaluation and Research (CBER) initiated this study to quantify the possible risk among U.S. infants

Source data and chart review

- Data partners: Aetna, HealthCore, Humana
- Date range: 2004 mid-2011
- CPT-4 codes for immunization:
 - CPT-4 codes 90680 (RotaTeq) and 90681 (Rotarix)
- CPT-4 and ICD-9 codes for outcomes:
 - ICD-9 codes 560.0 (intussusception), 543.9;
 CPT-4 code 74283 (therapeutic enema...)
- Chart review to validate both outcome and exposure
 - Pediatrician adjudicators classified cases using Brighton Collaboration criteria

Intussusception confirmation

Algorithm-identified potential cases = 343

Potential cases are from whole population aged 5-36 weeks and include unexposed

Intussusception confirmation

Algorithm-identified potential cases = 343

Those for whom chart obtained =267 (78%)

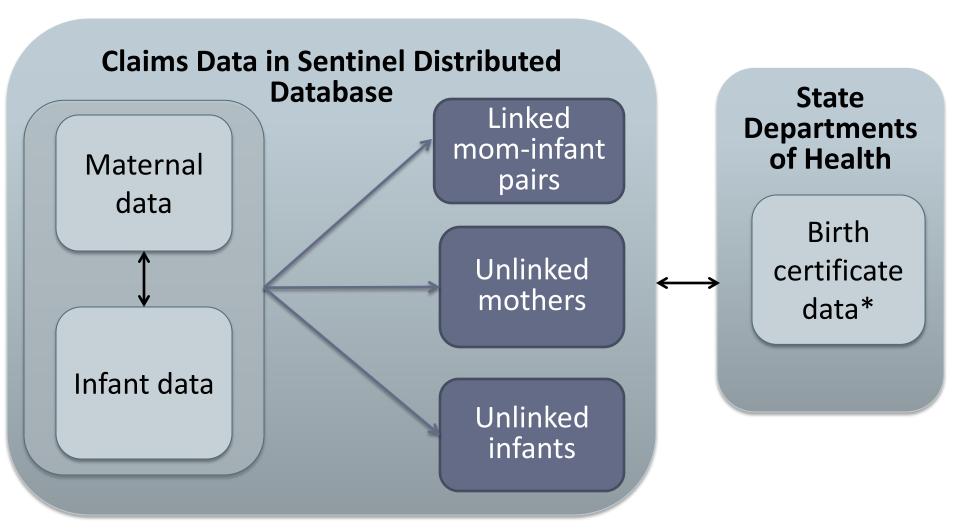
Potential cases are from whole population aged 5-36 weeks and include unexposed

Intussusception confirmation

Algorithm-identified potential cases = 343

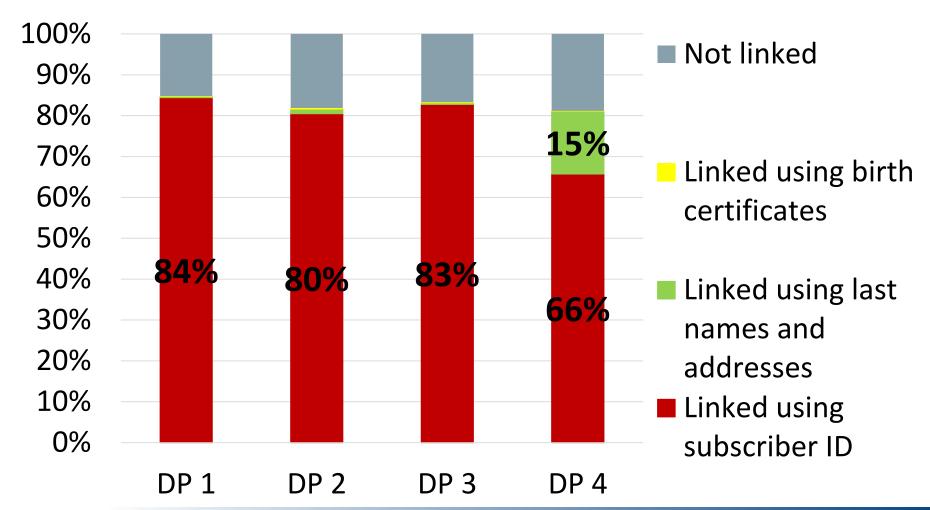
Those for whom chart obtained =267 (78%)

Confirmed as intussusception, Brighton Level 1 = 124 (46%)

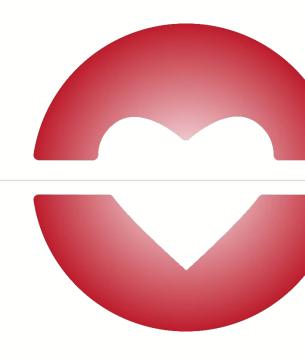

Classified as Brighton Level 2 = 20 (7%)

Potential cases are from whole population aged 5-36 weeks and include unexposed

Sentinel linked to registries



^{*}Birth certificates available for 9 states


Percent deliveries linked to infants (N=651,607)

Sentinel linked to EHRs

ADAPTABLE Trial

The Aspirin Study

Follow us on Twitter @ADAPTABLEstudy

ClinicalTrials.gov: NCT02697916

ADAPTABLE Study Design

Patients with known ASCVD + ≥ 1 "enrichment

Identified through EHR (computable phenotype)

ASA 81 mg QD

ASA 325 mg QD

Electronic follow-up: Every 3-6 months Supplemented with EHR/CDM/claims data

Primary endpoint:

Composite of all-cause mortality, hospitalization for MI or stroke

Primary safety endpoint:

Hospitalization for major bleeding

[†] Participants without internet access may be consented and followed via a parallel system.

ADAPTABLE Computable phenotype

History of CAD

Prior MI

OR

 Prior angiogram showing significant CAD

OR

 Prior revascularization (PCI/CABG)

At least one:

- Age >65 years
- Creatinine >1.5 mg/dL
- Diabetes mellitus
- Known 3-vessel CAD
- Current cerebrovascular disease and/or peripheral artery disease
- Known ejection fraction<50%
- Current smoker

Enabling Pragmatic Research: eScreening, eEnrollment and eFollowup

OR

Adaptable

The Aspirin Study

DCRI FOLLOW-UP

- Patient Reported Outcomes
- Medication use
- Health outcomes

Portal FOLLOW-UP

- Patient Reported Outcomes
- Medication use
- Health outcomes

16

30

PCORNet Coordinating Center FOLLOW-UP

- Via Common Data Model
- Longitudinal health outcomes

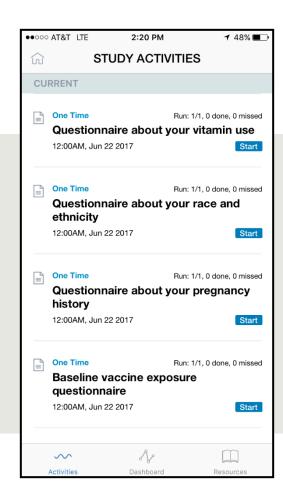
CMS & Payer Virtual Data Warehouse FOLLOW-UP

ial health outcomes

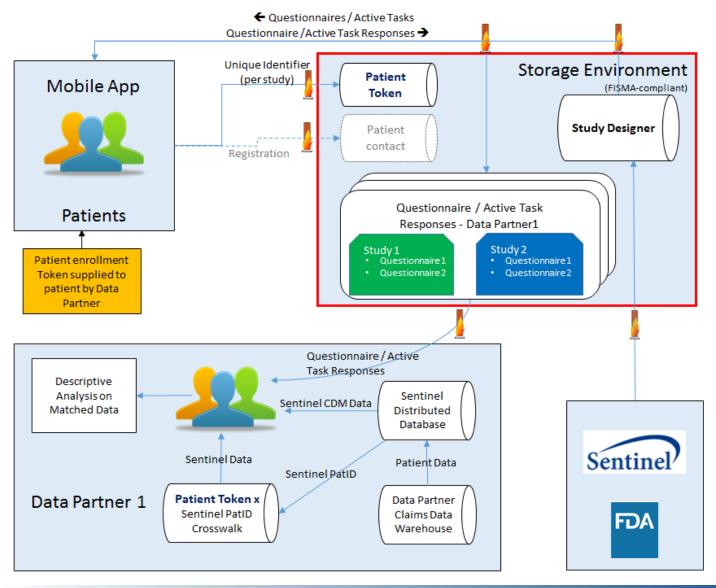
Sentinel linked with patient reported data

Developing a Mobile App for Studies of Medication Safety

Sascha Dublin, MD, PhD, Kaiser Permanente Washington


August 2017

Screenshots from App



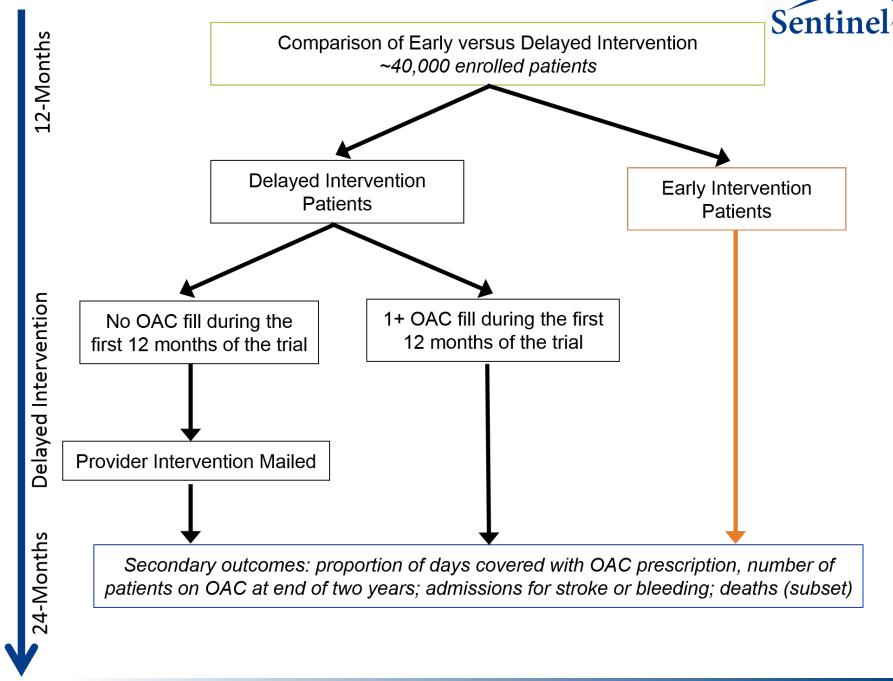
Link Primary and Secondary Data

Sentinel and randomized trials

Sentinel IMPACT-AFib: Transforming Pragmatic Clinical Trials Using a Nationwide Distributed Claims Database

IMPACT-Afib Participating Sites

FDA-Catalyst: IMPACT-AFib randomized trial

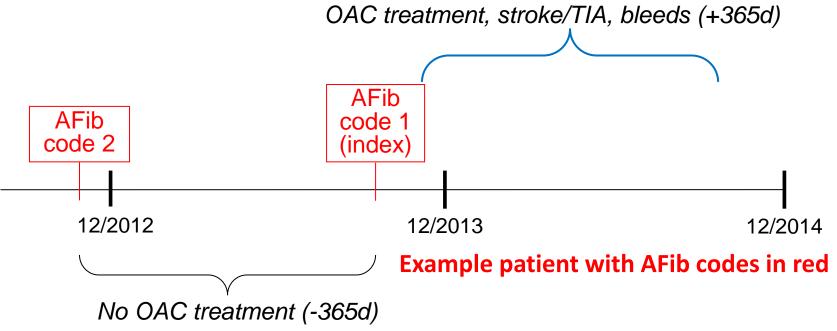

IMplementation of a randomized controlled trial to im**P**rove treatment with oral **A**nti**C**oagulan**T**s in patients with **A**trial **Fib**rillation

 Direct mailer to 40,000 health plan members with AFib, high risk for stroke, and no oral anticoagulant (OAC) treatment, and their providers to encourage consideration of OACs

IMPACT-AFib Outcomes

- Primary outcome: Proportion who fill ≥1 OAC prescription within 12 months
- Secondary outcomes:
 - Rates of stroke hospitalizations
 - Time to first OAC dispensing
 - Proportion of days with OAC days supplied
 - Proportion of patients on OAC at end of follow up
 - Rates of bleeding hospitalizations
 - Health care utilization
 - Hospital mortality
- Outcomes will be assessed 12 and 24 months

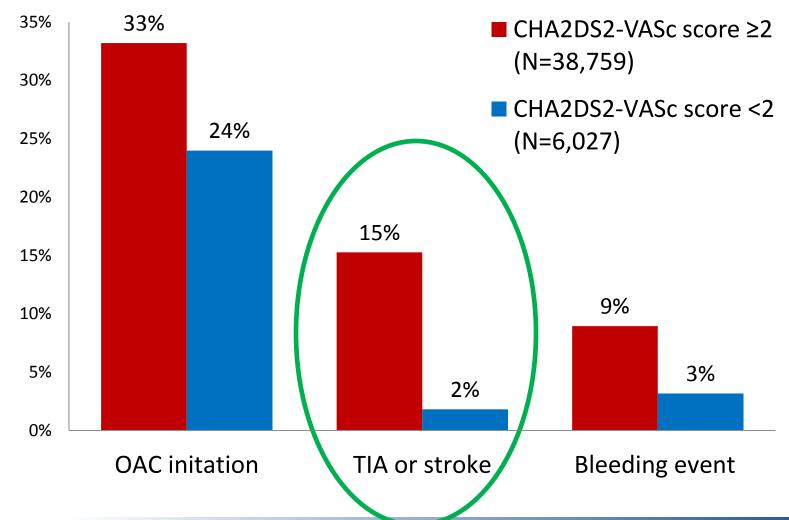
Trial cohort eligibility


- Adult ≥30 years old
 - Medical & pharmacy coverage for ≥365 days
- ≥2 AFib diagnosis codes
- No OAC dispensing (or ≥4 INR measurements) within the last year
- High risk for stroke (CHA2DS2-VASc score >2)
- Exclusions:
 - History of mechanical prosthetic valve, deep vein thrombosis, pulmonary embolism, intracranial bleed
 - Hospitalized bleed in last 6 months
 - Current pregnancy
 - Current P2Y12 inhibitor treatment, e.g., clopidogrel

Estimating CHA₂DS₂-VASc in feasibility query

CHA ₂ DS ₂ -VASC CALCULATOR		
	Risk factor	If patient has risk factor, add points
С	Congestive Heart Failure	+1
н	High Blood Pressure (hypertension, including normal blood pressure on blood pressure medications)	+1
A ₂	Age 75 years old or older	+2
D	Diabetes	+1
S	Stroke or TIA (mini-stroke)	+2
٧	Vascular Disease (prior bypass surgery, heart attack peripheral artery disease, or aortic plaque)	+1
Α	Age 65-74 years	+1
Sc	Sex Category: Female sex	+1
	TOTAL	

- Follow-up period: 365 days after 2013 diagnosis or until an event or disenrollment
- Event definitions:
 - Anticoagulant treatment (>1 NDC or >2 INR CPT codes)
 - Stroke or TIA (>1 ICD-9-CM code in any care setting)
 - Bleeding (>1 ICD-9-CM code in any care setting)

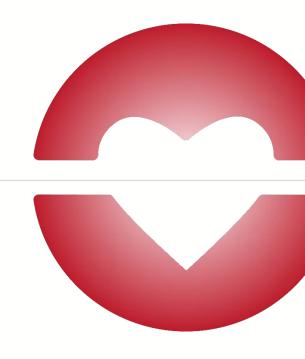


Preliminary Data from Five Data Partners

- 44,786 individuals identified with AF with no evidence of current or recent OAC use
- **38,759** (87%) eligible for anticoagulant treatment
- Among those, by end of follow up:
 - 12,867 (33%) had evidence of anticoagulant dispensing
 - 5,917 (15%) had a documented TIA or stroke
 - 3,469 (9%) had a documented bleeding event

Proportion of AFib members at five Data Partners with an event at end of follow up

Conclusions


- Identified a large number of health plans members potentially eligible for IMPACT-AFib
- Confirmed public health importance
- Sentinel infrastructure able to support
 - Assessment of trial feasibility
 - Implementation
 - Followup

Acknowledgements

- Aetna: Cheryl Walraven, Daniel Knecht
- Clinical Trials Transformation Initiative: Jennifer Goldsack
- Duke Clinical Research Institute: Christopher Granger, Sean Pokorney,
 Hussein Al-Khalidi, Emily O'Brien, Jennifer Rymer, Sana Al-Khatib
- Harvard Pilgrim Health Care Institute: Crystal Garcia, Richard Platt, Ryan Saliga, Robert Jin, Jeff Brown, Hannah Katcoff
- HealthCore: Kevin Haynes, Lauren Parlett
- Humana: Vinit Nair, Thomas Harkins, Daniel Lane, Yunping Zhou
- Optum: Nancy Lin
- Patient Representative: Debbe McCall
- U.S Food & Drug Administration: Melissa Robb, Patrick Archdeacon

ADAPTABLE Trial

The Aspirin Study

Follow us on Twitter @ADAPTABLEstudy

ClinicalTrials.gov: NCT02697916

ADAPTABLE Computable phenotype

History of CAD

Prior MI

OR

 Prior angiogram showing significant CAD

OR

Prior revascularization (PCI/CABG)

At least one:

- Age >65 years
- Creatinine >1.5 mg/dL
- Diabetes mellitus
- Known 3-vessel CAD
- Current cerebrovascular disease and/or peripheral artery disease
- Known ejection fraction<50%
- Current smoker

HealthCore Anthem Research Network (HCARN)

- Provider letters will go out informing providers of ADAPTABLE
- Two weeks after provider letters three batches of member mailers
 - Initial email or mailing
 - Reminder mailing
 - Telephone call
- Eligible patients will be instructed to the ADAPTABLE web recruitment portal
- For enrolled patients Duke will conduct reminders and further outreach

Sentinel and effectiveness/efficacy

- Plain Sentinel
- Sentinel with full text medical record adjudication
- Sentinel linked to registries
- Sentinel linked to EHRs
- Sentinel and patient generated data
- Sentinel as a home for clinical trials

Thank you!