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all      CSF

Utilizing biologics as CNS therapeutics –
Where are we today?

● Systemic approaches have yet to be 
translated fully to the clinic (no approvals) –
the CNS barriers pose a unique challenge

● Only 3 FDA-approved CNS biologics are 
actually delivered into the brain 
– intrathecal ziconotide (2.6 kDa) / chronic pain
– intrathecal nusinersen (~7 kDa) / SMA
– intraventricular cerliponase alfa 

(59 kDa) / rhTripeptidyl peptidase (N-term)
Late infantile neuronal ceroid lipo-fuscinosis
type 2 (CLN2) – Batten disease 

● Many uncertainties remain
– precise brain / spinal cord distribution 
– relative effectiveness of different routes 
– if limited delivery, how can we enhance?
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(2014)
● What is needed?    We need to better 
understand the mechanisms governing 
drug delivery and distribution in the CNS



Diffusive transport of therapeutics in the neuropil

Adapted from: Wolak & Thorne. Mol Pharm. 2013. Abbott, Thorne et al. In prep.

non-targeted IgG; based on in vivo brain diffusion coefficient (using 
integrative optical imaging point source method)

From: Wolak, Pizzo & Thorne. Journal of Controlled Release (2015)

Brain extracellular spaces (ECS) 
are 40-60 nm wide 

(Thorne & Nicholson. PNAS, 2006) —
an environment favoring diffusion

RTI: Nicholson & Phillips. J Physiol. 1981; Cserr, DePasquale, Nicholson, 
Patlak, Pettigrew & Rice. J Physiol. 1991; IOI: Nicholson & Tao. Biophysica
J. 1993; Thorne & Nicholson. PNAS. 2006; VCP: Rall, Oppelt & Patlak. Life 

Sci. 1962; Levin, Fenstermacher & Patlak. Am J Physiol. 1970
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Predicted diffusion gradients from in vivo 
diffusion measurements (IgG, 150 kDa) —

limited penetration / NOT scalable



Adapted from: Thorne. IN: Drug Delivery to the Brain. Springer (2014) Pizzo & Thorne. IN: Brain Edema. Academic Press (2017)

Convective transport of therapeutics in the CSF & PVS
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Cerebrospinal fluid (CSF) 
circulation pathways –

scalable across species

Perivascular space (PVS) fluid 
compartments – may also allow for 

some circulation / potentially scalable



Perivascular spaces
• fluid and connective tissue compartments 

surrounding subarachnoid & cerebral vessels

• large enough (5-10 μm) to allow for flow
(convection); arterial pulsations may serve as 
a driving force

• serve a possible lymphatic function

Sources: Zhang et al. J Anat. 1990; Frederickson & Low. Am J Anat .1969; Ichimura et al. Brain Res. 1991; Iliff et al. Sci Transl Med. 2012;  Foley et al. Ann Biomed Eng. 2012; 
Abbott. Neurochem Int. 2004; Cserr et al. Exp Eye Res. 1977; Cserr et al. Am J Physiol. 1981; Rennels et al. Brain Res. 1985; Hadaczek et al. Mol Ther. 2006; Iliff et al. J 

Neurosci. 2013; Carare et al. Neuropath Appl Neuro. 2008; Bilston et al. Comput Methods Biomech Biomed Engin. 2003; Schley et al. J Theor Biol. 2006; Morris et al. Acta
Neuropathol. 2016; Wang & Olbricht. J Theor Biol. 2011

Pollock et al. J Anat. 1997
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PVS

Pizzo, … & Thorne. Journal of Physiology, in press (2017)



 Normal adult brain ECS width in vivo ~ 40 – 60 nm
 [Heparan sulfate binding sites] ~ 3.5 µM
 Antibody diffusion characteristics
(Thorne & Nicholson. PNAS, 2006 & 2008; Wolak et al. JCR, 2015)

1 – Local transport in brain 
extracellular space (ECS) after 
intraparenchymal injection
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2 – Whole brain distribution following 
intrathecal infusion into the 

cerebrospinal fluid (CSF)

3 – Whole brain distribution after intranasal administration

My laboratory’s focus
CNS delivery and distribution of biologics –

Study of mechanisms & new strategies for three central routes

CNS distribution resulting from intrathecal infusions
How widespread can it be? What determines the distribution? 

Transport at the brain – CSF interface: A delicate mix of diffusion
within brain extracellular spaces & convection within perivascular spaces
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Intrathecal infusions – Imaging I.T. IgG distribution
in rats reveals the critical role of perivascular flow

Michelle Pizzoor
AF488-IgG (150 kDa) / -sdAb (~15 kDa) 

Left panel: Lochhead et al. JCBFM (2015); Right 
panel: T1 MRI – baseline subtracted (visualization 

using ImageJ); 50 min infusion + post-infusion imaging

MRI of I.T. Gd-IgG Ex vivo fluorescence imaging of I.T. AF488-IgG

80 min
AF488-IgG
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Pizzo, … & Thorne. Journal of Physiology, in press (2017)



AF488-sdAb – ~15 kDa AF488-IgG – 150 kDa

goat IgG + 0.27 M mannitol goat IgG + 0.75 M mannitol

Intrathecal infusions – 1. antibody size-dependence 
2. the balance between diffusion & perivascular flow 

3. distribution enhancement by co-infusion of mannitol
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* **

Pizzo, … & Thorne. Journal of Physiology, in press (2017);  AF488-labeled A20.1 VHH, llama sdAb provided by Dana Stanimirovic (NRC, Canada)



Adapted from: Thorne et al. Neuroscience (2004)  

Olfactory nerve-
associated pathway

From: Lochhead et al. JCBFM (2015); Reviewed in: Lochhead & Thorne. ADDR (2012)

Intranasal targeting to the brain
What determines the distribution?

Trigeminal nerve-
associated pathway

21 Transport along 
olfactory & trigeminal 
pathways from the 
nasal mucosa (NM)

Transport across 
nasal epithelia to 
reach brain entry 
pathways or 
blood vessels 
(BV) for systemic 
absorption

NM

IGF-I (7649 Da; 70 aa)

Intranasal
TR-dextran (3 kDa)

Intranasal
PBS (control)

3 Widespread distribution in the brain via flow 
within perivascular spaces associated with 
major cerebral arteries

Epithelium

Lamina 
Propria

(brain entry 
pathways)

External
environment

Olfactory Mucosa (H&E)

olfactory 
bulbMCA

Jeff Lochhead
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Conclusions
● Diffusive transport of large macromolecules 

(e.g. enzymes) into the brain from the CSF
will be quite limited (several mm)

2 cm

I.C.V. acid sphingomyelinase 
(70 kDa) in the rhesus monkey

● Access to & distribution within the
perivascular spaces will likely be
critical for widespread distribution

● There is an urgent need to understand all key variables
– body position – disease / storage effects

– intracranial pressure – individual variation 
– co-applied excipients (e.g. osmotic methods)

IgG  
DAPI 
RECA-1

Top right: Ziegler et al. Exp Neurol (2011);  Other images – Pizzo, Kumar & Thorne. Submitted / Unpub. + collab. w/ Lydia Sorokin (Univ. of Muenster, Germany)

I.T. IgG in the rat

I.T. IgG in the rat (spinal cord)
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100 µm

Intranasal 
IgG in the 
rat (frontal 

pole)
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