

Developing a digital eco-system for disease understanding, insightful drug development tools, and innovative treatments require a standardized, actionable database

Critical Path for Alzheimer's Disease Consortium Stephen P. Arnerić, PhD, Executive Director

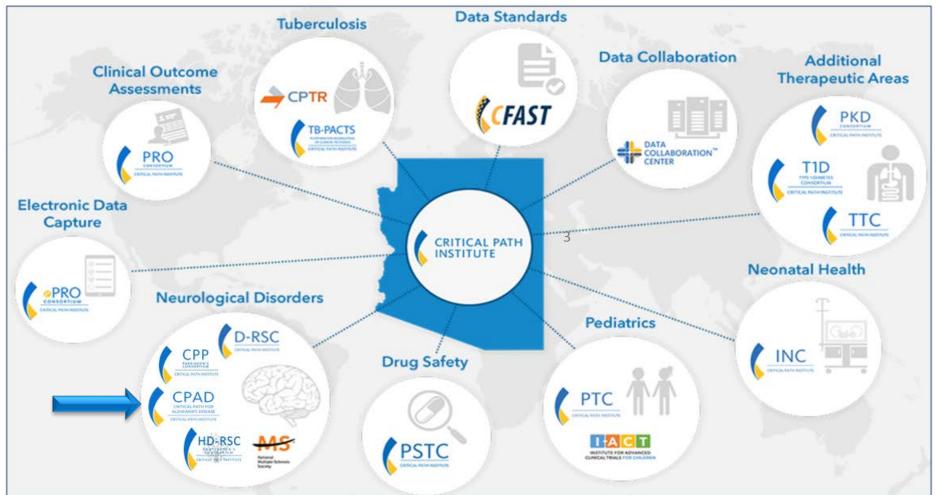
Harnessing Mobile Technology to Predict, Diagnose, Monitor, and Develop Treatments for Nervous System Disorders

ADVANCING SCIENCE THROUGH CROSS-DISCIPLINARY COLLABORATION

Mission

Critical Path Institute is a catalyst in the development of new approaches to advance medical innovation and regulatory science. We achieve this by leading teams that share data, knowledge, and expertise, resulting in sound, consensusbased science (https://c-path.org/about/).

Who We Are


Critical Path Institute (C-Path) is a nonprofit, public-private partnership with the Food and Drug Administration (FDA) created under the auspices of the FDA's Critical Path Initiative program in 2005.

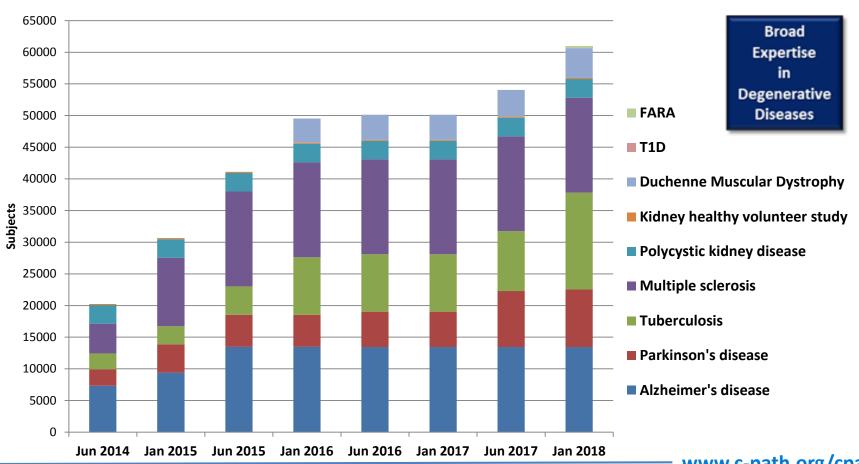
C-Path's aim is to accelerate the pace and reduce the costs of medical product development through the creation of new data standards, measurement standards, and methods standards that aid in the scientific evaluation of the efficacy and safety of new therapies.

CRITICAL PATH INSTITUTE

Fifteen global consortia collaborating with 1,450+ scientists and 84 organizations

FOCUS: Data standards; clinical trial simulation tools from actionable data, disease progression models; biomarkers; clinical outcome assessment instruments

C-PATH CLINICAL DATA


Clinical data: 107 studies 60,642 subjects

Note: nonclinical 119 studies. 6296 subjects.

ReSeqTB: 7835 Individual Isolates

Clinical data contributed to C-Path

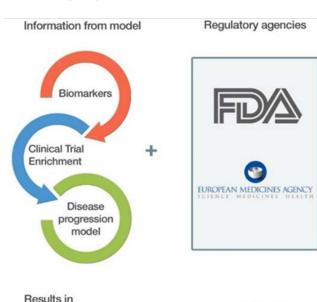
CPAD QUALIFIES DRUG DEVELOPMENT TOOLS FOR CLINICAL DRUG TRIALS TREATING DEMENTIA

Why? / What?

- To understand disease progression rates and responses to treatments, as these can vary significantly across different patients
- Advance Drug Development Tools

Who?

Key stakeholders: Patients, Pharma Companies, Regulators, Patient-Advocacy Organizations, Academics, Government Agencies


How?

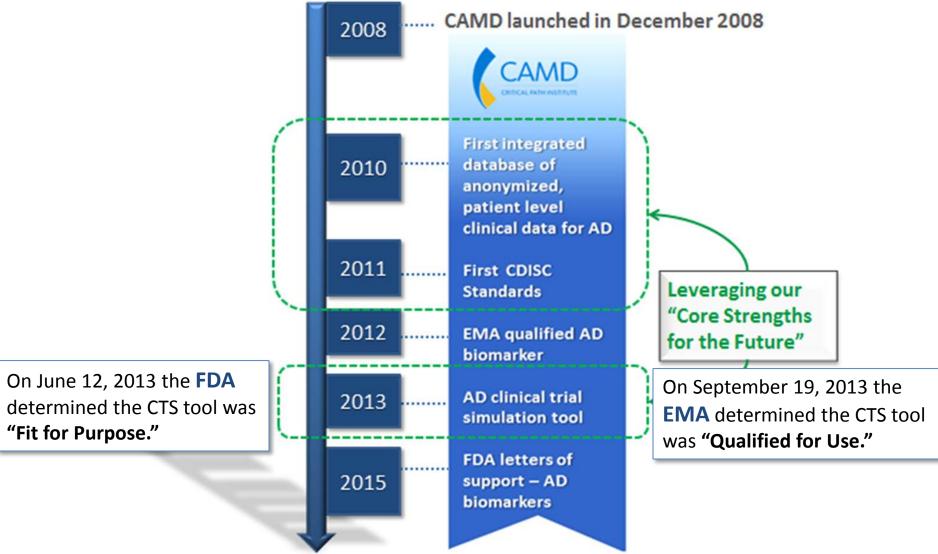
Integrate anonymized patient-level data from past clinical trials and longitudinal observational studies

IMPACT

- Actionable data/models to inform optimal trial design
- Improved trial efficiency, and accelerated delivery of innovative treatments to the right patients

Right

Time


Right

Target

KEY ACHIEVEMENTS FOR CPAD

(previously CAMD)

VALUE, HISTORY, & FUTURE

OF CDISC (Clinical Data Interchange Standards

Consortium) STANDARDS FOR AD

CPAD CRITICAL PATH FOR ALZHEIMER'S DISEAS CRITICAL PATH INSTITU

Value Proposition:

- A reproducible research framework with controlled terminology which accelerates our understanding of AD across trials trials using a uniform format.
- Improves our ability to detect signals in new compounds; maximizes learnings from successes and failures.

Historical Perspective (CPAD/CDISC partnership):

Version 1.0 (2011) -

• First user guide for AD CDISC standards (did not include biomarkers) focused on key demographic, genetic and clinical outcome assessments (COAs).

Version 2.0 (2016) -

Added global consensus data standards for key CSF AD biomarkers,
 vMRI imaging and PET ligands.

Future:

Version 3.0 (~2019) –

• Focus on promising *exploratory biomarkers and biometric assessments*.

(as of December 2016) All clinical data from registration trials must be in CDISC format

FDA REQUIREMENT

Concepts covered by the Alzheimer's CDISC User Guide

ApoE Genotype

Family History of AD

Volumetric MRI

PET, PET/CT (FDG, Florbetapir, PiB)

CSF Biomarkers and Sampling

Outcome Assessment Scales

ADAS-COG

CDR AVLT

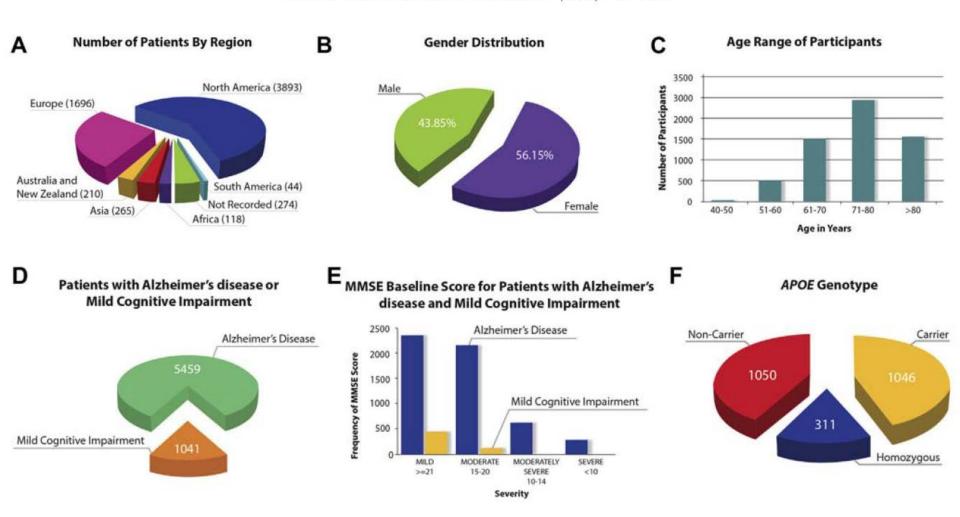
FAQ

Modified Hachinski

DAD

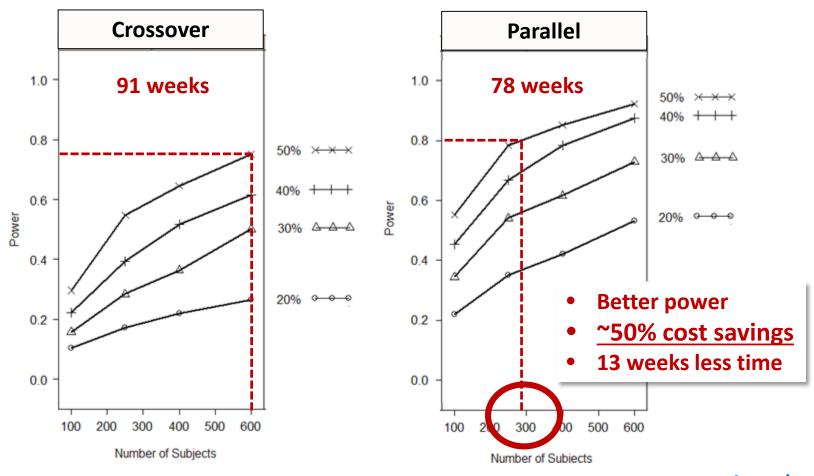
ADCS-ADL MCI

NPI


CGI

GDS

OVERVIEW OF CPAD'S AD PATIENT CHARACTERISTICS


J. Neville et al. / Alzheimer's & Dementia 11 (2015) 1212-1221

DEMONSTRATED UTILITY OF THE CLINICAL TRIAL SIMULATION TOOL

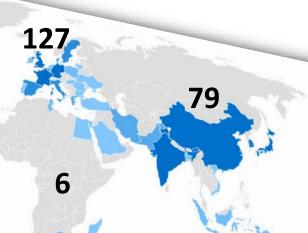
Balancing power, sample size, and duration, given varying effect magnitudes

CPAD DATABASE UTILIZATION (as of 4/30/2018)

550 Total Applicants

from

338 Distinct Institutions


USE BY SECTORS

Academia: 245

Pharmaceutical: 164

Other: 68 Non-profit: 32 Government: 11

Industry

Abbvie; Allergan;

AstraZeneca; Biogen;

Biomarkable; CoreLab;

Daewong; Eisai; GE

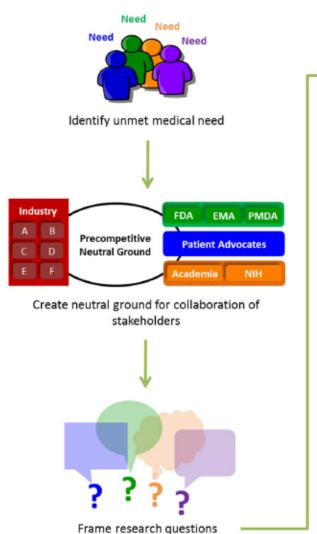
Healthcare; IBM; Johnson &

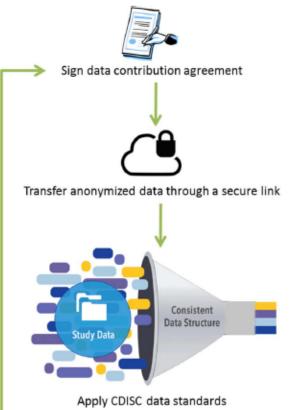
Johnson; Lundbeck; Merck;

NeuroCog; **Novartis**; **Pentara**;

Pfizer; Siemens; SAS

Academia & Foundations


Amherst College; Arizona State Univ.; Bill & Melinda Gates Foundation; CHDI Foundation; Duke Univ.; Fraunhofer Institute; Goethe Univ.; Harvard Univ.; Karolinska Institute; King's College London; Michael J Fox Foundation; Rockefeller Univ.; Seoul National Univ.; Univ. of Oxford; Yale Univ.


Government & Other

NIH; Neurology Today; Gigatrust

CREATE AN INTEGRATED DATA SHARING APPROACH TO FRAME QUESTIONS ADDRESSING UNMET NEEDS

What changes can be seen in the presymptomatic stages of the disease?

Conrado, D.J., European Journal of **Pharmaceutical Sciences (2017)** http://dx.doi.org/10.2016/j.ejps.2017.06.035

KEY DATA PRINCIPLES

"F-A-I-R"

- Findable
- Accessible
- Interoperable
- Reusable

Data Standards Strategy FY2018-FY2022

Center for Biologics Evaluation and Research (CBER) Center for Drug Evaluation and Research (CDER)

January 2018

Link includes a video with Janet Woodcock:

https://www.fda.gov/Drugs/DevelopmentApprovalProcess/FormsSubmissionRequirements/ElectronicSubmissions/ucm249979.htm?utm_campaign=CDER%20New%202%2F6&utm_medium=email&utm_source=Eloqua&elqTrackId=6fe706eedc0640aab77d7fca9e9a9277&elq=895d2651f88e431ca0cb8644f26cb542&elqaid=2342&elqat=1&elqCampaignId=1658

ACCELERATE DATA SHARING

CPAD
CRITICAL PATH FOR
ALZHEIMER'S DISEASE
CRITICAL PATH INSTITUTE

- Data sharing especially from prevention trials[Informed Consent]
- Understanding of what matters most to patients and caregivers
- Data sharing from pilot
 Biometric Monitoring Device
 (BMD) studies

Collaboration for Alzheimer's Prevention

Facilitating data sharing as early **as possible**

- Where possible, standardized data acquisition techniques and assessments should be included to enhance the ability to compare data between trials.
- Measurement of multiple potential biomarkers should be included in trial designs to facilitate the identification of biomarkers of disease evolution and treatment response that could be used in future trials.
- Screening and prerandomization baseline data should be made available to the scientific community within 12 months of enrollment completion.
- All study data should be made available to the scientific community after the earlier of either regulatory approval of the tested treatment or 18 months after the completion or early termination of the trial.

A proposed framework

Alzheimer's چ Dementia

Alzheimer's & Dementia 12 (2016) 631-632.

Collaboration for Alzheimer's Prevention: Principles to guide data and sample sharing in preclinical Alzheimer's disease trials

Stacie Weninger^{a,**}, Maria C. Carrillo^{b,**}, Billy Dunn^c, Paul S. Aisen^d, Randall J. Bateman^c, Joanne D. Kotz^a, Jessica B. Langbaum^f, Susan L. Mills^e, Eric M. Reiman^f, Reisa Sperling^g, Anna M. Santacruz^e, Pierre N. Tariot^f, Kathleen A. Welsh-Bohmer^h

Sharing of Data After Trial Completion

Trial	Data After Trial Completion							
	Analyses and sharing with collaborators	General availability (through approved data request)						
DIAN-TU								
Sola	2019+ (timing may change w/ open label extension)	2020+ (timing may change w/ open label extension)						
Gant	2019+ (timing may change w/ open label extension)	2020+ (timing may change w/ open label extension)						
NexGen	Agree to adhere to principles	Agree to adhere to principles						
API ADAD Colombia	Agree to adhere to principles (~202 3+)	Data will be shared following the earlier of (a) approv by the FDA for commercialization of the Study Drug for any indication or (b) 18 months following completion or early termination of the Study.						
API Generation (APOE4 HM) Study	Agree to adhere to principles (~2024+)	Data will be shared following the earlier of: (a) a Joint Publication, (b) the FDA has approved for commercialization the Study Drug to which the proposed presentation or publication relates, or (c) eighteen (18) months have elapsed following the completion or early termination of the Study.						

INFORMED CONSENT IS CRITICAL

Alzheimer's & Dementia: Translational Research & Clinical Interventions 3 (2017) 536-541

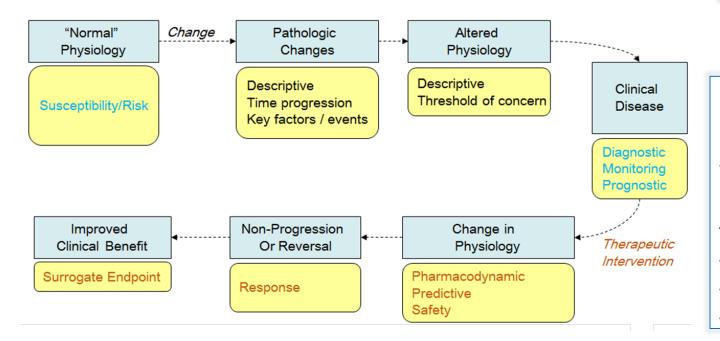
Perspective

Concise informed consent to increase data and biospecimen access may accelerate innovative Alzheimer's disease treatments

Ann M. Hake^a, Penny A. Dacks^b, Stephen P. Arnerić^c,*, CAMD ICF working group¹

^aEli Lilly and Company, Indianapolis, IN, USA ^bAlzheimer Drug Discovery Foundation, New York City, NY, USA ^cCoalition Against Major Diseases (CAMD), Tucson, AZ, USA

TYPES OF BIOMARKERS & DRUG DEVELOPMENT TOOLS



"Fit for Purpose": BEST Biomarker Classes in Perspective

NCBI NLM NIH. **BEST** (Biomarkers, **EndpointS**, and other Tools) Resource. NCBI Bookshelf, 2016 Available from: https://www.ncbi.nlm .nih.gov/books/NBK3 38448

NEUROFILAMENT LIGHT (NfL) AND BIOMETRIC MONITORING DEVICES: POTENTIAL SURROGATE ENDPOINTS?

BIOMARKER TERMINOLOGY: SPEAKING THE SAME LANGUAGE

Shashi Amur, Ph.D.

Scientific Lead, Biomarker Qualification Program, Office of Translational Sciences, Center for Drug Evaluation and Research, FDA

SURROGATE ENDPOINT

An endpoint that is used in clinical trials as a substitute for a direct measure of how a patient feels, functions, or survives.

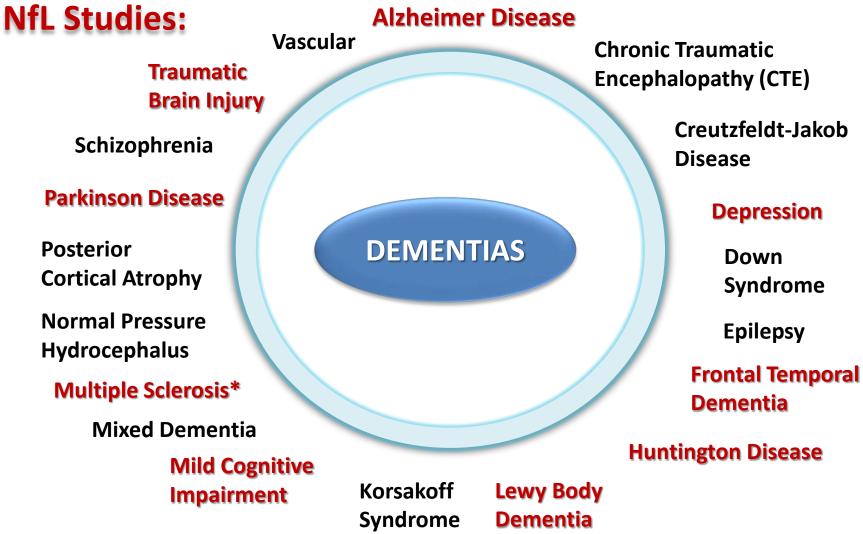
Validated Surrogate Endpoint

Supported by a clear mechanistic rationale and clinical data providing strong evidence that an effect on the surrogate predicts a clinical benefit; therefore, such endpoints can be used to support traditional approval without the need for additional efficacy information.

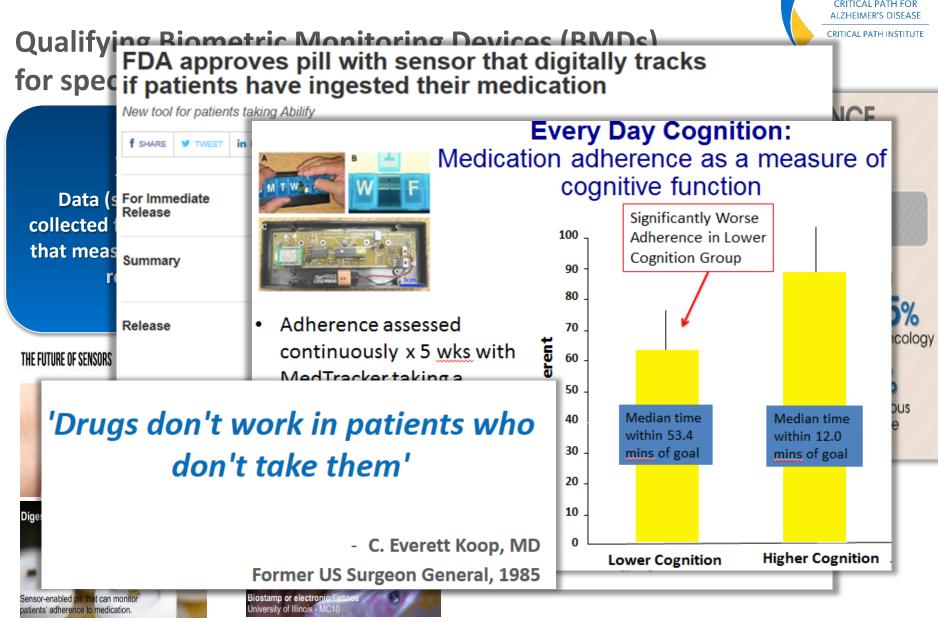
Example: Hemoglobin A1C reduction in diabetes clinical trials

Reasonably Likely Surrogate Endpoint

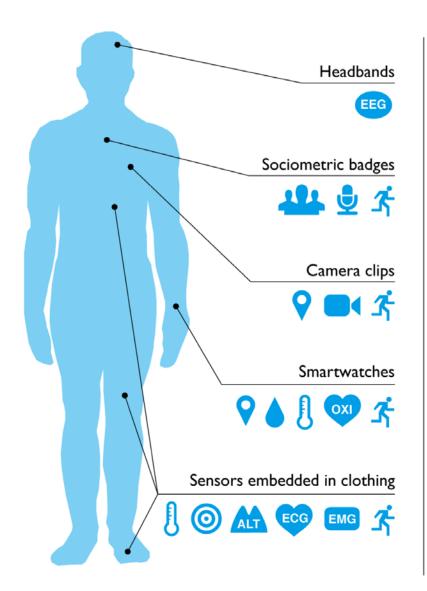
Supported by clear mechanistic and/or epidemiologic rationale but with insufficient clinical data to show that it is a validated surrogate endpoint; such endpoints can be used for accelerated approval for drugs or expedited access for medical devices.


Example: Radiographic evidence of tumor shrinkage in some cancer types

Candidate Surrogate Endpoint


A surrogate under evaluation for its ability to predict clinical benefit.

WHAT ARE THE COMMON AND DIFFERENTIATING FEATURES?



DIGITAL DRUG DEVELOPMENT TOOLS

COLLECTING REAL WORLD DATA

Accelerometer

Altimeter

Digital camera

Electrocardiogram

Electromyograph

Electroencephalogram

Electrodermograph

Location GPS

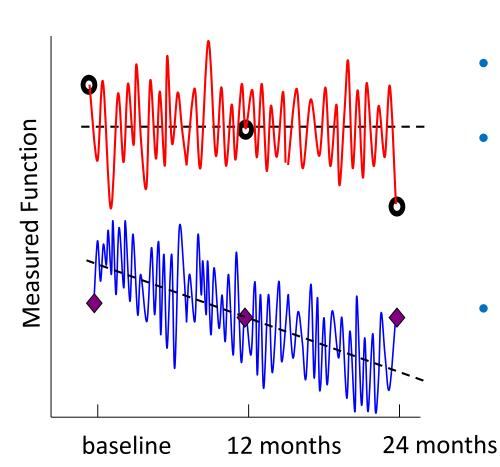
Microphone

Oximeter

Bluetooth proximity

Pressure

Thermometer


The Rise of Consumer
Health Wearables:
Promises and Barriers.
Piwek L, Ellis DA, Andrews
S, Joinson A
PLoS Med 13(2): e1001953.
pmed.1001953, Feb 2016

Careful data
standardization,
aggregation, and
quantitative
modeling will be
required to transform
RWD to RWE

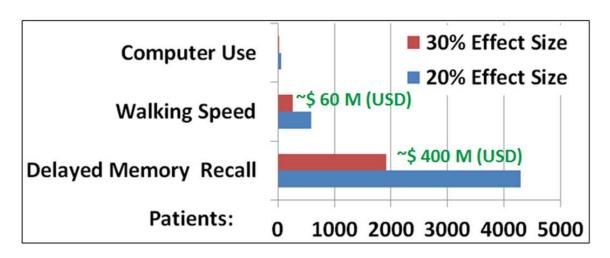
WHY CONTINOUS MEASUREMENT IS RELEVANT AND CRITICAL!

Which patient is rapidly declining?

- These data highlight the challenge of infrequent cross-sectional assessments
- Understanding vector trends in individual continuous performance would be more reflective of true longterm trends in performance/health maintenance
- Infrequent 'snapshots' of day-to-day performance of people, like the stock market, can be misleading

Courtesy of Dr. Jeff Kaye

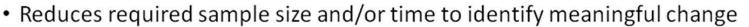
BIOMETRIC MONITORING DEVICES (BMDs)

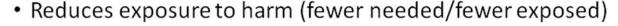

Measuring 'Signs' Related to Instrumental Activities of daily Living

BMDs have the potential to measure signs related to all domains of function comprising what is viewed as Instrumental Activities of Daily Living (IADL)

Mental Function Social Engagement • Friends/family Working memory Attention Mood Wakefulness/sleep Social interaction/ Long-term memory employment Quantitative IADLs -**Quality of Life** Surrogate **Physical Function Health Maintenance** Mobility Injury & sickness Frailty Homeostatic physiology Surgery • Drug disposition/ Disease metabolism

TRANSFORMING CLINICAL TRIALS WITH HIGH FREQUENCY, OBJECTIVE, CONTINUOUS DATA





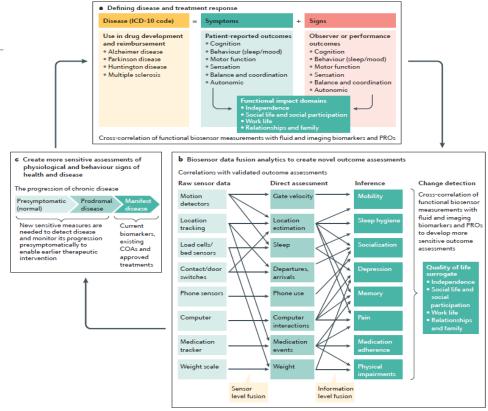
TRIAL COSTS
(3 yr. Prevention Study)
• ~\$ 1 M/5 patients

Dodge *et al.*, PLoS One, 2015

MCI Prevention Trial – sample size estimates

- Provides the opportunity to substantially improve efficiency and inform go/no-go decisions of trials
- · Dramatically reduces recruitment time and costs
- >80% Cost Savings of current approaches

WE MUST WORK COLLECTIVELY TO BUILD A SUSTAINABLE ECOSYSTEM


CORRESPONDENCE

Biometric monitoring devices for assessing end points in clinical trials: developing an ecosystem

Stephen P. Arnerić, Jesse M. Cedarbaum, Sean Khozin, Spyros Papapetropoulos, Derek L. Hill, Michael Ropacki, Jane Rhodes, Penny A. Dacks, Lynn D. Hudson, Mark Forrest Gordon, Volker D. Kern, Klaus Romero, George Vradenburg, Rhoda Au, Daniel R. Karlin, Maurizio F. Facheris, Cheryl J. Fitzer-Attas, Ottavio V. Vitolo, Jian Wang, Bradley M. Miller and Jeffrey A. Kaye

Nature Reviews Drug Discovery (online September 22, 2017)

http://rdcu.be/v5bS

VISION TO EXPAND A GLOBAL AD DATA REPOSITORY

Actionable, standardized, anonymized, patient-level data sources:

- Clinical trials
 Linked to:
- Observational studies
- Healthy aging cohorts
- eHealth records (future)

mHealth Data

24/7/365 Behavioral Activity:

Computer/phone/mobility activity – Time in and out of home – sleep quality- drug adherence Specific Trial/Study

Daily measurements

Investigational DB

Self-Reports/Metadata:

Mood/pain/falls/ visitors/sickness

Context:

Weather, type of living environment

Clinical Assessments:

Lab chemistry/imaging data/biomarker/physical function/genetics

Demographics:

Age, education, socioeconomic status, etc.

GAAIN as the Access & Collaboration Portal

'Sandbox for Open Science'

Data Analysis & Modeling

CPAD MEMBERS & CONTRIBUTORS

- AbbVie Inc.
- Biogen
- Boehringer Ingelheim Pharmaceuticals,
- Eisai
- Eli Lilly and Company
- Roche/ Genentech
- Johnson & Johnson Pharmaceutical Research & Development, LLC
- Merck, Sharp & Dohme Corp.
- Novartis Pharmaceutical
- Pfizer, Inc.
- Takeda

Government and Regulatory Agencies

- European Medicines Agency (EMA)
- National Institute of Neurological Disorders and Stroke (NINDS)
- National Institute on Aging (NIA)
- U.S. Food and Drug Administration (FDA)
- · National Institutes of Health (NIH)

Non-profit Research Organizations

- Alzheimer's Association
- UsAgainstAlzheimer's Network
- Alzheimer's Research UK
- Alzheimer's Drug Discovery Foundation
- **CHDI** Foundation

Grant number 1U18FD005320 from the U.S. Food and Drug **Administration's Critical Path Public Private Partnerships Grant**

Executive Director

Volker D Kern

Senior Project Manager

Nicky Kuhl

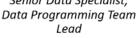
Project Coordinator

Klaus Romero

Director of Clinical Pharmacology and **Quantitative Medicine**

Daniela Conrado

Associate Director of Quantitative Medicine


Jackson Burton

Associate Program Director, Quantitative Medicine

Robert Stafford

Senior Data Specialist,

All other C-Path Support Staff.....

GLOBAL AD DATA REPOSITORY

Actionable, standardized, anonymized, patient-level data sources:

- Clinical trials
- Observational studies
- Healthy aging cohorts
- eHealth records

mHealth Data

24/7/365 Behavioral Activity:

Computer/phone/mobility activity – Time in and out of home – sleep quality- drug adherence

49,992,645 observations

Specific Trial/Study

Self-Reports/Metadata:

Mood/pain/falls/ visitors/sickness

Context:

Weather, type of living environment

Clinical Assessments:

Lab chemistry/imaging data/biomarker/physical function/genetics

Demographics:

Age, education, socioeconomic status, etc.

GAAIN AS THE ACCESS & COLLABORATION PORTAL

'SANDBOX FOR OPEN SCIENCE'
DATA ANALYSIS
& MODELING

CREATING AN OPEN INNOVATION ECO-SYSTEM

- Genomic Data
- Family Health History
- Imaging & Biomarker Lab Data
- mHealth Data
- **Drug Data**

Intrinsic

Factors

Patients

Extrinsic Factors

- Public Health Data
- **Environmental Data**

CDISC Standardized Clinical Trial Data

'SANDBOX FOR OPEN INNOVATION SCIENCE': DATA ANALYSIS & MODELING OF CDISC STANDARDIZED CLINICAL DATA

GAAIN AS THE **ACCESS & COLLABORATION PORTAL**

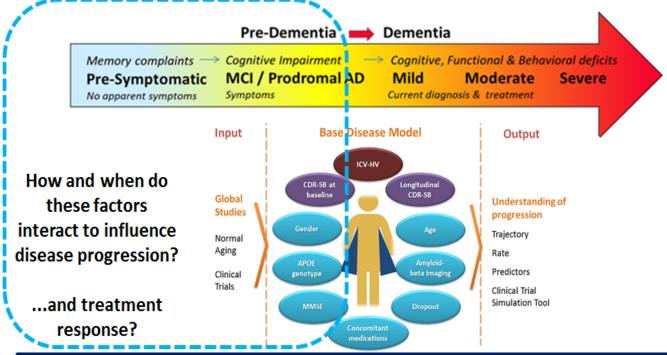
Health Care Providers

- eHealth Records
- **Insurance Claims**

Discovery Science

- Animal Models
- Safety Data

Biomarker Development


- Analytical Validation
- **Population** variance

Patient Registries

- Geographic availability
- Ethnic diversity

THE VISION: END-TO-END MODEL OF ALZHEIMER DISEASE

Other Relevant Sources of Variability to Evaluate							
Genetics Protective Promoting Race/ Ethnicity	Life Events Trauma Surgery Nutrition Education	Co-Morbid Infections [active /latent] • Bacterial • Viral • Parasites • Fungal	Co-Morbid Disease Depression Diabetes Cardiovascular Cancer Inflammation Etc.	Biomarkers Fluid PET Imaging EEG Evoked responses Etc.	Outcome Assessments PROs Digital/ wearables IADLs Etc.		

IMPAIRED FUNCTION & COGNITION IS PROMINENT ACROSS NEURODEGERATIVE DISEASES

Functional Impact:

- Social life and social participation
- Work/life
- Relationships and family
- Independence

Alzheimer disease

Symptoms & Signs

- Gait slowed
- Sleeping changes
- Cognitive impairments

Parkinson disease

Symptoms & Signs

- Walking and gait impairment
- Sleeping impaired
- Cognitive impairments

Multiple Sclerosis

Symptoms & Signs

- Walking impairment
- Sleeping impaired
- **Cognitive impairments**

Huntington disease

Symptoms & Signs

- Walking impairment
- Sleeping problems
- Cognitive impairments

- Dizziness/vertigo
- Depression
- Speech problems
- Swallowing (advanced stages)
- Pain

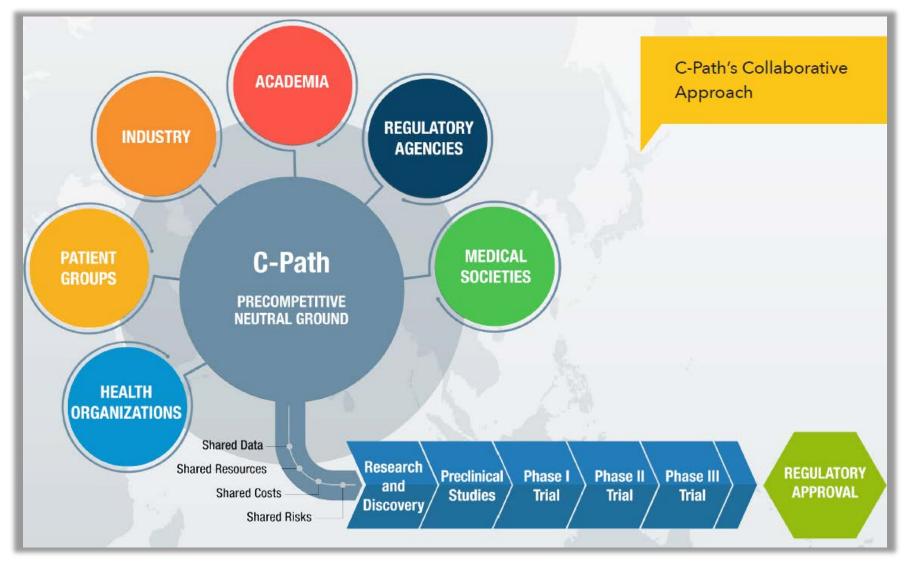
- Dizziness/vertigo
- Depression
- Spasticity
- Tremor
- Pain
- Bowel/bladder problems
- Fatigue
- Speech problems

- Dizziness/vertigo
- Depression
- Pain
- Sexual dysfunction
- Fatigue
- Spasticity
- Lower and upper extremity impairments
- Speech problems

- Dizziness/vertigo
- Depression
- Irritability
- Pain
- Fatigue
- Spasticity
- Upper and lower extremity impairments
- Speech problems

THREE KINDS OF CLINICAL STUDIES

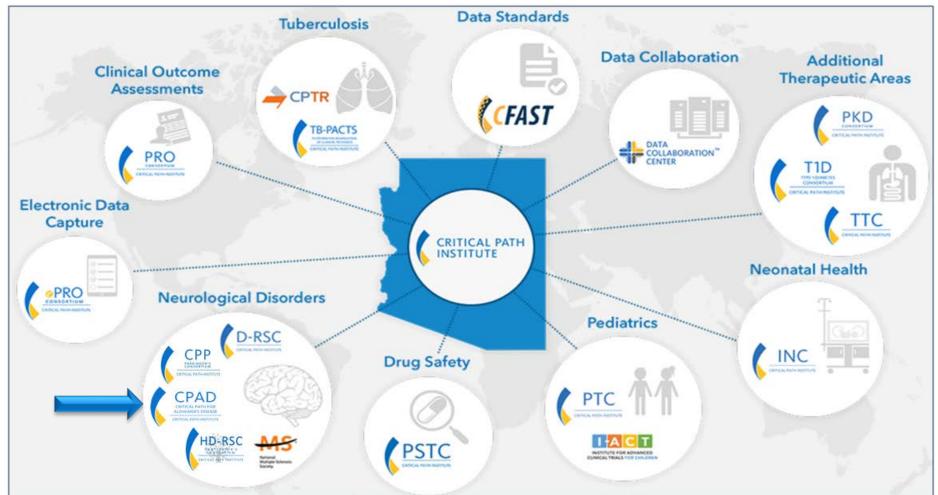
 Meets all pre-specified criterion of success Positive Study leads to Product Approval


 Does not meet pre-specified criterion of success Negative Study does not support Product Approval – but data shared to augment disease understanding

 Does not meet pre-specified criterion of success

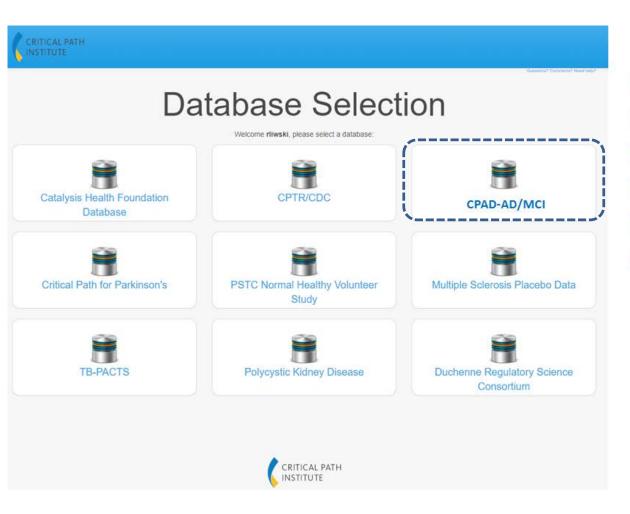
 Failed Study does not support Product Approval – data not shared to augment disease understanding

'It takes a village to advance science and healthcare' - Janet Woodcock, Director, CDER, FDA



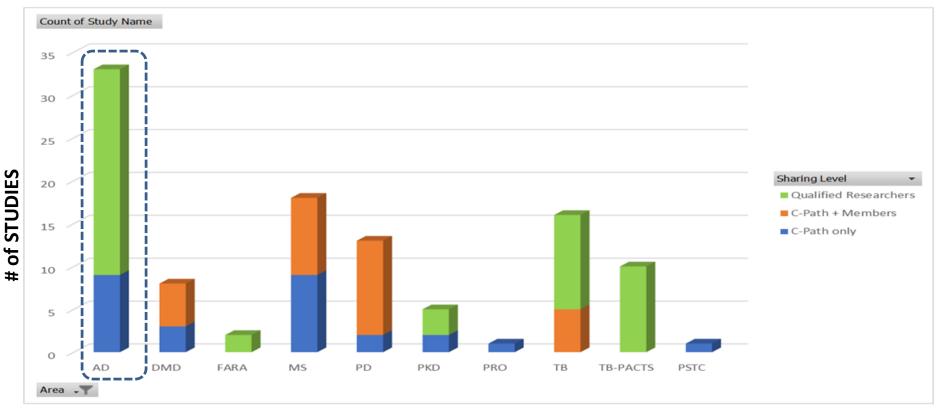
CRITICAL PATH INSTITUTE

Fifteen global consortia collaborating with 1,450+ scientists and 84 organizations



FOCUS: Data standards; clinical trial simulation tools from actionable data, disease progression models; biomarkers; clinical outcome assessment instruments

C-PATH ONLINE DATA REPOSITORY (CODR) DATABASES



- Enterprise Class Data Platform
- ✓ CDISC-Based DB Schema
- Curated, Anonymized, Aggregated Data
- ✓ Data Source Anonymity
- ✓ Secure, Multi-Tiered Access Control
- ✓ Fully ACID Compliant
 - ✓ <u>A</u>tomicity
 - ✓ Consistency
 - ✓ <u>I</u>solation
 - ✓ <u>D</u>urability

C-PATH CLINICAL DATABASE: NUMBER OF EXTERNALLY-SHARED AD STUDIES

Sharing Scope	# Studies by Database										
	AD	DMD	FARA	MS	PD	PKD	PRO	ТВ	TB-PACTS	PSTC	Grand Total
C-Path Internal Use Only	9	3		9	2	2	1			1	27
C-Path + Consortia Members		5		9	11			5			30
External	24		2			3		11	10		50
SubTotal	33	8	2	18	13	5	1	16	10	1	107

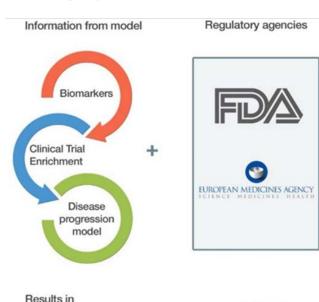
CPAD DEVELOPS REGULATORY-ENDORSED TOOLS TO OPTIMIZE DRUG DEVELOPMENT IN AD

Why? / What?

- To understand disease progression rates and responses to treatments, as these can vary significantly across different patients
- Advance Drug Development Tools

Who?

Key stakeholders: Patients, Pharma Companies, Regulators, Patient-Advocacy Organizations, Academics, Government Agencies


How?

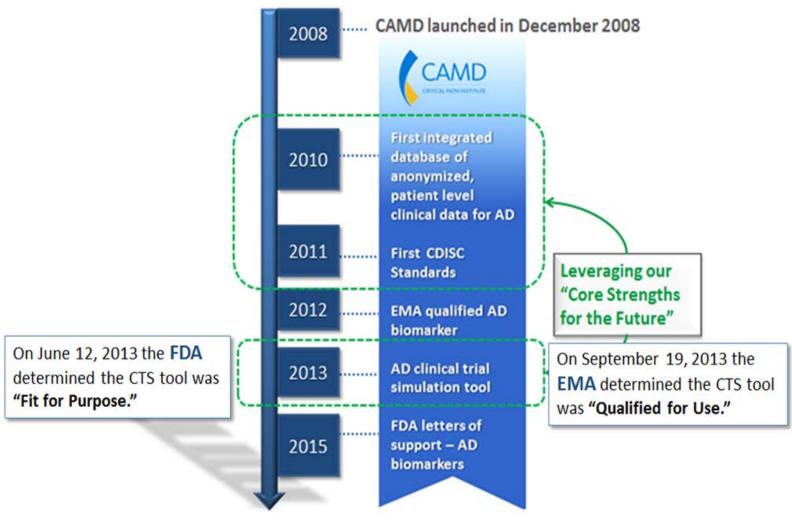
Integrate anonymized patient-level data from past clinical trials and longitudinal observational studies

IMPACT

- Actionable data/models to inform optimal trial design
- Improved trial efficiency, and accelerated delivery of innovative treatments to the right patients

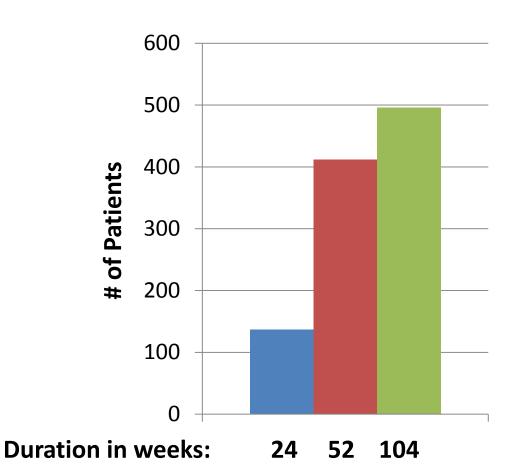
Right

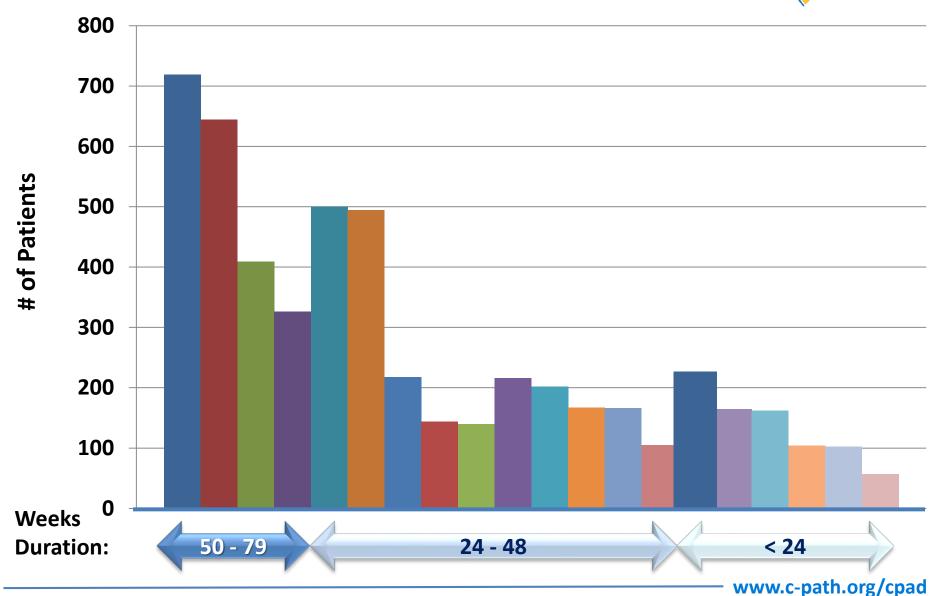
Time


Right

Target

CPAD's KEY MILESTONES


[previously known as Coalition Against Major Diseases]


MCI STUDIES IN SHARED CPAD DATABASE

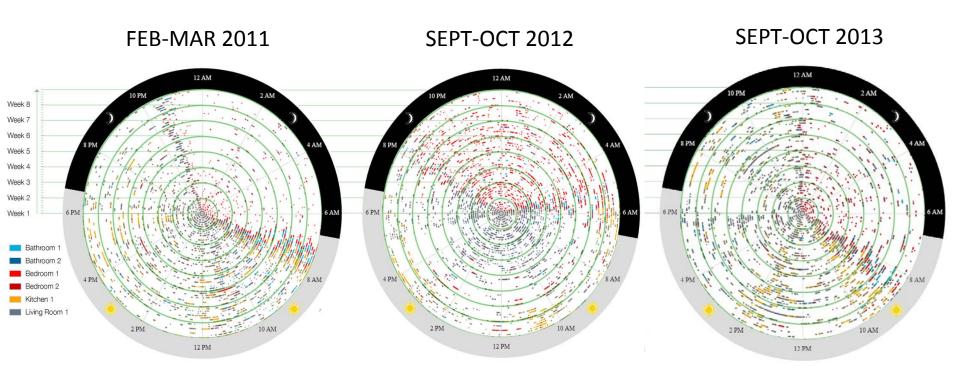
MILD-TO-MODERATE STUDIES IN SHARED CPAD DATABASE

AD/COGNITION LANDSCAPE:



FasterCure's Consortia-pedia (34 organizations)

CHALLENGES


- 80% of consortia choose not to invest in data sharing; of the 20% that do, not all make data available outside the consortium
- 4% focus on advancing regulatory sciences (i.e., Critical Path Institute)

SPECIFIC AREAS OF FOCUS:

WHAT CAN YOU SEE?

Healthy

Diagnosed with Parkinson disease

Treatment with Sinemet

Courtesy of Dr. Jeff Kaye

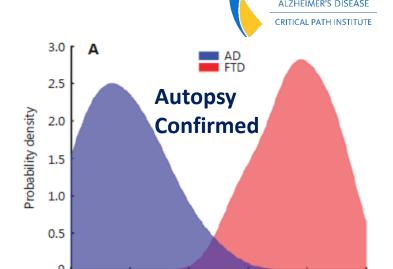
DIFFERENTIATING AD & FTD

Using the Disease State Fingerprint Tool for Differential Diagnosis of Frontotemporal Dementia and Alzheimer's Disease

Miguel Ángel Muñoz-Ruiz^a Anette Hall^a Jussi Mattila^d Juha Koikkalainen da Sanna-Kaisa Herukka a, b Minna Husso c Tuomo Hänninen^b Ritva Vanninen^c Yawu Liu^{a, c} Merja Hallikainen^a Jyrki Lötjönen^d Anne M. Remes^{a, b} Irina Alafuzoff^{e, f} Hilkka Soininen^{a, b} Päivi Hartikainen^{a, b}

Dement Geriatr Cogn Disord Extra 2016;6:313-329

DOI: 10.1159/000447122


© 2016 The Author(s)

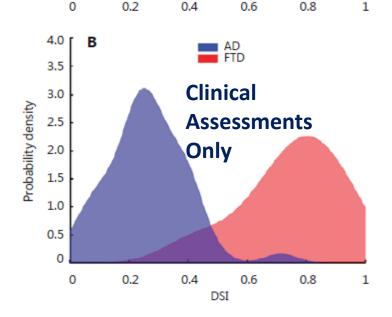

Published online: July 22, 2016 Published by S. Karger AG, Basel www.karger.com/dee

Table 3. The classification results for the DSI calculated by using bootstrapping for each case separately, excluding the case being tested from the randomized training sets

	C vs. FTD	C vs. AD	AD vs. FTD all	AD vs. FTD autopsy	AD vs. FTD clinical
AUC	0.99±0.01	1.00±0.00	0.89±0.01	0.97±0.02	0.94±0.02
Accuracy	0.95 ± 0.02	0.98 ± 0.01	0.83 ± 0.02	0.91 ± 0.04	0.89 ± 0.03
Sensitivity	0.92 ± 0.03	0.98 ± 0.01	0.81 ± 0.03	0.92±0.05	0.81 ± 0.05
Specificity	0.99±0.02	1.00 ± 0.01	0.83 ± 0.03	0.90±0.06	0.93 ± 0.03

The means and standard deviations are calculated from each round of bootstrapping (n = 100) for all tested cases. DSI classification results calculated with bootstrapping. Values are expressed as mean ± standard deviation.

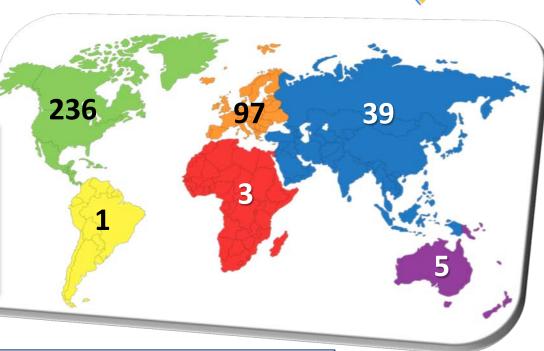
DATABASE UTILIZATION (as of 1/31/2018)

410 Total Applicants

from

327 Distinct Institutions

USE BY SECTORS


Academia: 151

Pharmaceutical: 146

Other: 55

Non-profit: 23

Government: 6

Industry

Abbvie; Allergan;

AstraZeneca; Biogen;

Biomarkable; CoreLab;

Daewong; Eisai; GE

Healthcare; IBM; Johnson &

Johnson; Lundbeck; Merck;

NeuroCog; **Novartis**; **Pentara**;

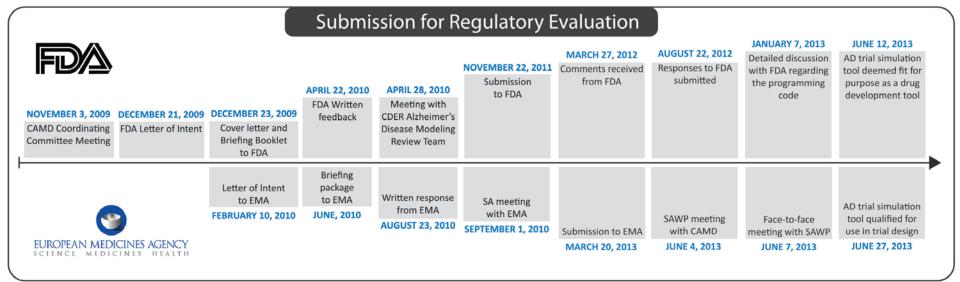
Pfizer; Siemens; SAS

Academia & Foundations

Amherst College; Arizona State Univ.; Bill & Melinda Gates Foundation; CHDI Foundation; Duke Univ.; Fraunhofer Institute; Goethe Univ.; Harvard Univ.; Karolinska Institute; King's College London; Michael J Fox Foundation; Rockefeller Univ.; Seoul National

Univ.; Univ. of Oxford; Yale Univ.

Government & Other

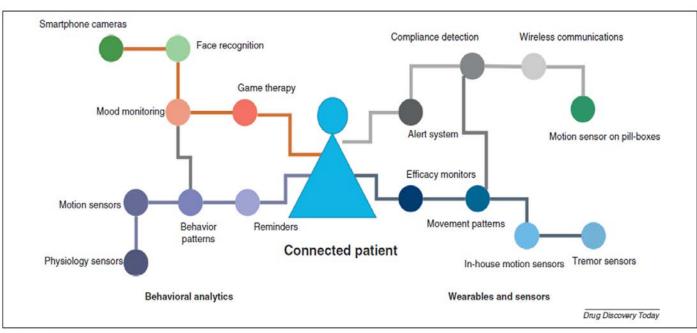

NIH; Neurology Today; Gigatrust

DRUG DISEASE TRIAL MODEL OF MILD-to-MODERATE AD: THE REGULATORY PATH

The total journey took 1,317 days (3 years, 7 months and 9 days)

- On June 12, 2013 the FDA determined the CTS tool was "Fit for Purpose."
- On September 19, 2013 the EMA determined the CTS tool was "Qualified for Use."

THE PATIENT CONNECTED TO THE 'INTERNET OF THINGS (IOT)'



REVIEWS

Drug Discovery Today • Volume 21, Number 6 • June 2016

Aptar Pharma Image

FIGURE 2

Connected patient. With a side variety of sensors, wearable devices and personal health monitors becoming readily available, it is becoming increasingly important to connect these diverse devices and data to provide benefit to patients in a holistic manner.

CONSENSUS SCIENCE MUST INCLUDE REGULATORY CONSIDERATIONS

Consensus Statement

Alzheimer's & Dementia 13 (2017) 186-195

Alzheimer's Egantia

Perspective

Recommended cognitive outcomes in preclinical Alzheimer's disease: Consensus statement from the European Prevention of Alzheimer's Dementia project

Karen Ritchie^{a,b,j,1,*}, Michael Ropacki^{c,1}, Bruce Albala^d, John Harrison^{e,f}, Jeffrey Kaye^g, Joel Kramer^h, Christopher Randolphⁱ, Craig W. Ritchie^j

RBANS:

Repeatable Battery for the Assessment of Neuropsychological Status

CONSIDERATION

This Clinical Outcome Assessment does not have CDISC standards

CONSEQUENCE

Data not suitable for FDA registration submission (potential 18-months delay