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We are able to engineer natural proteins for novel functionality

through directed evolution
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AAV capsids are versatile and can be evolved
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To convert data into knowledge...
we can use machine learning
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Claire Bedbrook
(collaboration with Frances Arnold Lab)
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Improved opsins for systemic delivery

Direct intracranial injection
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"Machine learning-guided channelrhodopsin engineering enables minimally-invasive optogenetics." Bedbrook, C. N.,
Yang, K. K., Robinson, J. E., Gradinaru®@, V., & Arnold®@, F. H. bioRxiv, 2019; 10.1101/565606




Engineering designer AAVs for neuroscience

Bypassing limits of biological selection — NGS next generation sequencing followed by selection and learning in silico

NGS
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AAV-PHPV1 capsid shows brain-wide efficient and specific transduction of
endothelial cells upon systemic delivery in adult Tek-Cre mouse brain

Kumar et al., under review
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All current systemic AAVs for CNS also hit other organs (e.g. liver)
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Whole-body viral biodistribution
By tissue clearing with PARS-CLARITY

Yang et al. (Cell, 2014)
Treweek et al. (Nat.Prot, 2015)
Deverman et al. (Nat.Biotech,2016)

LiverTox: NIH database launched 2012
on liver injury associated with drugs

“Drug-induced liver injury is the leading cause of
acute liver failure in the US, accounting for at least
half of cases.”



Novel approach for specific and selective novel vectors via capsid alteration

We can generate viral
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A gene delivery vector that
targets the brain noninvasively and spares the liver

A

AAV-PHP.eB AAV.CAP-B10

AAV-PHP.eB AAV.CAP-B10

wn
O
P
)
c
©
&
>
>
<
<

Enrichment Heatmap

-
*x
o
=]

]

Many variants efficiently cross BBB
- in vivo mouse selection
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Flytzanis, Goeden et al., submitted



Does it work in NHPs?

Bottleneck: cost and time for testing one designer capsid at a time

Approach for optimizing the platform for specificity and targeting in NHPs

1. Select candidates first in vivo in rodents by CREATE directed evolution
2. Screen for confirmation of expression in NHPs
* To save time and cost we designed a multiplex screening approach where 10-20
virus candidates can be evaluated at the same time (by RNA barcoding)
e The only downside is that there will be fewer copies of each individual virus, but

this still allows us to see expression if they cross the BBB

3. Confirmation of 2-3 top candidates.



Does it work in NHPs?

(ongoing collaboration wt NIH/NIMH Transgenic Marmoset Core led by Dr. Jim Pickel)
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Marmoset brain (posmve) and liver (detargeted) expressmg pooled barcoded FXN-HA tag viruses (7 of new variants + AAV9)
6 weeks after systemic delivery (no health pbs noticed).

Note: each variant has low MOI therefore individual strong variants are expected to have even stronger expression (in progress)



Key features required for safe, effective,
and minimally invasive gene delivery

» Vectors capable of needed specificity

» cell-type, circuit, organ, region

» Vectors that can bypass natural body barriers to access
key tissues:

» across the blood-brain-barrier

» across the placenta to embryo

» Vectors capable of large cargo delivery A s
» AAVIimitis ~4.7kb

» 5-8kb needed for many genetic tools

» High efficiency for co-delivery helps (e.g. for CRISPR/Cas)
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