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CRISPR-Cas9 Genome Editing
Gene deletions, insertions, or alterations

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)
RNP sgRNA CRISPR Associated Proteins 9 (Cas9)

« Cas9/sgRNA RiboNucleoProtein (RNP)

IR  The RNP homes in on the target DNA site
encoded in the gRNA.

Target DNA

PAM sequence

, ,  Once RNP is activated, it causes a double-
Non-homologous end joining Homology-directed repair Strand breakage (DSB) at the target Site.

Point mutation
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Lower the Barriers for New Genome Editing Therapies by:

« Testing genome editing reagents and delivery systems in better animal

models
« Assessing unintended biological effects
« Improving in vivo delivery of genome editing machinery
« Expanding the human genome engineering toolkit

» Coordinating partnerships and disseminating information
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Non-Viral vs. Viral Vectors

Viral Vectors Non-Viral Vectors
V High efficiency V Better safety profile
X Harder to scale up V Versatile chemistry
X Immunogenicity V Easier to scale up
X Mutagenesis X Low efficiency

T rawres | lemvrus | Adenovius | AN

Packaging Capacity 8-9 kb 8-9 kb 3-4 kb

Integrating Yes No Rare

Immune Response o o s sk ok ok *



Delivery of Genome Editing Machinery

_ Protein
Cas9 Delivery Methods }
* Precise control over the
e ERNA FroteIn NA Cas9/sgRNA ratio
(RNP) « Rapid editing (no lag time)
« Lower off-target effect
PDNA or mRNA
High Efficiency + ++ ++++ e \ariable copy number
Low Cost ++++ ++ + ) Delayed edltmg
Specificity + ++++ ++++ PDNA

 Higher off-target effect

Mirus Bio

Direct delivery of RNP requires non-viral vectors.



RNP Nanocapsule (NC)

Data presented in this talk have not been published.

Amino Acid Charge of Cas9 f ©/Q
i, Cationic Monomer iii, Imidazole Monomer
'S VS-S
ii, Anionic Monomer iv, Biodegradable Crosslinker
w u*"r:,
V, Acrylate-mPEG Vi, Acrylate-PEG-Ligand

Nanocapsule (NC)
containing RNP

* Formation of the covalently-crosslinked, yet intracellularly biodegradable, nanocapsule
(NC) for the delivery of the Cas9 RNP complex

* The surface of the RNP NCs can be conveniently functionalized with various types of
targeting ligands.



Characterizations of RNP NCs

TEM image Dynamic light scattering (DLS)
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containing RNP
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* Hydrodynamic diameter ~ 25 nm Size (nm) 7+1 9+1 | 25+6
* Neutral surface Charge ('4 mV) Zeta potential (mV) 13 +3 205 | 4+1




Intracellular Pathway of RNP NCs

Cellular uptake and subcellular
trafficking of the RNP NCs:

» High cellular uptake

Endosome ,° » Efficient endosomal escape
Proton Sponge > Rapid release of the RNP
N L
inside of the cytosol
=ndosome > Efficient nuclear transport
Nucleus
Nucleus Endosome Merged

RNP NCs can effectively
escape from endosomes.

Blue: DAPI  Green: Lysotracker Red: ATTO-labeled RNP 6 hr post-incubation




% Gene Edited Cells
(% mCherry Negative Cells)
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Optimization of RNP NCs

mCherry-HEK 293 cells
gRNA targets the mCherry gene
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Effect of Lyophilization on Gene Editing and Cytotoxicity of NCs

Gene editing after lyophilization Cytotoxicity
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L * NCs did NnOt induce significant cytotoxicity.
« Over 90% of gene editing capability was * Lipo2000, a commercially available agent to

retained after lyophilization of NCs. deliver RNP, caused significant cell death (>25%).



RNP NCs: In Vivo Gene Editing With RPE Cells

Ai14 strain ',
LR Gene » The Ail4 mice harbor a LoxP-flanked
Rosa26 -STOP-tdTomato Editing - -tdTomato .
AT — —_— —Zr— stop cassette that prevents expression
1l it of the tdTomato fluorescent protein.
Subretinal injection _ o
. » RNP-guided excision of the stop
Confocal: Fixed, Whole Mount RPE 4
| g cassette leads to tdTomato

optic
I'nerve| —P
./ head ',

expression.

dissection cuts

NC-RPE targeting ligand

.

Dr. Bikash R. Pattnaik, UW-Madison



RNP NCs Targeting Human APP Gene in HEK cells
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RNP NC-CPP Targeting Mouse APP Gene in Primary Mouse Neurons

5.9% editing in primary neurons
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GAAGAAGAARCAGTACACATCCATTCATCATGETC TG IGEAGGTAGGTARAACTTGACTGCATGTTTCCA

sgRNA | PAM
Predicted Cut Site
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Preliminary data



RNP NC-CPP Targeting Mouse TH Gene in Mouse Glial Cells

40.3% editing in glial cells
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pH-Responsive Nanoparticles Enabling Both Gene Disruption
and Gene Correction

Hydrophilic payloads including DNA, mRNA,

proteins, RNP, RNP + ssODN, hydrophilic
small molecular drug
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pH-Responsive Nanoparticles Enabling Both Gene Disruption
and Gene Correction

Payload: RNP Payload: RNP + ssODN Cytotoxicity
Gene Disruption Gene Correction/Precise editing
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» Low cytotoxicity



pH-Responsive Nanoparticles Targeting Mouse APP Gene in
Primary Mouse Neurons

7.2% editing in primary neurons

O = NW R d

GAAGAAGAARCAGTACACATCCATTCATCATGETETGETGCAGGTAGGTAAACTTGACTGCATGTTTCCA

sgRNA | PAM
Predicted Cut Site

60
50
40
30
20
10

Frequency of edited base
(% of sequencing reads with base deleted)

APP: amyloid precursor protein

o

5 10 15 20
Size of Deletion

Frequency of gene deletion
(% of sequencing reads with size deletion)

Preliminary data



pH-Responsive Nanoparticles Targeting Mouse TH Gene in Mouse
Glial Cells

28.1% editing in glial cells
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Summary

» CRISPR-Cas9 genome editing offers great promise to the field of neuroscience-both
as a research tool and a treatment for various brain-related disorders.

~110 nm
pH-responsive
nanoparticle

RNP, RNP + ssODN

~25 nm
RNP

Nanocapsule

* Capable of gene disruption * Capable of gene disruption and gene correction
* Low cytotoxicity * Low cytotoxicity

» Future research will focus on further optimizing the performance of these
nanoplatforms in vivo
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