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CRISPR-Cas9 Genome Editing
Gene deletions, insertions, or alterations

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)

Challenge: Safe and efficient delivery of 
the CRISPR genome editing machinery.

CRISPR Associated Proteins 9 (Cas9)

• Cas9/sgRNA RiboNucleoProtein (RNP)

• The RNP homes in on the target DNA site 

encoded in the gRNA.

• Once RNP is activated, it causes a double-

strand breakage (DSB) at the target site.

• The cell attempts to repair the DSB, causing 

either imprecise or precise editing.

Journal of Investigative Dermatology, 

136(9), e87-e93, 2016.
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Lower the Barriers for New Genome Editing Therapies by:

• Testing genome editing reagents and delivery systems in better animal 

models

• Assessing unintended biological effects

• Improving in vivo delivery of genome editing machinery

• Expanding the human genome engineering toolkit

• Coordinating partnerships and disseminating information

NIH Somatic Cell Genome Editing (SCGE) Program Goals
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Non-Viral vs. Viral Vectors

Viral Vectors

√  High efficiency
X  Harder to scale up
X  Immunogenicity
X  Mutagenesis

Non-Viral Vectors

√  Better safety profile
√  Versatile chemistry
√  Easier to scale up
X  Low efficiency

Features Lentivirus Adenovirus AAV

Packaging Capacity 8-9 kb 8-9 kb 3-4 kb

Integrating Yes No Rare

Immune Response ** **** **



Delivery of Genome Editing Machinery

Mirus Bio

Protein

• Precise control over the 

Cas9/sgRNA ratio

• Rapid editing (no lag time)

• Lower off-target effect

pDNA or mRNA

• Variable copy number

• Delayed editing

pDNA

• Higher off-target effect

Direct delivery of RNP requires non-viral vectors. 

+sgRNA +sgRNA

(RNP)



RNP Nanocapsule (NC)

• Formation of the covalently-crosslinked, yet intracellularly biodegradable, nanocapsule 
(NC) for the delivery of the Cas9 RNP complex

• The surface of the RNP NCs can be conveniently functionalized with various types of 
targeting ligands.

Data presented in this talk have not been published.

v, Acrylate-mPEG vi, Acrylate-PEG-Ligand



Characterizations of RNP NCs

TEM image

• Hydrodynamic diameter ~ 25 nm

Cas9 protein RNP NC

Size (nm) 7 ± 1 9 ± 1 25 ± 6

Zeta potential (mV) 13 ± 3 -20 ± 5 -4 ± 1

Dynamic light scattering (DLS)
25 nm

• Neutral surface charge (-4 mV)



Cellular uptake and subcellular 
trafficking of the RNP NCs:

 High cellular uptake

 Efficient endosomal escape

 Rapid release of the RNP 
inside of the cytosol

 Efficient nuclear transport

Intracellular Pathway of RNP NCs

Blue: DAPI

RNP NCs can effectively 
escape from endosomes.

10 um 

Green: Lysotracker Red: ATTO-labeled RNP 6 hr post-incubation



Optimization of RNP NCs

mCherry-HEK 293 cells 
gRNA targets the mCherry gene

NC 

*

**

****

mCherry-human neural 
progenitor cells (mCherry-NPCs)

*: p<0.05
**: p<0.01

***: p<0.001
****:  p<0.0001

16%

24%



Effect of Lyophilization on Gene Editing and Cytotoxicity of NCs

• Over 90% of gene editing capability was 

retained after lyophilization of NCs.

Gene editing after lyophilization

*: p<0.05; 

• NCs did not induce significant cytotoxicity.

• Lipo2000, a commercially available agent to 

deliver RNP, caused significant cell death (>25%).

Cytotoxicity

***: p<0.001



RNP NCs: In Vivo Gene Editing With RPE Cells

 The Ai14 mice harbor a LoxP-flanked 
stop cassette that prevents expression 
of the tdTomato fluorescent protein. 

 RNP-guided excision of the stop 
cassette leads to tdTomato 
expression.

NC-RPE targeting ligandPBS

Subretinal injection

100µm
1mm

Dr. Bikash R. Pattnaik, UW-Madison



RNP NCs Targeting Human APP Gene in HEK cells
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** APP: amyloid precursor protein

CPP: cell-penetrating peptide 

Viral control from Sun, Saha, Roy et al. 
Nature Communications, 2019



RNP NC-CPP Targeting Mouse APP Gene in Primary Mouse Neurons

5.9% editing in primary neurons
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Preliminary data



RNP NC-CPP Targeting Mouse TH Gene in Mouse Glial Cells

40.3% editing in glial cells

TH: tyrosine hydroxylase

-S-S-

CPP
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Preliminary data
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Scale bar: 10 μm

200 nm
Polyethylene glycol (PEG)

pH-responsive nanoparticle

Cas9 RNP

CLSM image

DLS

110 nm

pH-Responsive Nanoparticles Enabling Both Gene Disruption 
and Gene Correction

Hydrophilic payloads including DNA, mRNA, 
proteins, RNP, RNP + ssODN, hydrophilic 
small molecular drug



Control

Lipo 2000

Hybrid NP

pH-Responsive Nanoparticles Enabling Both Gene Disruption 
and Gene Correction

Cytotoxicity

NS

***

 Low cytotoxicity

Payload: RNP

Gene Disruption

GFP-HEK 293

****

4%

37%

48%

Payload: RNP + ssODN

Gene Correction/Precise editing

BFP-HEK 293

**

1%

17%

24%



pH-Responsive Nanoparticles Targeting Mouse APP Gene in 
Primary Mouse Neurons
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7.2% editing in primary neurons

APP: amyloid precursor protein

Preliminary data



pH-Responsive Nanoparticles Targeting Mouse TH Gene in Mouse 
Glial Cells

28.1% editing in glial cells

TH: tyrosine hydroxylase
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Summary

~25 nm
RNP
Nanocapsule

~110 nm
pH-responsive 
nanoparticle
RNP, RNP + ssODN

• Capable of gene disruption 
• Low cytotoxicity

• Capable of gene disruption and gene correction
• Low cytotoxicity

CRISPR-Cas9  genome editing offers great promise to the field of neuroscience-both 
as a research tool and a treatment for various brain-related disorders.

 Future research will focus on further optimizing the performance of these 
nanoplatforms in vivo
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