Methods for Estimating Hard to Count Populations

Adrian E. Raftery
University of Washington
http://www.stat.washington.edu/raftery

NAS Committee on Best Practices in Assessing Mortality and Significant Morbidity Following Large-Scale Disasters Webinar

February 11, 2020

Outline

- Capture-recapture methods for combining multiple fragmentary data sources¹
- ► Respondent-driven sampling^{2 3}
- ► Network scale-up method⁴ [to be presented by Tyler McCormick]

¹Bao, Raftery, Reddy (2015, *Statistics and its Interface*)

²Baraff, McCormick, Raftery (2016, PNAS)

³Green, Raftery, McCormick (2020, *Biometrika*)

⁴Maltiel, Raftery, McCormick, Baraff (2015, Annals of Applied Statistics)

Uncertainty About Hidden Population Size

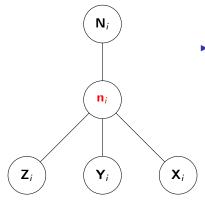
- Intrinsically hard to assess because of confounding between population size and probability of being counted:
 - It's hard to distinguish between low population size (close to the number seen) with high probability of being counted, and
 - high population size with low probability of being counted
 - ightharpoonup uncertainty about N can be large
 - Especially for estimation from one data source
 - Prior or external information can be useful, especially:
 - information about detection probabilities
 - a (possibly soft) upper bound on N when detection probabilities are small
- Bayesian approach:
 - can combine information of different types
 - can deal with missing data
 - allows one to use data from other periods, regions, countries to inform the prior distribution

Capture-Recapture Estimation

Data Sources for Size Estimation of Intravenous Drug Users in Bangladesh, 2004

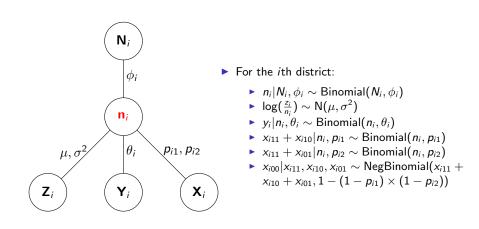
Notation	Data Source	Locations	Year
N_i	adult male population size	64 districts	2003
Y_i	NASROB mapping data	24 districts	2001
$X_{i10} + X_{i11}$	NEP intervention	3 districts	2001
$X_{i01} + X_{i11}$	BSS survey	4 districts	2002
X_{i11}	reported NEP enrollment in BSS	2 districts	2002
Z_i	CARE RSA estimate	14 districts	2003

Data Structure

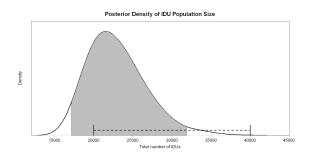


- ► For the *i*th district:
 - $ightharpoonup N_i = total population$
 - $n_i = number of IDUs$
 - $ightharpoonup Z_i = \text{estimate of } n_i \text{ from other sources}$
 - ► *Y_i* = the number of IDUs in survey or intervention
 - ▶ $X_i = (X_{i10}, X_{i01}, X_{i11}) = \text{data from two}$ lists from multiplier method or capture-recapture

Bayesian Hierarchical Model



Population Size Estimate



- ▶ Posterior median 23,500
- ▶ Posterior interval $18,000 \sim 33,700$
- ightharpoonup Bangladesh technical group estimate: 20,000 \sim 40,000

Respondent-Driven Sampling

Introduction

Respondent-Driven Sampling (RDS):

- Problem no sampling frame for hard-to-reach or hidden populations (IDU, FSW, MSM, etc.)
- Developed by Heckathorn (1997, 2002) to add statistical rigor to snowball (chain-referral) sampling
 - known biases due to homophily and centrality
- Start with small number of initial respondents (seeds)
 - usually convenience sample
- Seeds given coupons to distribute to peers
- When coupons redeemed, respondents are given new coupons creating chain of recruitment
- Additional information gathered
 - coupon number who recruited whom
 - degree of each respondent how many could have recruited

Estimation

Volz-Heckathorn Estimator (2008):

ightharpoonup To estimate the mean μ of a trait

$$\hat{\mu}_{VH} = \frac{\sum_{i=1}^{n} \frac{x_i}{d_i}}{\sum_{i=1}^{n} \frac{1}{d_i}},$$

where x_i = value of the trait in individual i and d_i = degree of individual i

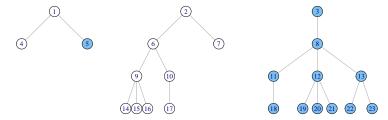
- Hansen-Hurwitz (H-H) type estimator with selection probabilities proportional to degree
- Unbiased if Markov chain model holds

Problem: How do we estimate $Var(\hat{\mu}_{VH})$?

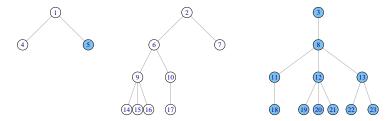
My idea:

- Ignore traits and focus on the tree structure of the RDS
- Multilevel bootstrap
 - 1. Resample seeds with replacement
 - 2. From each seed resample recruits with replacement
 - 3. From each recruit resample further recruits with replacement
 - 4. Repeat 3 until no recruits are available
- Assumes the parts of the network unseen "look" like the parts of the network seen
- Benefits
 - Correlation structure of entire tree preserved, not just first-order transitions
 - One bootstrap sample for all traits

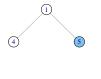
Sample:

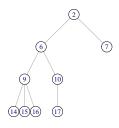


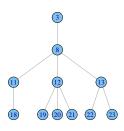
Sample:



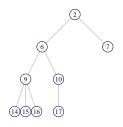
Sample:

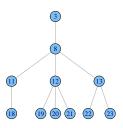


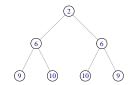




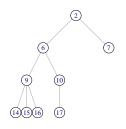
Sample:

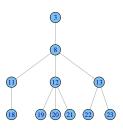


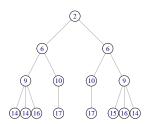


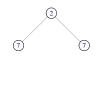


Sample:









- Tree bootstrap performed better than competing methods in a simulation study⁵
- ► Tree bootstrap estimate of variance is asymptotically correct⁶

⁵Baraff, McCormick, Raftery (2016, *PNAS*) ⁶Green, McCormick, Raftery (2020, *Biometrika*)