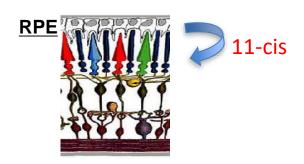
## Primary Endpoint Development for a Phase 3 Inherited Retinal Dystrophy Gene Therapy Trial:

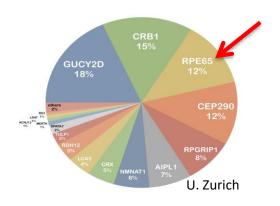
Albert Maguire, MD

Disclosures:

Spark Therapeutics: Grantee and Consultant Patent application-Penn docket 14-6790 (MLMT)

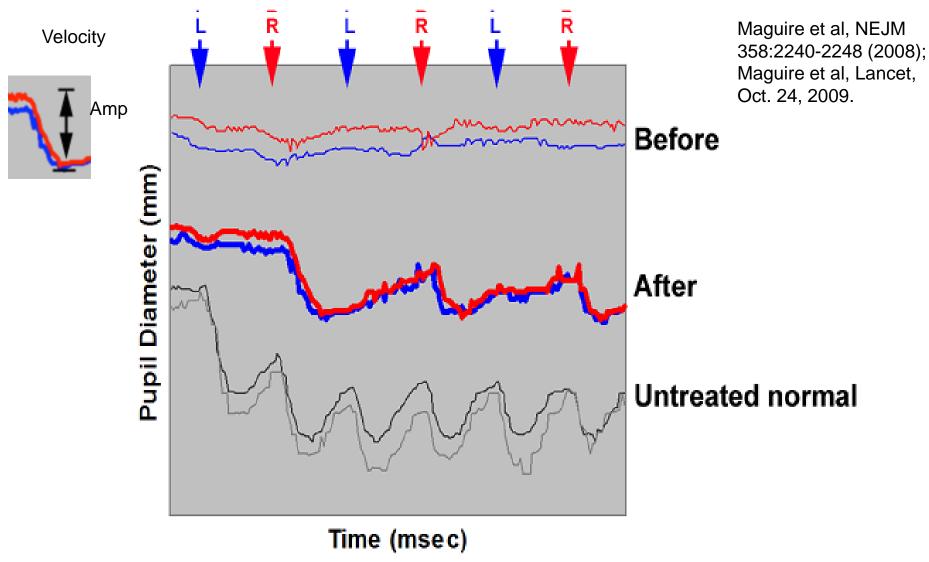
## Hereditary Blindness: Disorders for which there was no Treatment


#### Bi-allelic *RPE65\** Mutations


- Rare autosomal recessive disease:
  - Leber congenital amaurosis
  - Retinitis pigmentosa
- Early onset retinal degeneration; night blindness an early symptom
- Progressive: significant impairment by second decade
- No treatment
- Naturally occurring dog models of disease

\*RPE65: Retinal Pigmented Epithelium 65kDa Protein











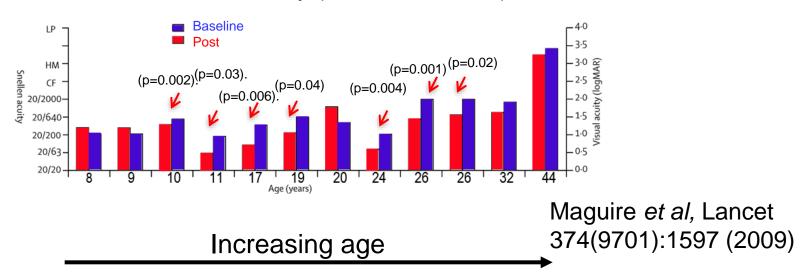

#### **Objective Data: Pupillary Light Reflex (PLR)**



PLR is restored in the (right) retina exposed to AAV2.hRPE65v2 and not in the uninjected (contralateral) retina

#### ■■ The Law Says...

- A marketing application will be rejected if there is "a lack of substantial evidence that the drug will have the effect it purports or is represented to have ... in the proposed labeling.."
- So why doesn't the FDA approve any drug, as long as the labeling truthfully states what effect has been demonstrated?


Answer: The effect must be clinically meaningful.





#### Visual Function vs. Age

ETDRS Acuity (Cone –mediated)



#### **Summary**

 For marketing approval, there must be substantial evidence (consisting of adequate and well-controlled investigations) of something that matters

#### **RESULTS- Exploratory Endpoint**

Pre Injection

3 Months Post Injection





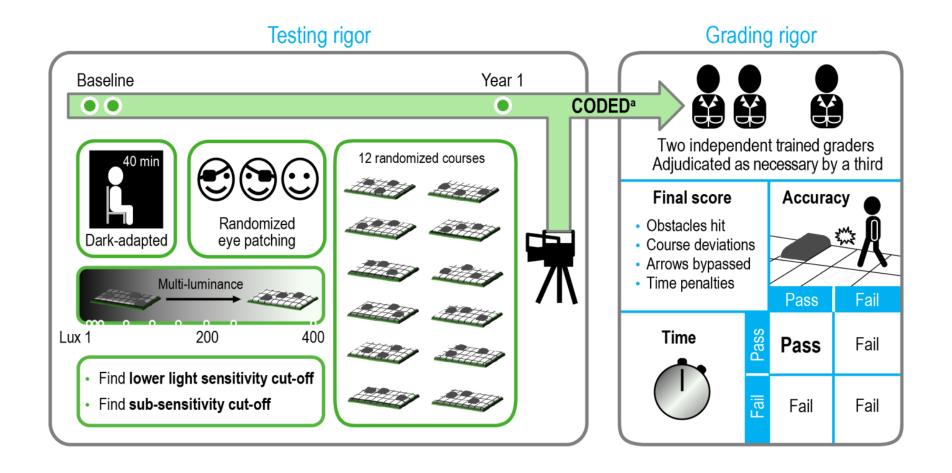


### Need for novel primary endpoint


- Endpoint developed in discussion with FDA
  - Goal was to develop a clinically relevant measure of functional vision
  - Task is to navigate a course independently and accurately within a time limit
  - Integrates input from VA, VF and light sensitivity
  - Traditional mobility metrics do not incorporate effects of level of environmental illumination on speed and accuracy
  - Allows for use in a pediatric population
- Conducted at 7 different light levels ranging from 1 lux to 400 lux

# MLMT: Designed to detect changes in functional vision across a range of light levels

| <b>Light Levels</b> | Examples                                                    |
|---------------------|-------------------------------------------------------------|
| 1 lux               | Moonless summer night; Indoor nightlight                    |
| 4 lux               | Cloudless night with half moon; Parking lot at night        |
| 10 lux              | 1 hour after sunset in city; Bus stop at night              |
| 50 lux              | Outdoor train station at night; Inside of lighted stairwell |
| 125 lux             | 30 minutes before sunrise; Interior of train / bus at night |
| 250 lux             | Interior of elevator or office hallway                      |
| 400 lux             | Office environment or food court                            |
|                     |                                                             |





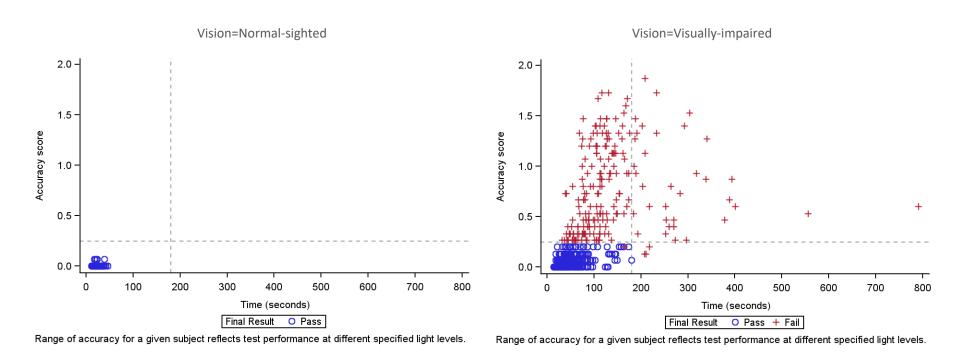



Light meter: National Institute of Standards and Technology-calibrated,
Extech model #EA33 light meters used to provide examples and to set / verify specified light levels used for mobility testing

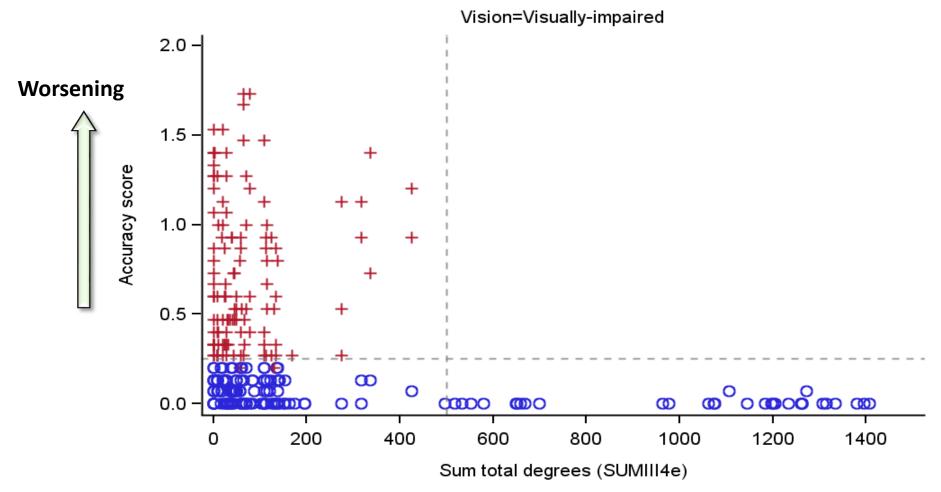
### Introducing rigor into MLMT



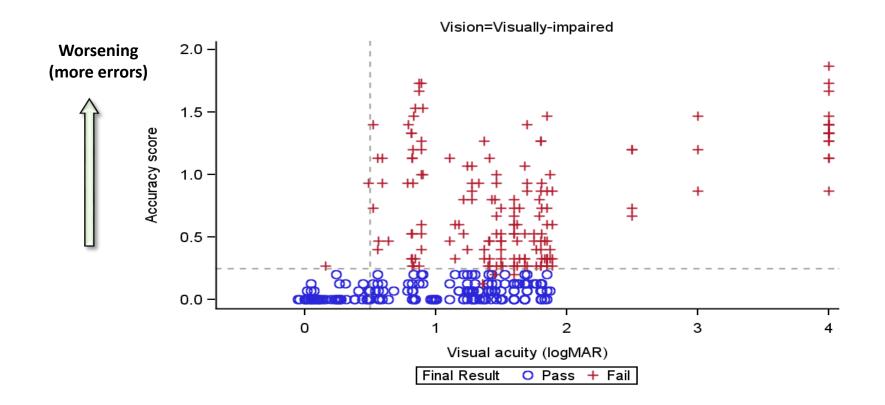
### MLMT scoring


- At baseline, determine lowest light level at which subject can achieve a passing score, and the highest level at which they failed
  - Penalty points for colliding with obstacles; wandering off course; bypassing arrows
  - Both time and penalty points assessed in final score

#### Multi-luminance mobility test (MLMT) validation study


- Evaluated performance of both normal-sighted and inherited retinal disease (IRD) subjects
- Correlated with measures of visual function: VA and VF
- Normal-sighted subjects
  - No change in testing
  - All passed at lowest level (1 Lux)
- IRD subjects
  - None improved from baseline to 1 year
  - 8 (28.5%) subjects declined in performance over 1 year
- High reliability: concordance between baseline visits 1 month apart correlations for accuracy were 94% and 98% between lowest and highest light levels tested

#### Time and accuracy score, by pass/fail status


#### Test distinguishes between normal-sighted and visually-impaired subjects



# Goldmann Visual Fields and Accuracy Score by Pass / Fail Status



# Visual acuity (LogMAR) and accuracy score by pass / fail status



## MLMT scoring system is highly reproducible

High inter-grader and intra-grader agreement

|                           |                          | Inter-grader       | Grade-regrade      |                    |                    |                    |
|---------------------------|--------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
|                           |                          |                    | Consensus          | Grader #1          | Grader #2          | Grader #3          |
|                           |                          | n=4158             | n=425              | n=383              | n=100              | n=118              |
| Intraclass<br>Correlation | # Obstacles hit          | 0.99 (0.99 - 0.99) | 0.99 (0.99 - 0.99) | 0.99 (0.99 - 0.99) | 0.99 (0.99 - 1.00) | 0.99 (0.99 - 0.99) |
|                           | # Times off-course       | 0.99 (0.99 - 0.99) | 0.99 (0.99 - 0.99) | 0.99 (0.99 - 0.99) | 0.98 (0.97 - 0.99) | 0.99 (0.99 - 0.99) |
|                           | # Times re-guided        | 0.99 (0.99 - 0.99) | 1.00 (1.00 - 1.00) | 0.99 (0.99 - 0.99) | 0.99 (0.99 - 0.99) | 1.00 (1.00 - 1.00) |
|                           | # Tiles bypassed         | 0.91 (0.91 - 0.92) | 0.93 (0.91 - 0.94) | 0.92 (0.91 - 0.94) | 0.90 (0.86 - 0.93) | 0.95 (0.92 - 0.96) |
|                           | Obstacles plus Penalties | 0.98 (0.98 - 0.98) | 0.98 (0.98 - 0.98) | 0.97 (0.97 - 0.98) | 0.98 (0.97 - 0.99) | 0.98 (0.97 - 0.99) |
|                           | Accuracy score           | 0.99 (0.99 - 0.99) | 0.99 (0.99 - 0.99) | 0.99 (0.99 - 0.99) | 0.99 (0.99 - 1.00) | 0.99 (0.99 - 0.99) |
|                           | Course time              | 1.00 (1.00 - 1.00) | 1.00 (1.00 - 1.00) | 1.00 (1.00 - 1.00) | 1.00 (1.00 - 1.00) | 1.00 (1.00 - 1.00) |
|                           | Time score               | 1.00 (1.00 - 1.00) | 1.00 (1.00 - 1.00) | 1.00 (1.00 - 1.00) | 1.00 (1.00 - 1.00) | 1.00 (1.00 - 1.00) |
| Карра                     | Course completed         | 1.00 (1.00 - 1.00) | 1.00 (1.00 - 1.00) | 0.67 (0.05 - 1.00) | 1.00 (1.00 - 1.00) | 1.00 (1.00 - 1.00) |
|                           | Accuracy Pass/Fail       | 0.95 (0.94 - 0.96) | 0.94 (0.90 - 0.97) | 0.91 (0.87 - 0.95) | 0.96 (0.90 - 1.00) | 0.91 (0.84 - 0.99) |
|                           | Time Pass/Fail           | 0.98 (0.98 - 0.99) | 0.98 (0.96 - 1.00) | 0.99 (0.98 - 1.00) | 0.97 (0.91 - 1.00) | 0.98 (0.94 - 1.00) |
|                           | Final Pass/Fail          | 0.95 (0.94 - 0.96) | 0.94 (0.91 - 0.97) | 0.92 (0.88 - 0.96) | 0.96 (0.90 - 1.00) | 0.93 (0.86 - 1.00) |
| a                         | Course completed         | 4158 (100.0%)      | 425 (100.0%)       | 382 (99.7%)        | 100 (100.0%)       | 118 (100.0%)       |
| n (%) Agree               | Accuracy Pass/Fail       | 4059 (97.6%)       | 412 (96.9%)        | 366 (95.6%)        | 98 (98.0%)         | 113 (95.8%)        |
|                           | Time Pass/Fail           | 4133 (99.4%)       | 422 (99.3%)        | 382 (99.7%)        | 99 (99.0%)         | 117 (99.2%)        |
|                           | Final Pass/Fail          | 4070 (97.9%)       | 413 (97.2%)        | 368 (96.1%)        | 98 (98.0%)         | 114 (96.6%)        |

## Phase 3: Efficacy endpoints (ITT) and results

| Assessment          | Measurement                                               | Difference (95% CI)<br>(Intervention-<br>Control) | p value               |
|---------------------|-----------------------------------------------------------|---------------------------------------------------|-----------------------|
| Primary Endpoint    |                                                           | ·                                                 |                       |
| MLMT performance    | Bilateral, score change                                   | 1.6 (0.72, 2.41)                                  | p = 0.0013            |
| Secondary Endpoints |                                                           |                                                   |                       |
| FST testing         | Averaged over both eyes, log10(cd.s/m²)                   | -2.11 (-3.19, -1.04)                              | p = 0.0004            |
| MLMT performance    | Assigned first eye, score change                          | 1.7 (0.89, 2.52)                                  | p = 0.0005            |
| Visual acuity       | Averaged over both eyes, LogMAR (Holladay)                | -0.16 (-0.41, 0.08)                               | p = 0.17              |
| Additional Endpoint |                                                           |                                                   |                       |
| Visual field        | Goldmann III4e sum total degrees, averaged over both eyes | 378.7 (145.5, 612.0)                              | Nominal<br>p = 0.0059 |
| Visual field        | Humphrey macula threshold, dB, averaged over both eyes    | 7.9 (3.5, 12.2)                                   | Nominal<br>p = 0.0005 |

# Phase 3: MLMT time to completion, averaged over lux levels, (mITT) Intervention vs. Control

| Bilateral      | Intervention |        |        | Control  |        |        |
|----------------|--------------|--------|--------|----------|--------|--------|
| Time to        | (N=20)       |        |        | (N=9)    |        |        |
| Complete (sec) | Baseline     | Year 1 | Change | Baseline | Year 1 | Change |
| Mean           | 101.1        | 49.0   | -52.1  | 81.8     | 79.3   | -2.6   |
| (SD)           | (41.7)       | (35.6) | (38.1) | (20.8)   | (20.3) | (23.5) |

## Phase 3 Trial: Mobility Test Videos

**PASS FAIL** 

# Mobility test study results support use of MLMT to measure functional vision in patients with IRDs

- Differentiate low vision from normal controls
- Detect changes in performance over time
- Identify wide range of performance among visually impaired
- High reproducibility
  - > 4000 videos evaluated
- Demonstrated construct and content validity
- Generates a quantifiable measure of functional vision

## Acknowledgements

- Spark Therapeutics
  - Dan Chung, DO
  - Katherine High, MD
  - Jennifer Wellman, MS
- University of Pennsylvania
  - Jean Bennett, MD, PhD
  - Albert Maguire, MD

- Children's Hospital of Philadelphia
  - Sarah McCague
  - Kathleen Marshall
  - Dominique Cross
- Westat, Inc.
  - Julie Pappas
- Statistics Collaborative, Inc.
  - Zi-Fan Yu, ScD
  - Satha Thill
  - Amy Tillman
  - Janet Wittes, PhD