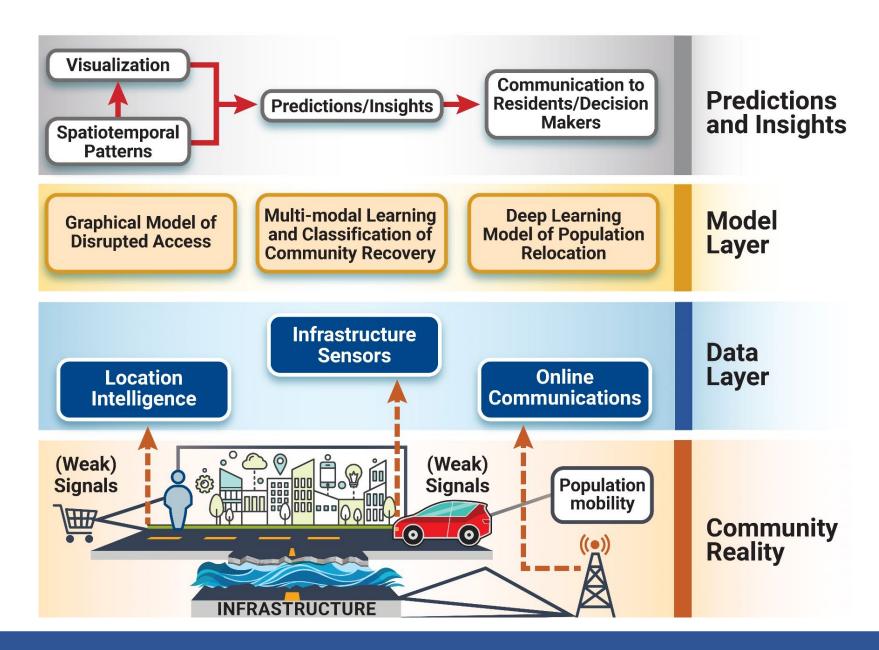


Al for Augmenting Urban Resilience to Health Emergencies

Ali Mostafavi

Zachry Endowed Associate Professor
Director, UrbanResilience.AI Lab
Department of Civil and Environmental Engineering
Texas A&M University

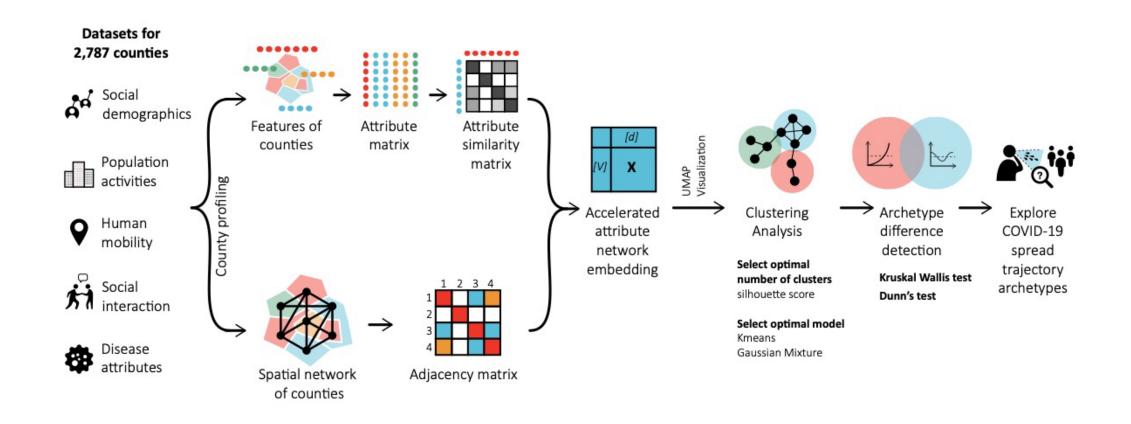
Data to Decision Pipeline to Augment Resilience to Emergencies



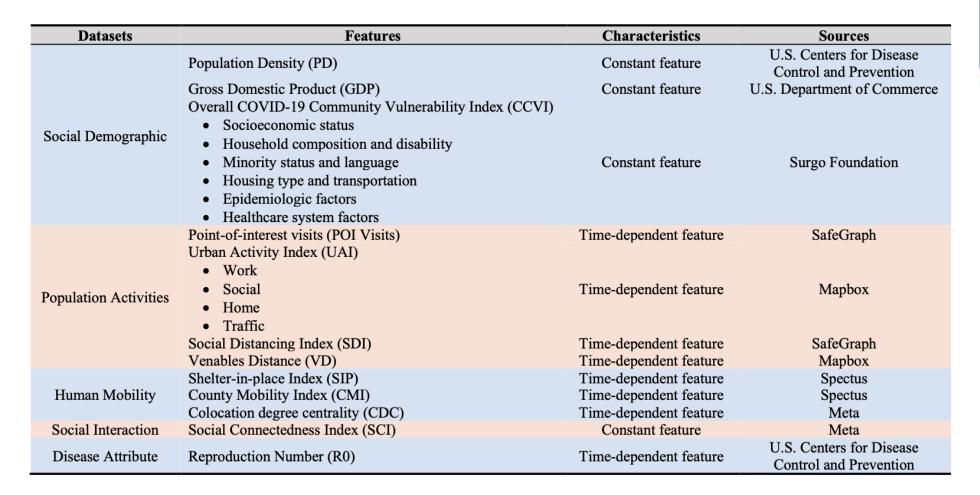
DeepCOVIDNet: An Interpretable Deep Learning Model for Predictive Surveillance of COVID-19 Using Heterogeneous Features and Their Interactions

DeepCovidNet Model: Workflow

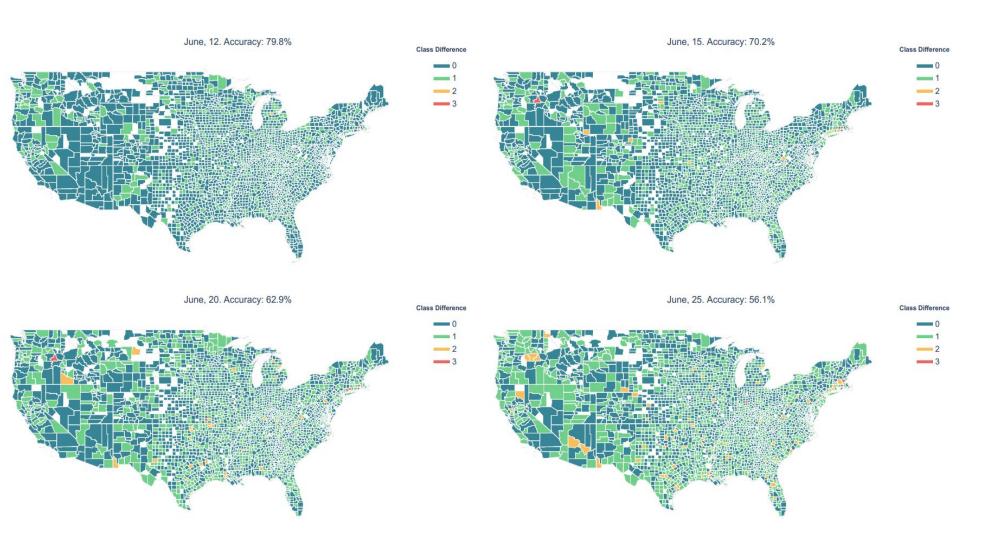
- **Region:** 2,787 counties in the continental U.S.
- Period: March 3 to June 29, 2020 (the first wave and initial outbreak of the pandemic)



Features Influencing the Spread of COVID-19



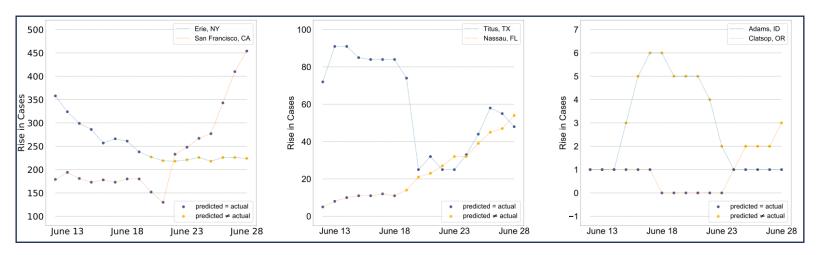
Prediction Results



Absolute difference in predicted class and the actual class for all counties:

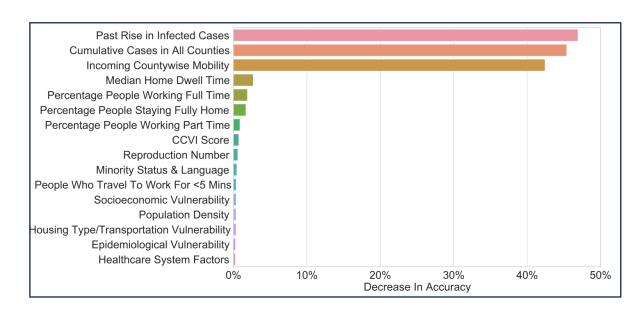
- 0 means the model's prediction was correct
- 1 means it was one class away from ground truth, and so on

Prediction Results



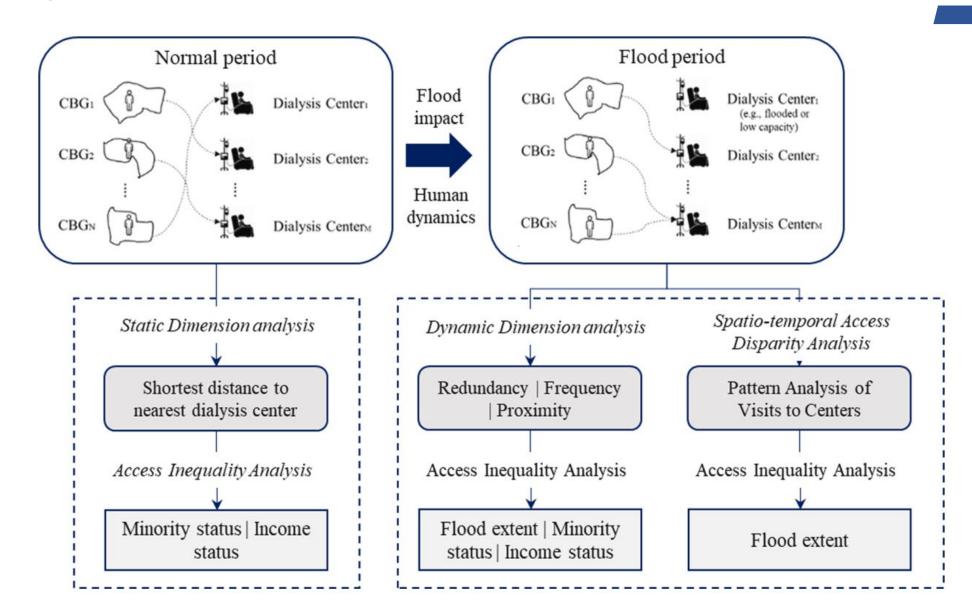
Predictions over time for three types of counties: counties with high growth, counties with medium growth, and counties with low growth of cases.

Feature Importance Analysis



Unveiling dialysis centers' vulnerability and access inequality during urban flooding

Study Overview



Access disparities based on the shortest distance from CBGs to their nearby dialysis centers.

Spatial distribution of dialysis centers and CBGs with their shortest distances in kilometers (km) Shortest distance to nearest dialysis centers (km)

0.00 - 1.29

1.30 - 2.13

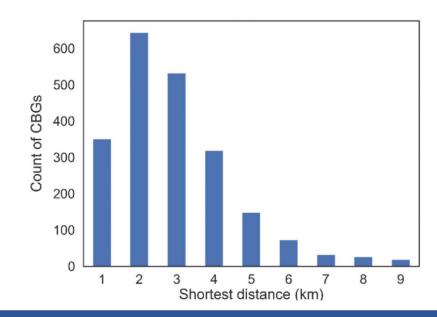
2.14 - 3.18

3.19 - 24.36

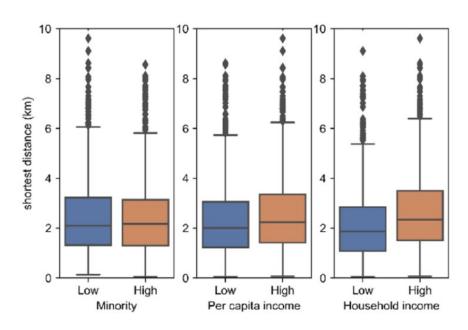
Dialysis center

0 4.75 9.5 19 28.5 38 kilometers

Count of CBGs in terms of the range of their shortest distances to dialysis centers

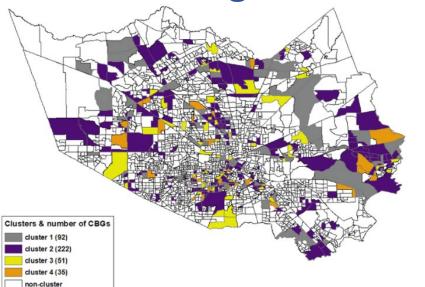


Sociodemographic characteristics of CBGs versus their shortest distances

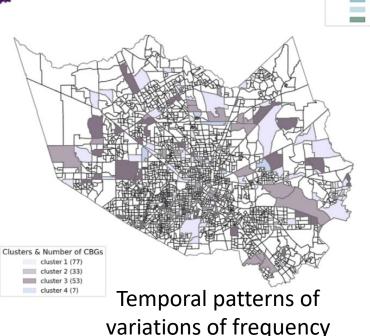


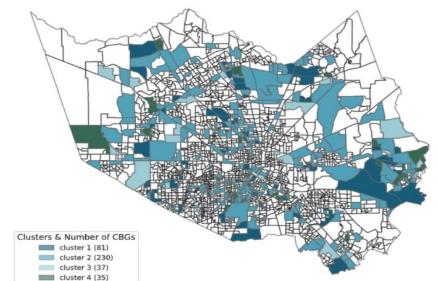
Spatiotemporal patterns of dynamic access to dialysis

centers during Hurricane Harvey



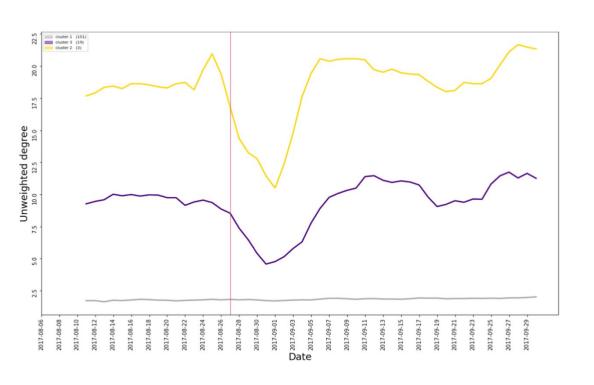
Temporal patterns of variations of redundancy

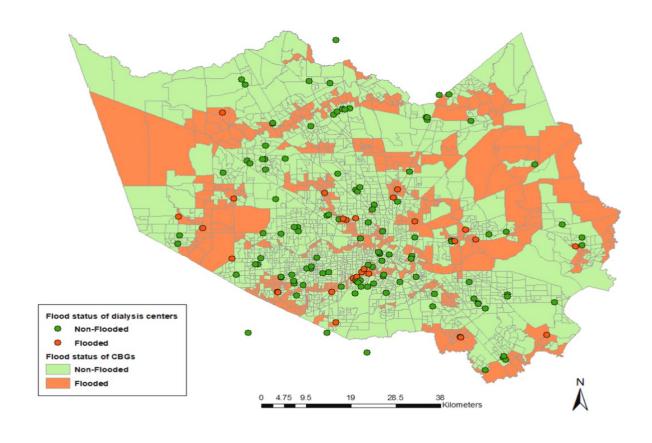




Temporal patterns of variations of proximity

Clusters of dialysis centers based on service levels



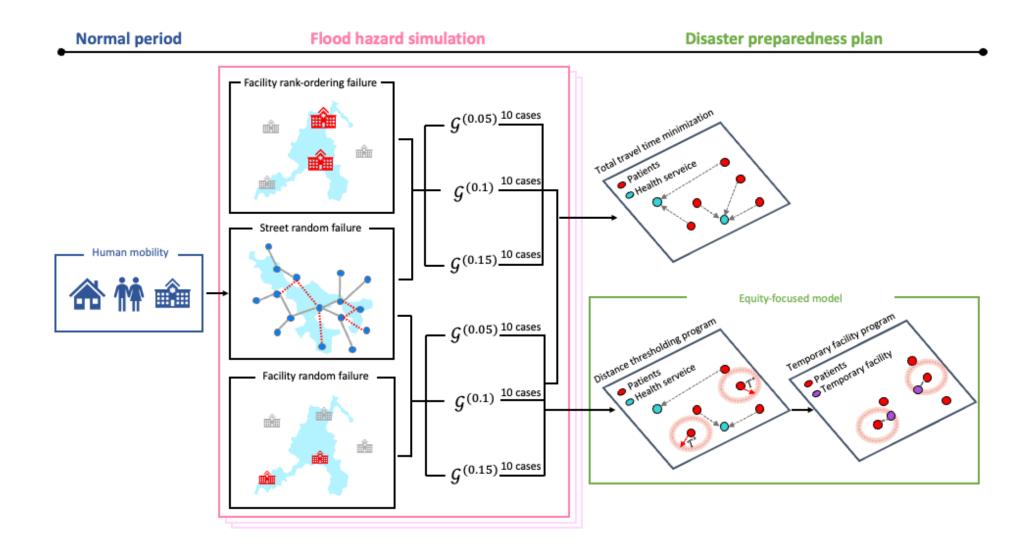


Spatiotemporal pattern of provided services levels of dialysis centers

Geographic distribution of the identified clusters and flooded status of CBGs in Harris County

An Equitable Patient Reallocation Optimization and Temporary Facility Placement Model for Maximizing Critical Care System Resilience

Modeling Framework



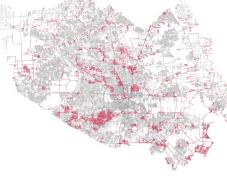
Methodology

Flood simulation

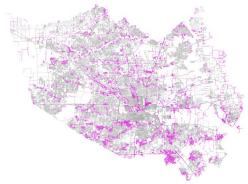
Healthcare optimization

Road network

Dialysis center

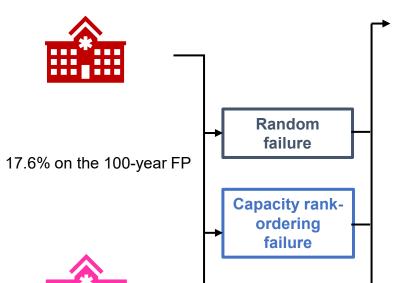


15.3% on the 100-year FP



17.8% on the 500-year FP

19.0% on the 500-year FP



Total travel time minimization model

min
$$T = \sum_{i=1}^{m} \sum_{j=1}^{n+1} T_{ij}^f \cdot x_{ij}$$
 (1)

$$\sum_{j=1}^{n+1} x_{ij} = p_i \quad \forall i \in S_c \tag{2}$$

$$\sum_{i=1}^{n} x_{ij} \le c_j \quad \forall \in S_f \tag{3}$$

$$x_{ij} \in \mathbb{Z}^+ \quad \forall i \in S_c, \forall j \in S_f$$
 (4)

Equity-focused model

1. Distance thresholding program

min
$$T = \sum_{i=1}^{m} \sum_{j=1}^{n+1} T_{ij}^{f} \cdot x_{ij}$$
 (1)

$$\sum_{j=1}^{n+1} x_{ij} = p_i \ \forall i \in S_c$$

$$\sum_{i=1}^{n} x_{ij} \le c_i \ \forall j \in S_f \tag{3}$$

$$x_{ij} \in \mathbb{Z}^+ \ \forall i \in S_c, \forall j \in S_f$$
 (4)

$$x_{ij} = 0 \ \forall T_{ij}^f > T^*, \forall i \in S'_c, \forall j \in S_f \setminus \{n+1\}$$
 (5)

2. Temporary facility program

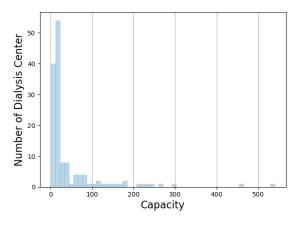
$$\max \sum_{i \neq i'} x_{ii'} \tag{6}$$

min
$$T = \sum_{\substack{i=1 \ i \neq i'}}^{m} \sum_{\substack{i'=1 \ i \neq i'}}^{m} T_{ii'}^{c} \cdot x_{ii'}$$
 (7)

$$\sum_{j=1}^{m} x_{ii'} \le p_i^{dt} \quad \forall i \in S_c$$
 (8)

$$x_{ii'} \in \mathbb{Z}^+ \quad \forall i, i' \in S_c \tag{9}$$

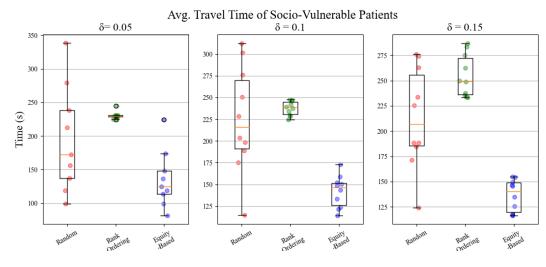
Demand estimation



87.32% of medical care has a capacity of less than 100.

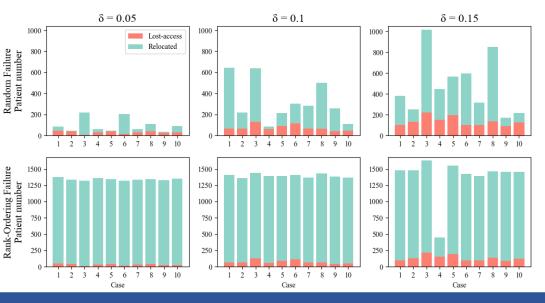
Therefore, the healthcare network relies heavily on a few medical centers with large capacity.

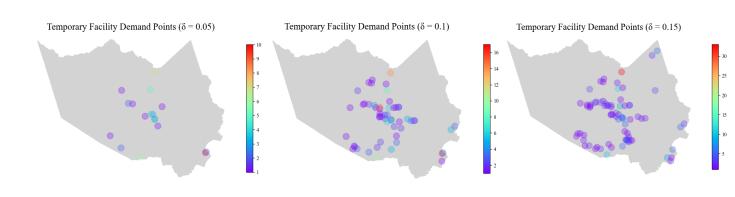
Equity-focused model



Temporary facility demand points

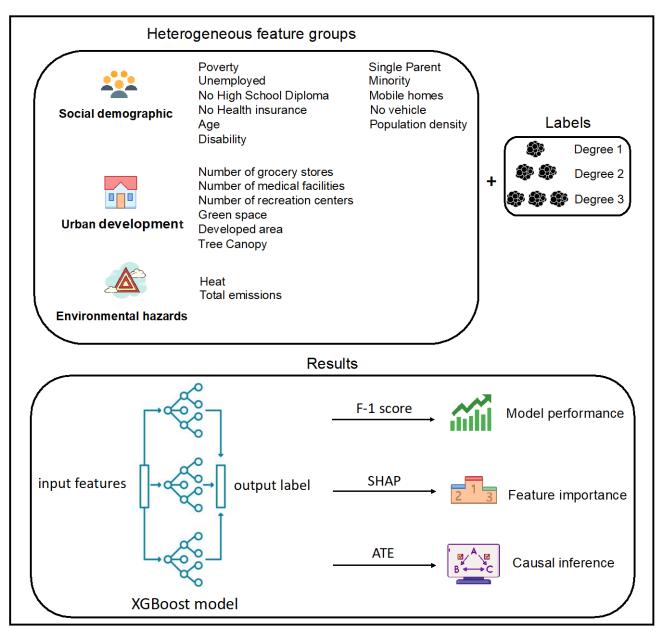
Total travel time minimization model





Decoding Urban-health Nexus: Interpretable Machine Learning Illuminates Cancer Prevalence based on Intertwined City Features

Model Framework



URBAN RESILIENCE. Aî

Features Shaping Cancer Prevalence

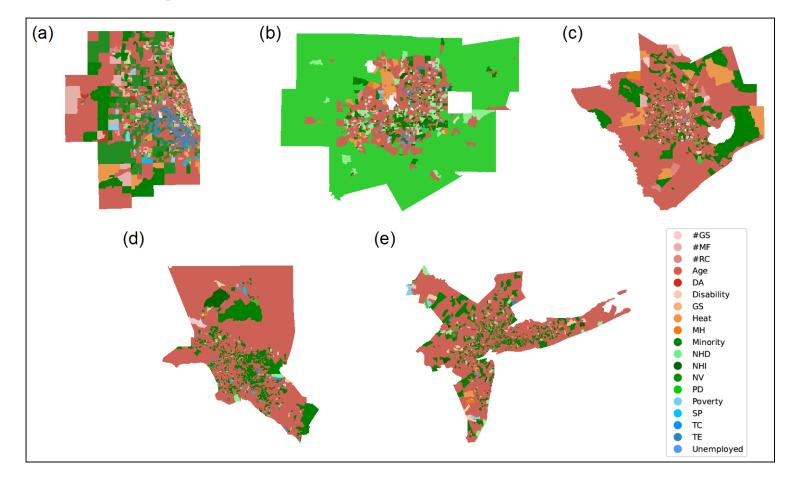


Fig 3. Geographical Distribution of the Most Important Feature Across Five Key Metropolitan Statistical Areas. The figure illustrates the spatial distribution of the feature with the highest importance across the following MSAs: (a) Chicago-Naperville-Elgin, (b) Dallas-Fort Worth-Arlington, (c) Houston-The Woodlands-Sugar Land, (d) Los Angeles-Long Beach-Anaheim, and (e) New York-Newark-Jersey City.

URBAN RESILIENCE. Aî

Features Shaping Cancer Prevalence

