The YODA Project: A Use Case and Lessons Learned

Sharing Clinical Trial Data
NASEM Workshop
November 18, 2019

Joseph S. Ross, MD, MHS

Section of General Internal Medicine, School of Medicine Center for Outcomes Research and Evaluation, Yale-New Haven Hospital

Potential Conflicts of Interest

- YODA Project funded by research grant through Yale from Johnson & Johnson, formerly funded by Medtronic, Inc.
- Research grant funding through Yale from:
 - Food and Drug Administration (FDA)
 - Centers for Medicare and Medicaid Services (CMS)
 - Blue Cross Blue Shield Association
 - NIH/NHLBI, AHRQ
 - Laura and John Arnold Foundation

ABOUT

REQUEST

TRIALS

METRICS

LOG IN

Discovery consists of looking at the same thing as everyone else and thinking something different.

Albert Szent-Györgyi

OUR MODEL

The Yale University Open Data Access (YODA) Project's mission is to advocate for the responsible sharing of clinical research data, open science, and research transparency. The Project is committed to supporting research focused on improving the health of patients and informing science and public health. The YODA Project can only improve with your feedback.

Please share your comments and ideas.

OUR MISSION

CONTACT US

The YODA Project seeks mutually beneficial partnerships with Data Partners, promoting independence, responsible conduct of research, good stewardship of data, and the generation of knowledge in the best interest of society. To participate, each Data Partner must transfer full jurisdiction over data access to the YODA Project.

HOW IT WORKS

REQUEST DATA

Are you ready to request data? To date, 350 trials have been identified as available. The YODA Project and Data Partners continue to identify and add more.

GET STARTED

SCIENTIFIC DATA

OPEN: Overview and experience of the YODA Project with clinical trial data sharing after 5 years

Received: 28 March 2018 Accepted: 24 October 2018 Published: 27 November 2018 Joseph S. Ross^{1,2,3,4}, Joanne Waldstreicher⁵, Stephen Bamford⁶, Jesse A. Berlin⁵, Karla Childers5, Nihar R. Desai4,7, Ginger Gamble4, Cary P. Gross1,2,4,8, Richard Kuntz9, Richard Lehman 10, Peter Lins 5, Sandra A. Morris 5, Jessica D. Ritchie 4 & Harlan M. Krumholz^{2,3,4,7}

The Yale University Open Data Access (YODA) Project has facilitated access to clinical trial data since 2013. The purpose of this article is to provide an overview of the Project, describe key decisions that were made when establishing data sharing policies, and suggest how our experience and the experiences of our first two data generator partners, Medtronic, Inc. and Johnson & Johnson, can be used to enhance other ongoing or future initiatives.

Source: Ross et. al. Scientific Data 2019;5:180268.

Principles of the YODA Project

- Promote sharing of clinical research data to advance science and improve public health and healthcare
- Promote responsible conduct of research
- Ensure good stewardship of clinical research data by external investigators
- Protect rights of research participants

Johnson & Johnson Partnership

- Initiated in 2014 effort focused on promoting and facilitating access to clinical trial data:
 - All pharmaceutical products (including legacy trials)
 - Device and diagnostic products as of 2015
 - Consumer products as of 2017
- Established data access policy and procedures, with input from Steering Commitee, experts, stakeholders, and public comment

Trials By Generic Name

Below is a list of trials that have been identified as available. This is not a complete list of the trials that are available for sharing. Before a trial can be shared, Data Partners must confirm data location and availability in an electronic format, and confirm that data availability conforms to any applicable partner agreements. All trials listed below have gone through this process. We continue to add trials to this list on a regular basis.

Don't see the trial(s) you are looking for?

Submit an inquiry

GENERIC NAME

PRODUCT CLASS

THERAPEUTIC AREA

CONDITION STUDIED

ADVANCED SEARCH

Abiraterone acetate

Ablation Catheter

Acetaminophen

Bedaquiline/TMC207

VIEW TRIALS

VIEW TRIALS

VIEW TRIALS

Daratumumab

VIEW TRIALS

VIEW TRIALS

Bosentan

VIEW TRIALS

Doxorubicin hydrochlori

VIEW TRIALS

Canagliflozin

de

VIEW TRIALS

Epoetin alfa

VIEW TRIALS

VIEW TRIALS

Ethinyl estradiol

Etravirine

VIEW TRIALS

Darunavir

VIEW TRIALS

REQUEST TRIALS METRICS LOG IN

A Randomized, Double-Blind Trial of Anti-TNF Chimeric Monoclonal Antibody (Infliximab) in Combination With Methotrexate for the Treatment of Patients With Polyarticular Juvenile Rheumatoid Arthritis

NCT00036374

Product Class

C0168T32

Data Partner

Response Modifiers

Johnson & Johnson

Mean/Median Age (Years)

Antirheumatic Agents - Biologic

Sponsor Protocol Number

Data Specification

Available upon data

request approval

Add Trial to Data Request

PRODUCT INFO

Generic Name

Infliximab

Product Name

REMICADE®

Therapeutic Area

Muscle, Bone, and Cartilage Diseases

Enrollment

Condition Studied 123 Arthritis, Juvenile

% Female

85.996 11.2

% White 92.1%

SUPPORTING DOCUMENTATION

- · Clinical Study Report
- Collected Datasets
- · Data Definition Specification
- · Annotated Case Report Form
- Protocol with Amendments
- · Statistical Analysis Plan

APPROVED DATA REQUESTS ASSOCIATED WITH THIS TRIAL

Impact of the dose of immunomodulators on pharmacokinetics of biologics: Patient level meta-analysis of randomized controlled trials Impact of Biologic Therapy on the Risk of Arterial and Venous Thromboembolic Events in Chronic Autoimmune Diseases: A Post-Hoc Analysis of RCTs

Requests Submitted Online

- Investigator names, affiliations, funding
- Narrative summary / public abstract
- Detailed research proposal, including:
 - Project background, clear objectives
 - Trials, sample eligibility criteria, variables
 - Primary and secondary endpoints
 - Statistical analysis plan
- Project purpose (meta-analysis, validation ...)
- Timeline and dissemination plan
- Data use agreement training

YODA Project Review

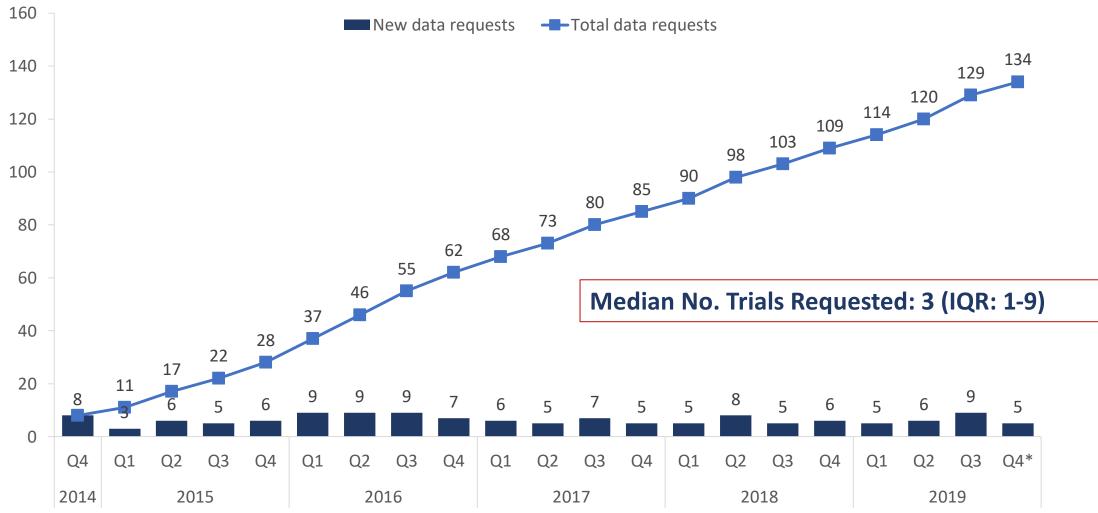
The YODA Project reviews proposals to ensure that each proposal has scientific merit, specifically verifying:

- Scientific purpose is clearly described
- Data requested will be used to create or materially enhance generalizable scientific and/or medical knowledge to inform science and public health
- Proposed research can be pursued using the requested data

Data Partner Review

Requests for data undergo a Due Diligence Assessment by the Data Partner to evaluate their ability to make the data available to be shared, including assessment of:

- Patient privacy
- Similar research studies
- Required variables
- Appropriateness of requested data (e.g. CSR vs IPD)



- Once approved, require signed DUA
- Investigators gain access to data maintained on secure platform, via VPN
- Prevents distribution, protects patient privacy

Number of Data Requests Submitted

YODA Project Data Requests

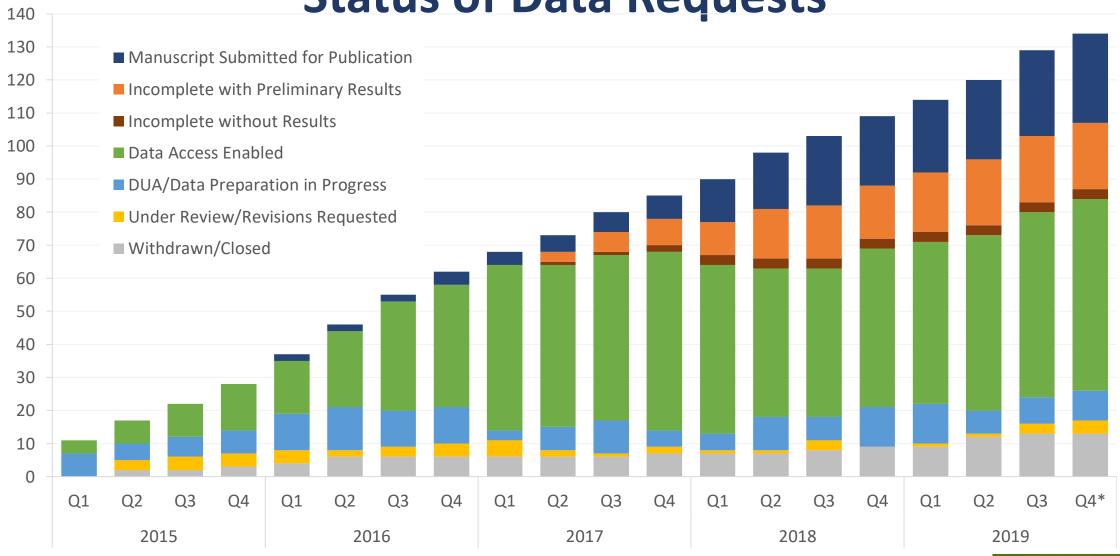
- New Question
- Meta-Analysis
- Clinical Prediction, Risk Prediction
- Validation
- Statistical Methods
- Clinical Trial Methods
- Pilot/Preliminary Research
- Other

60%

0%

20%

40%


Comparision Group

Researcher Affiliation

- 90% Academia
- 5% Government
- 4% Industry
- 1% Other

Status of Data Requests

Approved Requests to Use Johnson and

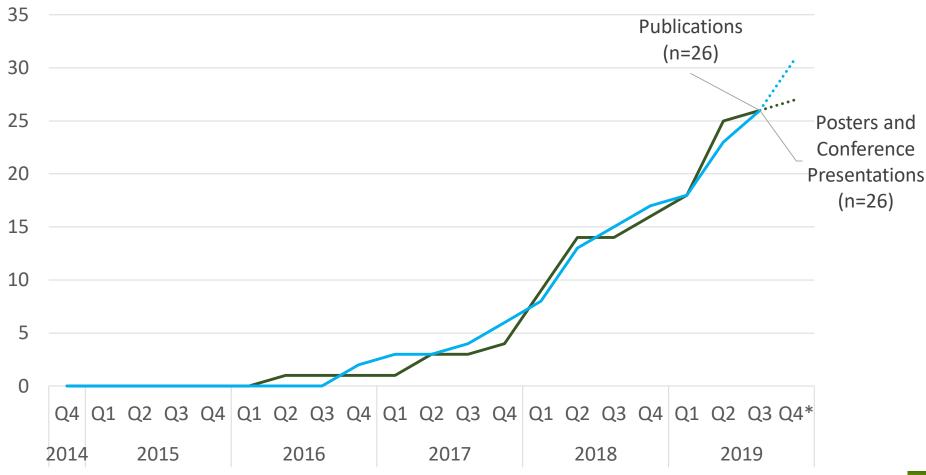
Johnson Data*

YODA Project Protocol Number	PI and Affiliation	Research Proposal	Product(s) of Interest	YODA Project Review and Data Partner Due Diligence Assessment	Project Status
2014-0340	Heldl Storgaard, MD, PhD; University of Copenhagan, Center for Diabetes Research	The effects of SGLT-2 inhibitors in patients with type 2 diabetes: a systematic review with meta-analysis of randomised trials	INVOKANA	 YODA Project Review Due Diligence Assessment 	Complete; Published in PLOSONE November 11, 2016.
2014-0333	Guru Sonpavde, MD; University of Alabama, Birmingham (UAB) School of Medicine	RECIST response as a surrogate endpoint in metastatic castration-resistant prostate cancer: Retro-spective analysis of COU-AA-203 and COU-AA-301	ZYTIGA	 YODA Project Review Due Diligence Assessment 	Unknown; data access revoked, investigator has not reported results as requested.
2014-0334	Raymond Cross, MD, MS; University of Maryland,	Gender differences in weight gain in patients with inflammatory bowel disease treated with Infliximab	REMICADE	 YODA Project Review Due Diligence 	Complete; Published in Inflamm Bowel Dis July 2, 2019.

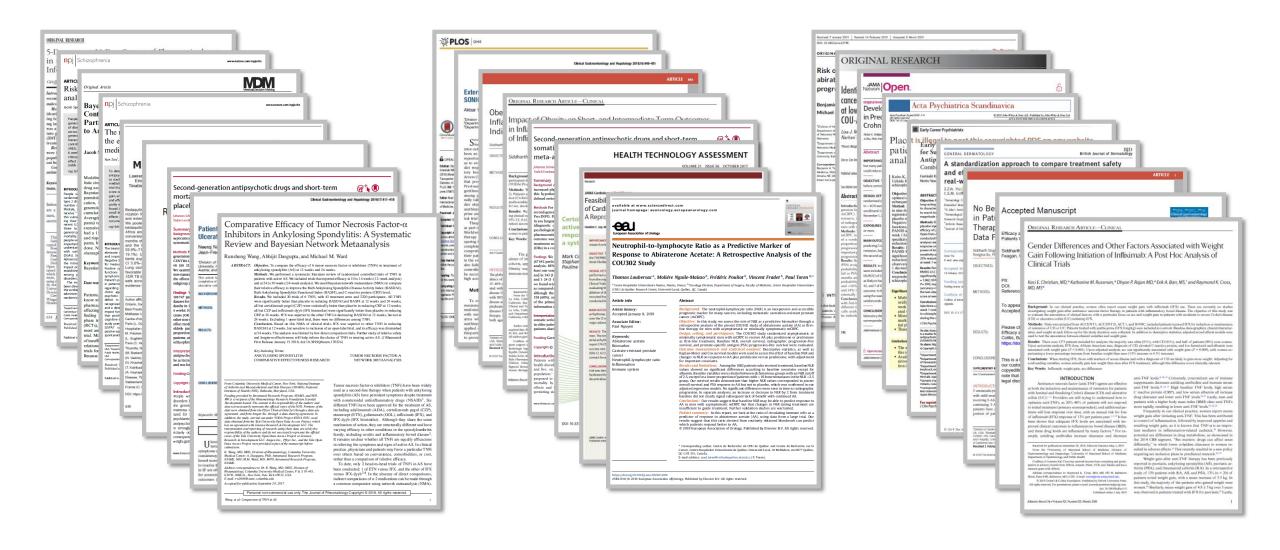
Submitted Data Requests Withdrawn/Not Approved*

The following data requests could not be fulfilled due to patient privacy concerns, data element availability, data security concerns, or lack of research proposal clarity.

YODA Project Protocol Number	PI and Affiliation	Research Proposal	Product(s) of Interest	YODA Project Review and Data Partner Due Diligence Assessment	Project Status
2014-0287	William J. Sandborn, MD; University of California, San Diego	Post hoc analysis of the ACT-1 & ACT-2 trials to simulate individualized dosing regimens using a predictive model	REMICADE	YODA Project Review Due Diligence Assessment	*Request origina lly approved but subsequently withdrawn: data could not be downloaded as requested
2015-0406	Nicola Schieda, MD FRCP(C); University of Ottawa	Is primary tumor in prostate cancer a reliable target lesion (measurable disease) at contrast-enhanced (CE) CT	ZYTIGA	■ YODA Project Review ■ Due Diligence Assessment	*Request originally approved but subsequently withdrawn: CT scans not available due to patient privacy concerns
2015-0501	Anthony Otley, MD, MSc;	Zowards An Improved Pediatric Crohn's Disease	REMICADE	<u>YODA</u> <u>Project Review</u>	*Request originally


*The YODA Project posts withdrawn/unapproved proposals at the time the decision is made.

Experience so far ...


- Of 350 trials currently listed on the site, 75% have thus far been requested (16 available only since July)
- Of 134 applications submitted, 117 (87%) approved, 4 (3%) remain under review; 13 (10%) withdrawn/closed
 - Usually because data not available/cannot be adequately de-identified
- Nearly all require some administrative revision, but 41 (31%)
 required scientific revision after review for clarity
- 31 manuscripts have been submitted for publication to peerreviewed journals, 26 of which have been published
 - Thus far, 30% of projects with data access for ≥1 year published

Publications and Posters (includes multiple per project)

Articles Using Data Shared Through YODA Project

HEALTH TECHNOLOGY ASSESSMENT

VOLUME 21 ISSUE 56 OCTOBER 2017 ISSN 1366-5278

Certolizumab pegol and secukinumab for treating active psoriatic arthritis following inadequate response to disease-modifying antirheumatic drugs: a systematic review and economic evaluation

Mark Corbett, Fadi Chehadah, Mousumi Biswas, Thirimon Moe-Byrne, Stephen Palmer, Marta Soares, Matthew Walton, Melissa Harden, Pauline Ho, Nerys Woolacott and Laura Bojke

DOI 10.3310/hta21560

Objective: Assess the benefits, harms and cost-effectiveness of two new biologic therapies, compared to existing therapies:

- certolizumab pegol (CZP; CIMZIA®, UCB Pharma, Brussels, Belgium)
- secukinumab (SEC; COSENTYX®, Novartis International AG, Basel, Switzerland)

Key Findings: Both CZP and SEC are effective therapies for improving the symptoms of PsA. These new biologics can be considered a costeffective use of NHS resources.

Review of available evidence on the use of bedaquiline for the treatment of multidrug-resistant tuberculosis: Data analysis report

Prepared for:
The World Health Organization

Prepared by:

Lawrence Mbuagbaw, MD, MPH, PhD
Assistant Professor
Department of Health Research Methods, Evidence and Impact,
McMaster University, Hamilton, Ontario, Canada

MARCH 8, 2017 VERSION 6 **Objective:** Review new evidence on the use of bedaquiline to inform changes in the World Health Organization (WHO) interim policy guidance on the use of bedaquiline for the treatment of multidrugresistant tuberculosis (MDR-TB).

Key Findings: Bedaquiline effective for treatment of MDR-TB.

Study	Number	Total	Percentage (%)	95% C	CI	Weight					1	
Armenia (N=62)	41	50		[68.6; 91.4		12.6%					-	_
Georgia (N=30)	19	23	82.6	[61.2; 95.0	0]	5.6%					1	
France (N=45)	40	41	97.6	[87.1; 99.9	9]	1.7%					-	-
South Africa (N=195)	54	72	75.0	[63.4; 84.5	5]	23.1%				_	-	
Drug manufacturer (N=205)	163	205	79.5	[73.3; 84.8	8]	57.0%					+	
Fixed effect model		391	79.7	[75.2; 83.5	5]						\Rightarrow	
Random effects model			79.7	[75.2; 83.5	5]	100%						
Heterogeneity: I2=38.7%, tau2<	0.0001, p=0	1634		-								
• •							2	1	1	1	- 1	
						()	20	40	60	80	100
								P	ercent	age (%	6)	

RESEARCHARTICLE

Benefits and Harms of Sodium-Glucose Co-Transporter 2 Inhibitors in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis

Heidi Storgaard¹+, Lise L. Gluud², Cathy Bennett³, Magnus F. Grendahl¹, Mikkel B. Christensen^{1,4}, Filip K. Knop^{1,5,5}, Tina Vilsbell^{1,5}

- 1 Centre for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark, 2 Gastrounit, Copenhagen University, Hvidowe Hospital, Hvidowe, Denmark, 3 Centre for Technology Enabled Health Research, Coventry University, Coventry, United Kingdom, 4 Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark, 5 Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark, 6 The Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- * Hstorgaard@dadinet.dk

OPEN ACCESS

Citation: Slorgaard H, Gluud LL, Bennett C, Grendahi MF, Christensen MB, Knop FK, et al. (2016) Benefits and Harms of Sodium-Glucose Co-Tensporter 2 Inhibitors in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. PLoS ONE 11(11): e0166125. doi:10.1371/journal pone.0166125

Editor: Noel Christopher Barengo, Florida International University Herbert Wertheim College of Medicine, UNITED STATES

Received: June 2, 2016

Accepted: October 24, 2016

Published: November 11, 2016

Copyright © 2016 Storgaard et al. This is an open access article distributed under the terms of the creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement All relevant data are within the paper and its Supporting Information files.

Funding: The authors received no specific funding for this work.

Competing Interests: HS has received lecture fees from Advisory Boards of AstraZeneca, Boehringer Ingelheim Pharmaceuticals, and Bristol-Myers Squibb and has participated in Advisory Boards of

Abstract

Objective

Sodium-glucose co-transporter 2 inhibitors (SGLT2-i) are a novel drug class for the treatment of diabetes. We aimed at describing the maximal benefits and risks associated with SGLT2-i for patients with type 2 diabetes.

Design

Systematic review and meta-analysis.

Data Sources and Study Selection

We included double-blinded, randomised controlled trials (RCTs) evaluating SGLT2-i administered in the highest approved therapeutic doses (canagliflozin 300 mg/day, dapagliflozin 10 mg/day, and empagliflozin 25 mg/day) for ≥12 weeks. Comparison groups could receive placebo or oral antidiabetic drugs (OAD) including metformin, sulphonylureas (SU), or dipeptidyl peptidase 4 inhibitors (DPP-4-i). Trials were identified through electronic databases and extensive manual searches. Primary outcomes were glycated haemoglobin A1c (HbA1c) levels, serious adverse events, death, severe hypoglycaemia, ketoacidosis and CVD. Secondary outcomes were fasting plasma glucose, body weight, blood pressure, heart rate, lipids, liver function tests, creatinine and adverse events including infections. The quality of the evidence was assessed using GRADE.

Results

Meta-analysis of 34 RCTs with 9,154 patients showed that SGLT2-i reduced HbA1c compared with placebo (mean difference -0.69%, 95% confidence interval -0.75 to -0.62%). We

Objective:

Determine benefits and risks associated with SGLT2-i for patients with type 2 diabetes mellitus.

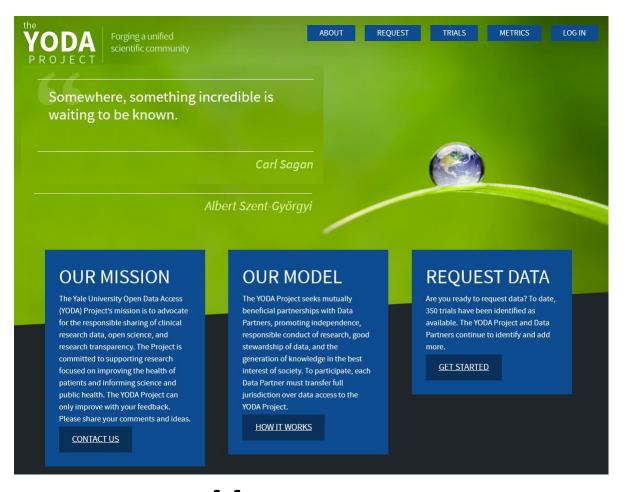
Key Findings:

SGLT2-i reduced HbA1c when compared with placebo.

	Mean Difference	Mean Difference
Canagliflozin versu Bode 2013 Forst 2014 Gonzalez 2013 Inagaki 2013 Rosenstock 2012 Stenløf 2013 Wilding 2013 Subtotal	-0.53 (-0.75, -0.31) -0.77 (-0.90, -0.64) -0.77 (-0.91, -0.63) -0.99 (-1.10, -0.88) -0.70 (-0.92, -0.48) -1.17 (-1.36, -0.98) -0.97 (-1.18, -0.76) -0.85 (-0.99, -0.71)	÷ ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Danagliflasia varav	o nlaceba	
Bailey 2010 Bolinder 2012 Cefalu 2015 Ferrannini 2010 Jabbour 2014 Ji 2014 Kaku 2013 Kaku 2014 LamHeersp 2013 Leiter 2014 List 2009 Mathieu 2015 Matthaei 2015 Rosenstock 2012a Strojek 2011 Wilding 2009 Wilding 2012 Subtotal	-0.80 (-1.09, -0.51) -0.42 (-0.61, -0.23) -0.66 (-0.80, -0.52) -0.66 (-0.95, -0.37) -0.50 (-0.64, -0.36) -0.81 (-1.01, -0.61) -0.81 (-1.00, -0.62) -0.39 (-0.56, -0.22) -0.30 (-0.78, 0.18) -0.50 (-0.64, -0.36) -0.67 (-0.96, -0.38) -0.72 (-0.91, -0.53) -0.70 (-0.97, -0.43) -0.67 (-0.89, -0.45) -0.50 (-0.68, -0.32) -0.70 (-1.08, -0.32) -0.70 (-1.08, -0.32) -0.54 (-0.71, -0.37) -0.60 (-0.67, -0.53)	+++++++++++++
Empagliflozin vers Ferrannini 2013 Haring 2014 Häring 2013 Kadowaki 2014 Kovacs 2014 Roden 2013 Rosenstock 2013 Rosenstock 2014 Rosenstock 2015 Ross 2015 Subtotal	-0.70 (-0.92, -0.48) -0.70 (-0.97, -0.43) -0.70 (-0.98, -0.42) -0.95 (-1.20, -0.70) -0.69 (-0.88, -0.50) -0.86 (-1.01, -0.71) -0.70 (-0.91, -0.49) -0.46 (-0.68, -0.24) -0.60 (-0.88, -0.32) -0.50 (-0.67, -0.33) -0.69 (-0.78, -0.59)	+++++++
Total 100.0%	-0.69 (-0.75, -0.62) _ Favours	-1 -0.5 0 0.5 1 SGLT2-i Favours placebo

Fig 2. Change in glycated haemoglobin: forest plot of randomized controlled trials comparing sodium-glucose co-transporter 2 inhibitors (SGLT2-i) versus placebo. The plot shows subgroups of trials assessing the different SGLT2-i.

Strengthening Science through Data Sharing


- Numerous studies that might not otherwise have been feasible to pursue,
 some of which have impacted health policies and guidelines
- Facilitated direct collaborations with original investigators
- Developed efficiencies (J&J now conducts all trials intending to share)
- Replication studies have supported not undermined original study
- No instances of patient privacy breaches
- No publications of spurious safety findings that received unwarranted attention or disrupted patient care
- No data have been used for commercial or litigious purposes

Challenges Remain

- Broadening awareness of data availability
- Fostering expertise in using data from clinical trials (it's complicated)
- Making older trial data available in a contemporary format
- Adopt data standards, across sponsors, to enable meta-analyses
- Sustainable model that covers the cost of data sharing
- Data Use Agreements ...
- Establish standards: when should data be available, for how long, how to reward those who share data?
- Many large pharma sharing, what about other sponsors?

http://yoda.yale.edu

@YODAProject

We've Learned and Iterated with Experience ...

- Transparency
- Full authority and independence
- Independent Steering Committee
- Public list of available trials
- Supporting documentation
- Research proposal submission and public posting
- Blinded review of requests by the YODA Project and partnering company

- Opportunity for collaboration with partnering company
- Data Use Agreement
- Secure data access or transfer
- Results dissemination
- No data access fee

Benefits of Sharing Early Clinical Research Data

- Ensures all data can be used to inform clinical decisions
- Positions research as a public good
- Respects contributions of participants:
 - maximizing value of collected data, while
 - minimizing duplicative data collection
- Facilitates secondary studies of existing data
- Promotes transparency and reproducibility:
 - sample, design, and analysis

