

MNI ECOSYSTEM

database management & data-sharing

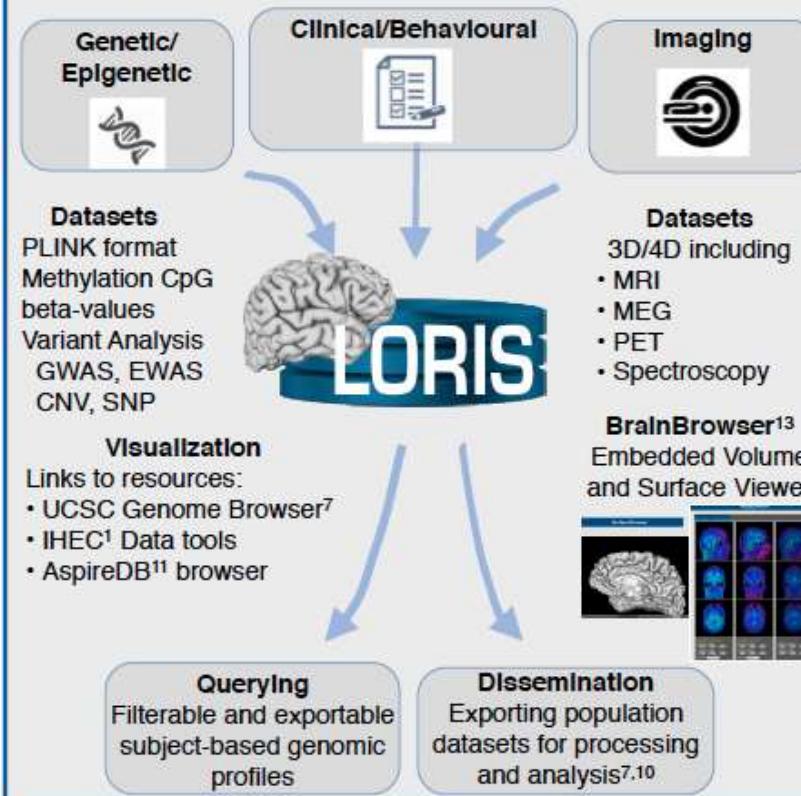
CBRAIN and LORIS are both cloud infrastructures

CBRAIN

- cloud-based web portal
- uses Compute Canada as its cloud backbone
- interoperable with other cloud services
- uses Boutiques to describe pipelines

LORIS

- can be served from any cloud resource
- has built-in API functionality
- incorporates standardization to facilitate cloud usage



Data Types

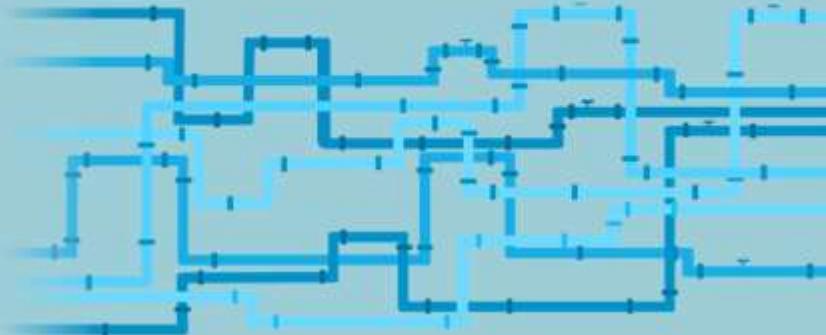
Imaging
Behavior
Genetics
Epigenetics
Tissue samples

Methods

LORIS' Genomic Browser embeds display and download tools for multiple formats of analyzed genomic data, facilitating large-scale data acquisition, dissemination and analysis in imaging-genetics research. Any format of derived genetic datasets, including metadata about genetic data collection and analysis, can be loaded and seamlessly linked with multi-modal subject data in LORIS.

International Partners

For list of 400+ measures: <https://sites.google.com/site/lorisinstrumentlist/>


cbrain

FEATURES PROJECTS ABOUT GET STARTED LOGIN

cbrain

CBRAIN is an infrastructure that connects researchers and data from all walks of science to high performance and cloud computing in an easy to manage, reproducible, and user-friendly manner.

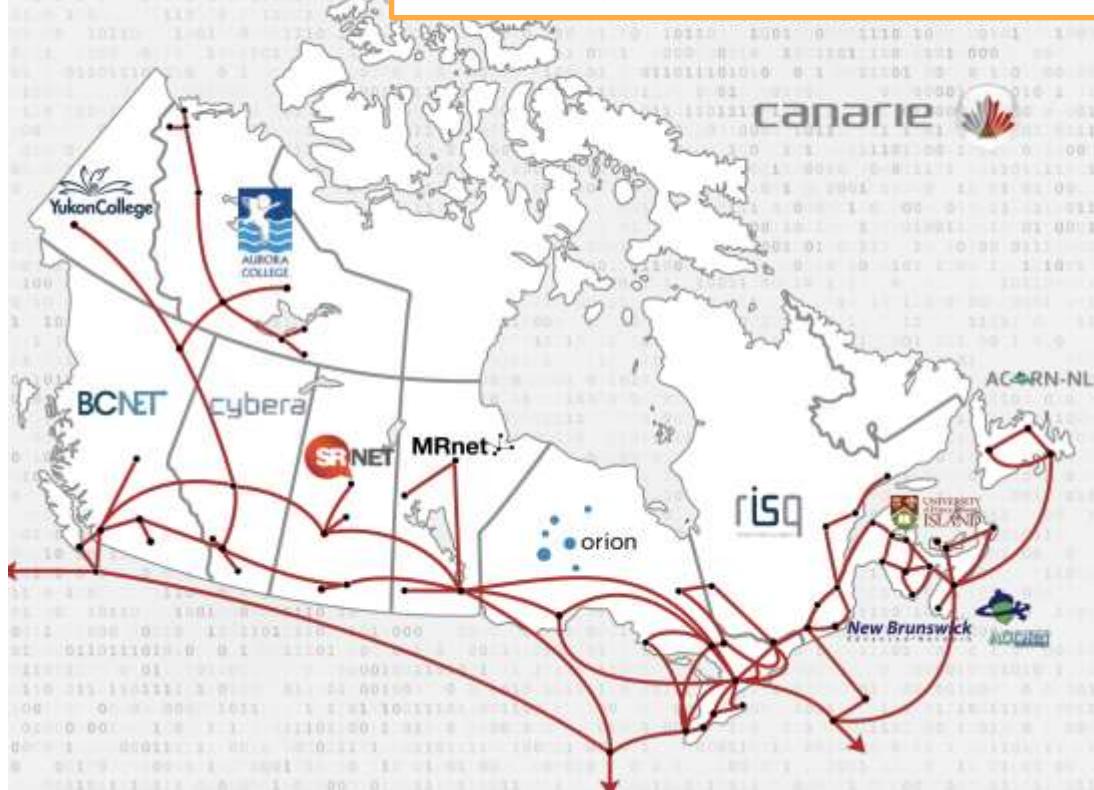
GET STARTED

Accessibility

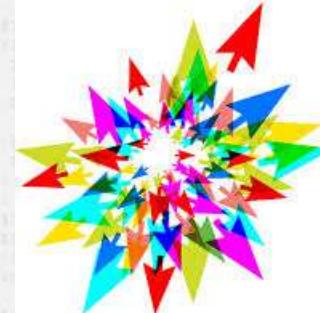
Ability to work across multiple machines and filesystems.

Efficiency

Quickly moving compute and data behind the scenes.


Reproducibility

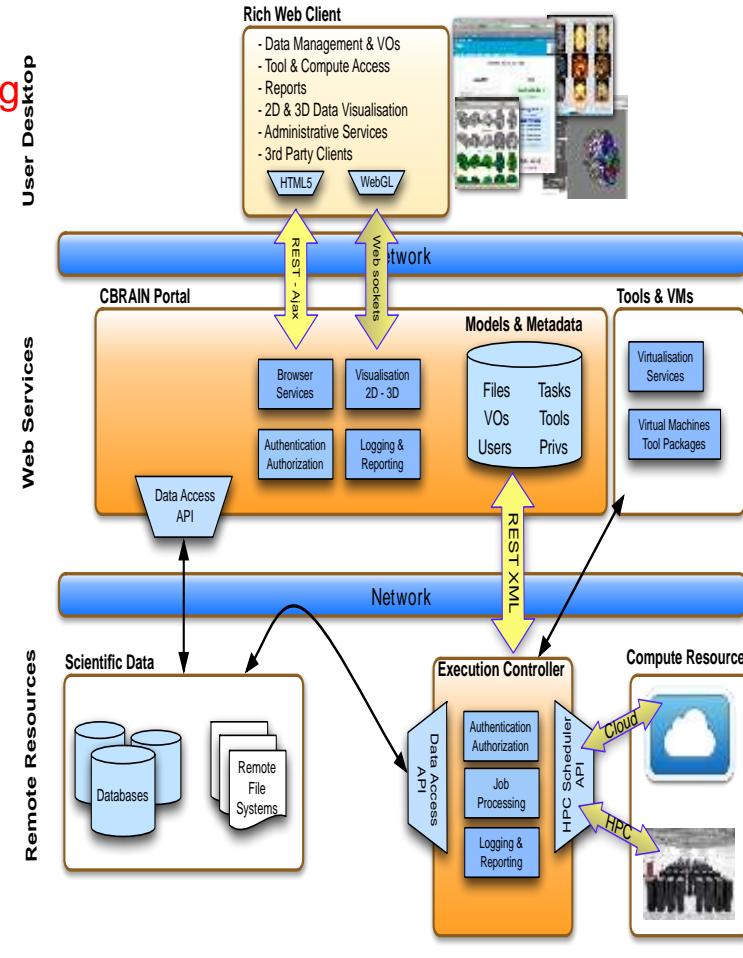
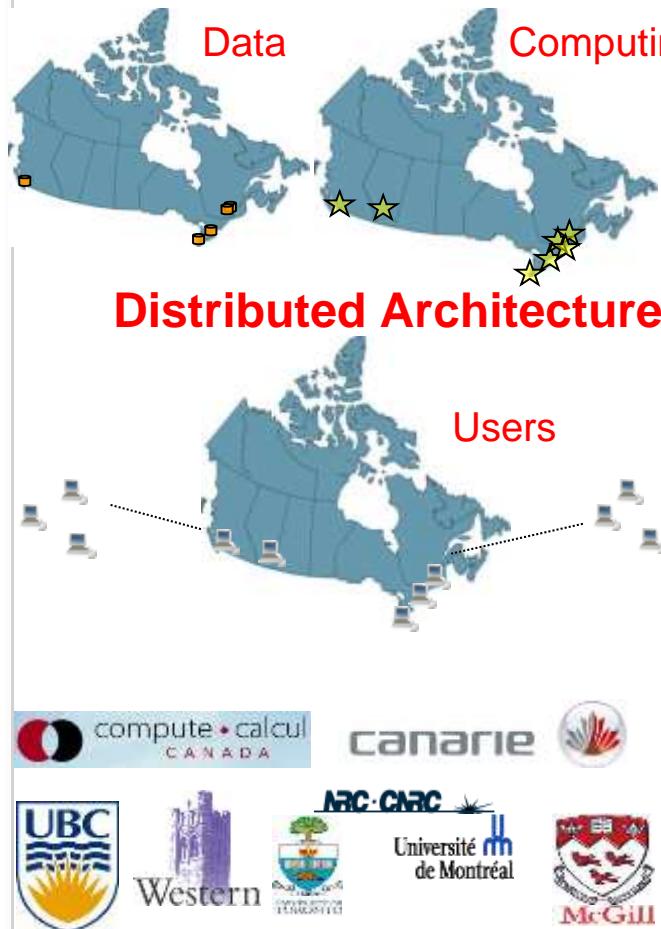
Strict standards and pipelines allow for reproducible results.


CBRAIN National HPC Integration (300,000 processors)

cbRAIN

Computational Resources provided by Compute Canada
~7 million CPU hours per year
8 PB of storage

compute | calcul
canada | canada



CBRAIN / Texas Advanced Computing Center (TACC) University of Texas at Austin

Stampede2

Largest supercomputer in the world for academic science
18 Petaflops (~370,000 cores)

CBRAIN Canadian Distributed Neuroinformatics Platform

- Fully-automated integration of applications
- Deployment on heterogeneous computing resources through containers
- Comprehensive input validation through a strict JSON schema
- Flexible application description through a rich JSON schema

TECHNICAL NOTE

Boutiques: a flexible framework to integrate command-line applications in computing platforms

Tristan Glatard^{1,*}, Gregory Kiar^{2,3}, Tristan Aumentado-Armstrong^{2,3}, Natacha Beck^{2,3}, Pierre Bellec⁴, Rémi Bernard^{2,3}, Axel Bonnet⁵, Shawn T Brown^{2,3}, Sorina Camarasu-Pop⁵, Frédéric Cervenansky⁵, Samir Das^{2,3}, Rafael Ferreira da Silva⁶, Guillaume Flandin⁷, Pascal Girard⁵, Krzysztof J. Gorgolewski⁸, Charles R.G. Guttmann⁹, Valérie Hayot-Sasson¹, Pierre-Olivier Quirion⁴, Pierre Rioux^{2,3}, Marc-Étienne Rousseau¹⁰ and Alan C. Evans^{2,3}

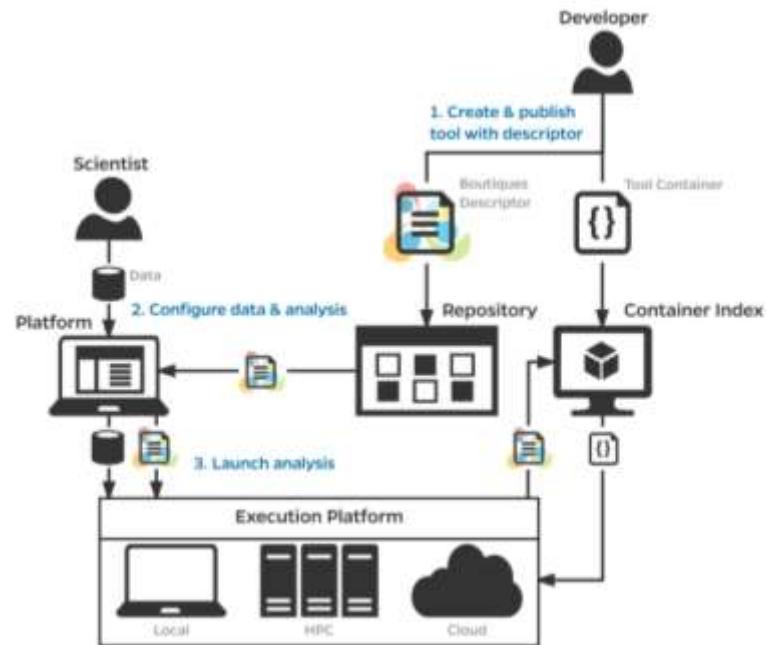
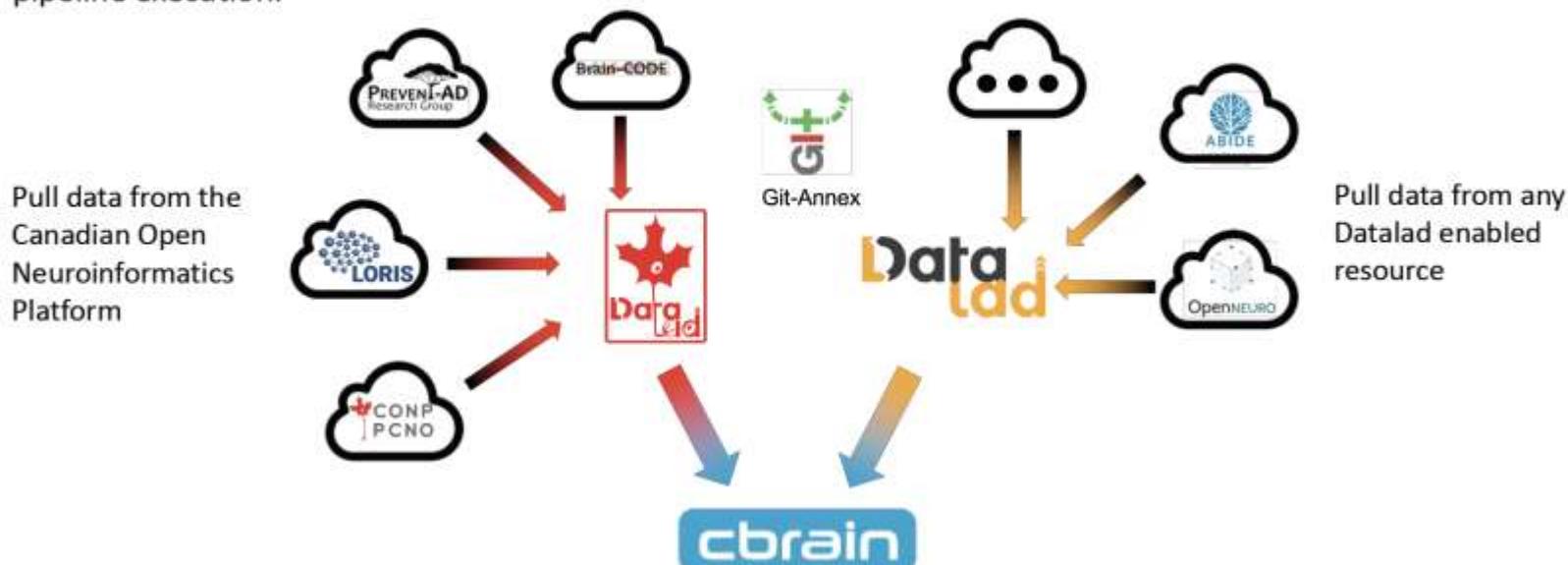


Figure 1. Publication, integration, and execution of applications with Boutiques.

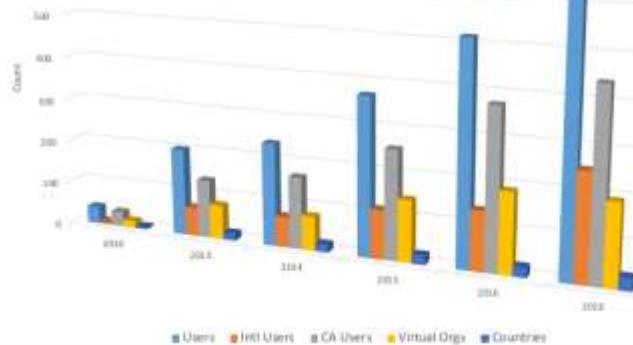
Pipelines in CBRAIN


CBRAIN has over 50 execution pipelines available to users

Software	Pipelines
Civet 2.1	Civet Quality Control Tool, Civet Structural Processing Pipelines, NuCorrect
FSL 5.0	FslBedpostx, FslBet, FslFast, FslFirst, FslFlirt, FslAnat, FslRandomise, FslMelodic, FslProbboxX, FslProbboxX2, FslSub, FslFeat
FreeSurfer 6.0.0	ReconAll, ReconAll.ongl
MINCTools	Minccoverage, Minmac, Mincpik, Mincresample, Mnc2nii, Nii2mnc, Dcm2mnc, MINCBet, MincConvert, Dcm2nii
Ants 2.1.0	AntsRegistration
Niak	FRMI/T1 Preprocessing
HERMES	Supply Chain Simulation Model
PSOM	PSOM Worker Launching
INCA-AROMA	Functional MRI Pipeline
NDMG	Connectome Estimation
QEEG	EEG / MEG Analysis
pCEV	Principal Component analysis

Datalad Integration

Datalad is a Python tool that builds on top of git-annex and extends it with an intuitive command-line interface to enable transparently operating and managing data.


A CBRAIN Datalad DataProvider allows data from any Datalad repository to be imported into CBRAIN for pipeline execution.

If data is in Datalad, it is now automatically available in CBRAIN!

cbRAIN

CBRAIN Worldwide User Community

Users

- > 900 Users (100s active at a given time)
- 193 Sites from 30 different countries
- > 30 Million CPU Hours served
- > 1 Million Files (100s TB of data)

Development Team

- 5 Full Time Developers

Support

- Canadian Foundation for Innovation
- CANARIE
- Healthy Brains for Healthy Lives (HBHL)
- Canadian Open Neuroscience Platform (CONP)
- Canada/Cuba/China Axis (CCCAxis)

Collaborations

- Big Data Infrastructures in Neuroinformatics (Glatard)
- CARMIN Project
- Compute Canada
- Texas Advanced Computing Center. (TACC)
- Pittsburgh Supercomputing Center (PSC)
- PERFORM Centre
- Human Brain Project
- OpenNeuro Platform

Become a CBRAIN User

- Sign Up for an account (completely free!)
 - <http://portal.cbrain.mcgill.ca>

compute
canada | calcul
canada

MNI data-sharing and processing ecosystem

frontiers in
NEUROINFORMATICS

TECHNICAL REPORT
Volume 10 | Article 3022
July 2018 | doi:10.3389/fnins.2018.003022

frontiers
in
neuroinformatics

Volume 10 | Article 3023
July 2018 | doi:10.3389/fnins.2018.003023

LORIS: a web-based data management system for multi-center studies

Samir Das^{1,2*}, Alex P. Zijdenbos³, Jonathan Narins⁴, Davis Vito⁴ and Alan C. Evans¹

¹ Montreal Neurological Institute, McGill University, Montreal, Canada
² Diagnostic Radiology, McGill, Canada
³ Radiology, Columbia, New York, NY, USA
⁴ White-McGill Center for Neuroimaging, Montreal, Quebec, Canada

Abstract for
John Evans, University of
Catharine Aguirre, UCR

Received by
David S. Witten, University of
Massachusetts Medical School
Joseph A. Toga, New York
Howard, Wisconsin, USA

Correspondence
Samir Das, Montreal Neurological
Institute, McGill University, 3655
University Street, Montreal, QC
H3A 2B4, Canada
e-mail: samir@mcgill.ca

Longitudinal Online Research and Imaging System (LORIS) is a modular and extensible web-based data management system that integrates all aspects of a multi-center study, from heterogenous data acquisition imaging, clinical, behavioral, and genetic to storage, processing, and ultimately dissemination. It provides a secure, user-friendly, and streamlined platform to automate the flow of clinical trials and complex multi-center studies. A subcomponent, internal organization allows researchers to capture and subsequently extract all information, longitudinal or cross-sectional, from any subset of the study cohort. Extensive programming and quality control procedures, security data management, and auditability are built into the system. LORIS is a centerpiece in a network of a number of interconnected

Keywords: data management, longitudinal, LORIS, research, study, web-based

A Serverless Tool for Platform Agnostic Computational Experiment Management

Gregory Kiar^{1,2*}, Steven T. Brown³, Tristan Glatard⁴, and Alan C. Evans¹

¹ Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada

² Neuroinformatics, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
³ Diagnostic Radiology, Columbia, New York, NY, USA
⁴ White-McGill Center for Neuroimaging, Montreal, Quebec, Canada

Abstract for
John Evans, University of
Catharine Aguirre, UCR

Received by
David S. Witten, University of
Massachusetts Medical School
Joseph A. Toga, New York
Howard, Wisconsin, USA

Correspondence
Gregory Kiar, Montreal Neurological
Institute, McGill University, 3655
University Street, Montreal, QC
H3A 2B4, Canada
e-mail: gkiar@mcgill.ca

Keywords: data management, experiment, platform, serverless, tool

The MNI data-sharing and processing ecosystem

Samir Das^{1,2*}, Tristan Glatard^{3,4}, Leigh C. Mackay⁵, Cedric Maturi⁶, Christine Rogers⁷, Marc L'Ecuyer-Morin⁸, Rehaneh Kavousi⁹, David MacLaren¹⁰, Zia Mekhora¹¹, Ruth Gersbach¹², Leslie Lestou¹³, Philippe Bourassa¹⁴, Zouhaier Souissi¹⁵, Supratik Kalioti-Makris¹⁶, Lucien Nish¹⁷, T. Murray¹⁸, Alan C. Evans¹

¹ Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
² Diagnostic Radiology, Columbia, New York, NY, USA
³ White-McGill Center for Neuroimaging, Montreal, Quebec, Canada
⁴ Neuroinformatics, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada

⁵ MNI, Diagnostic Radiology, Columbia, New York, NY, USA
⁶ MNI, Diagnostic Radiology, Columbia, New York, NY, USA
⁷ MNI, Diagnostic Radiology, Columbia, New York, NY, USA
⁸ MNI, Diagnostic Radiology, Columbia, New York, NY, USA
⁹ MNI, Diagnostic Radiology, Columbia, New York, NY, USA
¹⁰ MNI, Diagnostic Radiology, Columbia, New York, NY, USA
¹¹ MNI, Diagnostic Radiology, Columbia, New York, NY, USA
¹² MNI, Diagnostic Radiology, Columbia, New York, NY, USA
¹³ MNI, Diagnostic Radiology, Columbia, New York, NY, USA
¹⁴ MNI, Diagnostic Radiology, Columbia, New York, NY, USA
¹⁵ MNI, Diagnostic Radiology, Columbia, New York, NY, USA
¹⁶ MNI, Diagnostic Radiology, Columbia, New York, NY, USA
¹⁷ MNI, Diagnostic Radiology, Columbia, New York, NY, USA
¹⁸ MNI, Diagnostic Radiology, Columbia, New York, NY, USA

Open-source, documented code repositories

- CBRAIN
- LORIS

<https://github.com/aces/cbrain>
<https://github.com/aces/Loris>

frontiers in
NEUROINFORMATICS

TECHNICAL REPORT
Volume 10 | Article 3024
July 2018 | doi:10.3389/fnins.2018.003024

BrainBrowser: distributed, web-based neurological data visualization

Samir Das¹, Klaesler Lecours Blaauw^{2,3*}, Christine Rogers⁴, Caroline Malouet^{5,6}, François Chouinard-Duverne⁷, Nathalie Gosselin^{8,9}, Pierre Roussin¹⁰, Shaeen T. Brown¹¹, Zia Mekhora¹², Sophie Zeeb¹³, Victoria Fung¹⁴, Marie Forney¹⁵, Karen J. O'Donnell¹⁶, Kristen Clark¹⁷, Michael J. Meaney^{18,19}, Celia M. F. Greenwood²⁰ and Alan C. Evans¹

¹ Montreal Neurological Institute, McGill University, Montreal, QC, Canada
² Diagnostic Radiology, Columbia, New York, NY, USA
³ Diagnostic Radiology, Columbia, New York, NY, USA
⁴ Diagnostic Radiology, Columbia, New York, NY, USA
⁵ Diagnostic Radiology, Columbia, New York, NY, USA
⁶ Diagnostic Radiology, Columbia, New York, NY, USA
⁷ Diagnostic Radiology, Columbia, New York, NY, USA
⁸ Diagnostic Radiology, Columbia, New York, NY, USA
⁹ Diagnostic Radiology, Columbia, New York, NY, USA
¹⁰ Diagnostic Radiology, Columbia, New York, NY, USA
¹¹ Diagnostic Radiology, Columbia, New York, NY, USA
¹² Diagnostic Radiology, Columbia, New York, NY, USA
¹³ Diagnostic Radiology, Columbia, New York, NY, USA
¹⁴ Diagnostic Radiology, Columbia, New York, NY, USA
¹⁵ Diagnostic Radiology, Columbia, New York, NY, USA
¹⁶ Diagnostic Radiology, Columbia, New York, NY, USA
¹⁷ Diagnostic Radiology, Columbia, New York, NY, USA
¹⁸ Diagnostic Radiology, Columbia, New York, NY, USA
¹⁹ Diagnostic Radiology, Columbia, New York, NY, USA
²⁰ Diagnostic Radiology, Columbia, New York, NY, USA

Integration of "omics" Data and Phenotypic Data Within a Unified Extensible Multimodal Framework

Samir Das^{1,2*}, Klaesler Lecours Blaauw^{2,3*}, Christine Rogers⁴, Caroline Malouet^{5,6}, François Chouinard-Duverne⁷, Nathalie Gosselin^{8,9}, Pierre Roussin¹⁰, Shaeen T. Brown¹¹, Zia Mekhora¹², Sophie Zeeb¹³, Victoria Fung¹⁴, Marie Forney¹⁵, Karen J. O'Donnell¹⁶, Kristen Clark¹⁷, Michael J. Meaney^{18,19}, Celia M. F. Greenwood²⁰ and Alan C. Evans¹

¹ MNI, Diagnostic Radiology, Columbia, New York, NY, USA
² Diagnostic Radiology, Columbia, New York, NY, USA
³ Diagnostic Radiology, Columbia, New York, NY, USA
⁴ Diagnostic Radiology, Columbia, New York, NY, USA
⁵ Diagnostic Radiology, Columbia, New York, NY, USA
⁶ Diagnostic Radiology, Columbia, New York, NY, USA
⁷ Diagnostic Radiology, Columbia, New York, NY, USA
⁸ Diagnostic Radiology, Columbia, New York, NY, USA
⁹ Diagnostic Radiology, Columbia, New York, NY, USA
¹⁰ Diagnostic Radiology, Columbia, New York, NY, USA
¹¹ Diagnostic Radiology, Columbia, New York, NY, USA
¹² Diagnostic Radiology, Columbia, New York, NY, USA
¹³ Diagnostic Radiology, Columbia, New York, NY, USA
¹⁴ Diagnostic Radiology, Columbia, New York, NY, USA
¹⁵ Diagnostic Radiology, Columbia, New York, NY, USA
¹⁶ Diagnostic Radiology, Columbia, New York, NY, USA
¹⁷ Diagnostic Radiology, Columbia, New York, NY, USA
¹⁸ Diagnostic Radiology, Columbia, New York, NY, USA
¹⁹ Diagnostic Radiology, Columbia, New York, NY, USA
²⁰ Diagnostic Radiology, Columbia, New York, NY, USA

TECHNICAL NOTE

Boutiques: a flexible framework to integrate command-line applications in computing platforms

Tristan Glatard^{1,2*}, Gregory Kiar^{2,3}, Trista Aumentado-Armstrong^{2,3}, Natacha Beck^{1,2}, Pierre Bellec^{2,3}, Rémi Bernard^{2,3}, Axel Bonnet^{2,3}, Shawn T. Brown^{2,3}, Sorina Camarasu-Pop², Frédéric Cervenansky², Samir Das^{2,3}, Rafael Ferreira da Silva^{2,3}, Guillaume Flandin², Pascal Girard², Krzysztof Gorolewski^{2,3}, Charles R.G. Guttmann², Valérie Haout-Sasson², Leigh Fenton^{1,2}, Michael J. Meaney^{1,2}, Zia Mekhora^{1,2}, Sophie Zeeb^{1,2}, Victoria Fung^{1,2}, Marie Forney^{1,2}, Karen J. O'Donnell^{1,2}, Kristen Clark^{1,2}, Michael J. Meaney^{1,2}, Celia M. F. Greenwood^{1,2} and Alan C. Evans^{1,2}

¹ MNI, Diagnostic Radiology, Columbia, New York, NY, USA
² Diagnostic Radiology, Columbia, New York, NY, USA
³ Diagnostic Radiology, Columbia, New York, NY, USA

Cyberinfrastructure for Open Science at the Montreal Neurological Institute

Samir Das^{1,2*}, Kristen Blaauw¹, Christine Rogers³, John Soglio⁴, Santiago Pons^{1,5}, Leigh MacLaren⁶, Zia Mekhora⁷, Caroline Malouet⁸, Nathalie Gosselin⁹, Jonathan Stirling¹⁰, Marc L'Ecuyer-Morin¹¹, David MacLaren¹², Pierre Roussin¹³, Pierre Aloush¹⁴, Cedric Maturi¹⁵, Xavier Lescure-Blaauw¹⁶, Sophie Zeeb¹⁷, René Jolani¹⁸, Pierre Aloush¹⁹, Zia Mekhora²⁰, Sophie Zeeb²¹, Sophie M. Durcan²², Valerie Fung²³, René Jolani²⁴, Jennifer Morris²⁵, Michael Degroot²⁶, Thomas M. Durcan²⁷, Tara Campbell²⁸, Jeremy Morris²⁹, Alan Siegler³⁰, D. Louis Collins³¹, Jason Remouchamps³², Amit Dan³³, Edward A. Fawcett³⁴, Sylvain Baile³⁵, Day Routhier³⁶ and Alan C. Evans^{1,2}

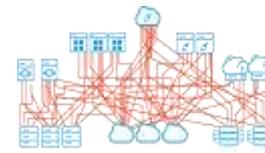
¹ MNI, Diagnostic Radiology, Columbia, New York, NY, USA
² Diagnostic Radiology, Columbia, New York, NY, USA
³ Diagnostic Radiology, Columbia, New York, NY, USA
⁴ Diagnostic Radiology, Columbia, New York, NY, USA
⁵ Diagnostic Radiology, Columbia, New York, NY, USA
⁶ Diagnostic Radiology, Columbia, New York, NY, USA
⁷ Diagnostic Radiology, Columbia, New York, NY, USA
⁸ Diagnostic Radiology, Columbia, New York, NY, USA
⁹ Diagnostic Radiology, Columbia, New York, NY, USA
¹⁰ Diagnostic Radiology, Columbia, New York, NY, USA
¹¹ Diagnostic Radiology, Columbia, New York, NY, USA
¹² Diagnostic Radiology, Columbia, New York, NY, USA
¹³ Diagnostic Radiology, Columbia, New York, NY, USA
¹⁴ Diagnostic Radiology, Columbia, New York, NY, USA
¹⁵ Diagnostic Radiology, Columbia, New York, NY, USA
¹⁶ Diagnostic Radiology, Columbia, New York, NY, USA
¹⁷ Diagnostic Radiology, Columbia, New York, NY, USA
¹⁸ Diagnostic Radiology, Columbia, New York, NY, USA
¹⁹ Diagnostic Radiology, Columbia, New York, NY, USA
²⁰ Diagnostic Radiology, Columbia, New York, NY, USA
²¹ Diagnostic Radiology, Columbia, New York, NY, USA
²² Diagnostic Radiology, Columbia, New York, NY, USA
²³ Diagnostic Radiology, Columbia, New York, NY, USA
²⁴ Diagnostic Radiology, Columbia, New York, NY, USA
²⁵ Diagnostic Radiology, Columbia, New York, NY, USA
²⁶ Diagnostic Radiology, Columbia, New York, NY, USA
²⁷ Diagnostic Radiology, Columbia, New York, NY, USA
²⁸ Diagnostic Radiology, Columbia, New York, NY, USA
²⁹ Diagnostic Radiology, Columbia, New York, NY, USA
³⁰ Diagnostic Radiology, Columbia, New York, NY, USA
³¹ Diagnostic Radiology, Columbia, New York, NY, USA
³² Diagnostic Radiology, Columbia, New York, NY, USA
³³ Diagnostic Radiology, Columbia, New York, NY, USA
³⁴ Diagnostic Radiology, Columbia, New York, NY, USA
³⁵ Diagnostic Radiology, Columbia, New York, NY, USA
³⁶ Diagnostic Radiology, Columbia, New York, NY, USA

National Neuroinformatics Framework for Canadian Consortium on Neurodegeneration in Aging (CCNA)


Zia Mekhora^{1,2*}, Samir Das^{1,2}, Rita Abu-Hamdiya^{1,2}, Mouna Zell-Harabi^{1,2}, David Blaauw^{1,2}, Jennifer Calligaris^{1,2}, Charlie Henni-Belliveau^{1,2}, Jing-Jie Fu^{1,2}, Ming Tang^{1,2}, Leigh Fenton^{1,2}, Tara Campbell^{1,2}, Derek Lu^{1,2}, Pierre-Emmanuel Marin^{1,2}, Victor Whitcher^{1,2}, Howard Cheung^{1,2} and Alan C. Evans^{1,2}

¹ MNI, Diagnostic Radiology, Columbia, New York, NY, USA
² Diagnostic Radiology, Columbia, New York, NY, USA

Canadian Open Neuroscience Platform


<https://conp.ca/>

Organizational Design

Scalability

Interoperability

Analysis Packages

Training

International Partnerships

Ethics and Data Governance

Communications Platform

Public Release of Prospective AD cohort

Global Brain Consortium

Focused on **EEG**, behaviour, interoperability, outreach to LMIC

GBC workshop in Q2, 2019 (~50 people)

World Health Organization (OHBM-WHO Geneva meeting, 2017)

GBC Steering committee

Gary Egan
Monash U.
Australian
Brain Alliance

Maryann Martone
UCSD
INCF, NIF

Jean-Baptiste Poline
McGill U.
CONP, INCF

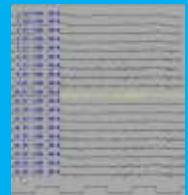
Katrin Amunts
Julich
HBP

Alan Evans
McGill U.
CONP, INCF

Jane Roskams
UBC, CONP,
Cascadia Data
Alliance

Pedro Valdez-Sosa
UESTC/CNEURO
China/Cuba/CCC

Bartha Knoppers
McGill U.
CONP, GA4GH



Paul Thompson
USC
ENIGMA

Greg Farber
NIH
US Brain Initiative

4D spatiotemporal dynamics

LMIC applications

Interoperability with the cloud is key

- Our platforms have the capability to already interact with the cloud

Fully documented APIs are imperative !

- Our platforms have fully documented RESTful APIs
- Using our APIs can fully interact with the cloud for storage

Standardization is key to facilitating cloud based initiatives

- Independent of where data is stored, but needs to be done

Using cloud resources can be \$\$ (i.e. redundant data transfers)

- Depends on the use-case (cost of maintaining storage vs. cloud)
- Once we get to the PB level, cloud storage becomes attractive
- Neuroimaging datasets are made up many small files (ideal for object stores)

Containerization is a best practice (e.g. Docker, Singularity)

- Can take advantage of more scalable technologies (e.g. Kubernetes)

Neuroscience workflows are amenable to cloud computing

- Many small memory (4-16GB) naturally parallel processes
- Requires a large amount of data movement and orchestration

Having data storage close to processing can be efficient

- If cloud computing is used, data transfer will be cheaper
- If compute is outside the cloud, transfer much more expensive

Important
cloud
considerations

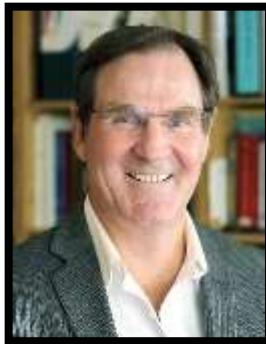
Potential cloud risks and limitations

Security is outsourced to provider to some degree

- Cloud providers provide differing levels of secured storage

Privacy might be in the fine print

- Must be careful the provider doesn't suddenly own data (e.g. Dropbox)


Prohibitively expensive for very large memory workflows

- Still more cost-effective to perform on traditional HPC resources

Cost structure is much more complex

- Users left to their own devices could rack up large bills
- Poorly implemented infrastructures could lead to large costs for users
- Funding agencies will now have every grant paying for computing
- Should explore large cloud purchase for the whole community

CBRAIN Team

Alan Evans

Shawn T. Brown

Pierre Rioux

Reza Adalat

Natasha Beck

Darcy Quesnel

Najma Mahani

Tristan Glatard

Candice Czech

Serge Boroday

Xavier Leours-Boucher

Gregory Kiar