
Session IV: Cross-Species Comparison of Preimplantation Chromosomal Instability

Shawn L. Chavez, Ph.D

Workshop on Mammalian Embryo Model Systems 1-17-20

Assistant Professor

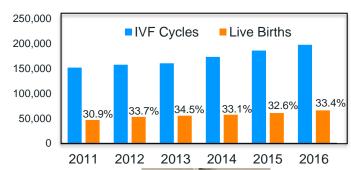
Division of Reproductive & Developmental Sciences,

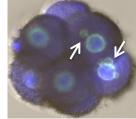
Oregon National Primate Research Center;

Departments of Obstetrics & Gynecology; Physiology & Pharmacology; Biomedical Engineering

Oregon Health & Science University

The use of human IVF is increasing, but still only ~30-35% successful


Since the advent of human IVF over 40 years ago, IVF success as measured by live birth(s) has not increased beyond 30-35%.

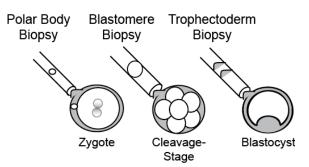

(http://www.sart.org; cdc.gov/art)

 A leading cause of IVF failure and embryo loss is the presence of aneuploidy, which effects ~50-80% of cleavage-stage human embryos.

(Vanneste et al., 2009; Johnson et al., 2010; Chavez et al., 2012; Chow et al., 2014; Huang et al., 2015; McCoy et al., 2015)

 While many will arrest (~50% or more), aneuploid embryos can still form blastocysts and may be morphologically indistinguishable from chromosomally normal (euploid) embryos.

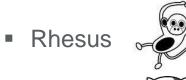
Both meiotic and mitotic errors contribute to aneuploidy


- Until relatively recently, chromosomal mis-segregation in oocytes during meiosis was considered the primary reason for aneuploidy, <u>especially in cases of advanced</u> maternal age (~90% of meiotic errors).
- Chromosomal mis-segregation during mitosis occurs at an equal or greater frequency than meiotic errors and

 Preimplantation genetic testing for aneuploidy (PGT-A): detects only meiotic errors, is invasive, suffers from mosaicism, and/or may require extended culture.

irrespective of maternal age.

Aneuploidy frequency in early


OHSU	cleavage	e-stage embryos	across mammals
Mamma	alian Species	Aneuploidy Frequency	Reference(s)

Human

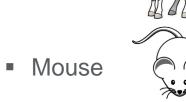
~50-80%

Vanneste et al., 2009; Johnson et al., 2010;

~74%

Daughtry et al., 2019

~32-85%* (*in vitro matured eggs)


Cow

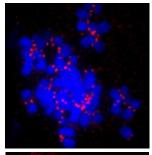
Horse

?%* (*in vitro matured eggs)

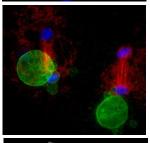
~1-4%

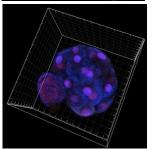
Lightfoot et al., 2006; Macaulay et al., 2015; Treff et al., 2016; Bolton et al., 2016

Destouni et al., 2016; Hornak et al., 2016;

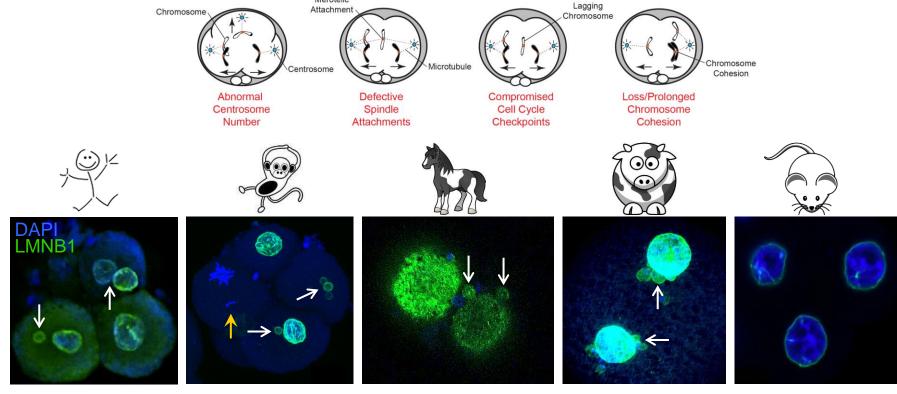

Tsuiko et al., 2017, Brooks et al., submitted

Chavez et al., 2012; Chow et al., 2014;


Huang et al., 2015; McCoy et al., 2015


Remaining questions regarding an euploidy in preimplantation embryos

 Why is there such a high incidence of aneuploidy in preimplantation embryos?
 (underlying mechanisms)


 Can live-cell imaging with or without labeled markers be used to assess embryo developmental potential?
 (nuclear and cytoskeletal structure)

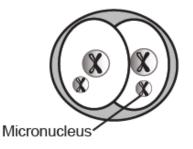
 Are there corrective means to overcome aneuploidy generation during preimplantation development?
 (naturally or therapeutically)

Mechanisms of mitotic mis-segregation and sequestering by micronuclei

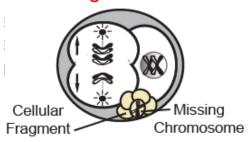
Chavez *et al.*, 2012

Daughtry et al., 2019

Brooks *et al.*, 2019


Brooks et al., submitted

Chavez et al., 2012

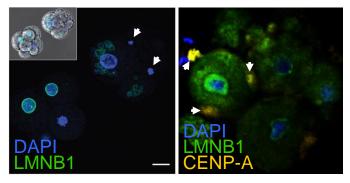

Potential fate of chromosomecontaining micronuclei

Unilateral Inheritance

Nuclear **Fusion** Nuclear Primary Envelope Nucleus Breakdown

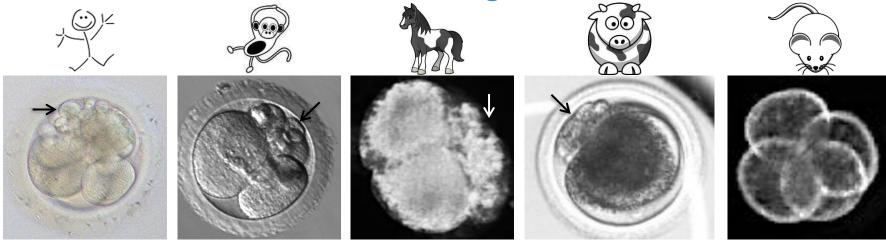
Cellular Fragmentation

- Bovine embryos (early cleavage)
 - Mouse embryos (morula stage)
- Cancer cells


Bovine embryos (early cleavage)

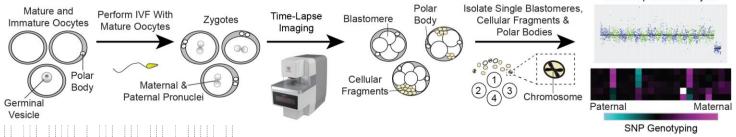
Cancer cells

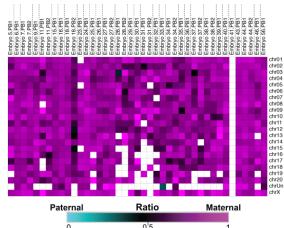
(Krasta et al., 2012; Chavez et al., 2012; Zhang et al., 2015; Vázquez-Diez et al., 2016; Liu et al., 2018; Daughtry et al., 2019; Brooks *et al.*, submitted)

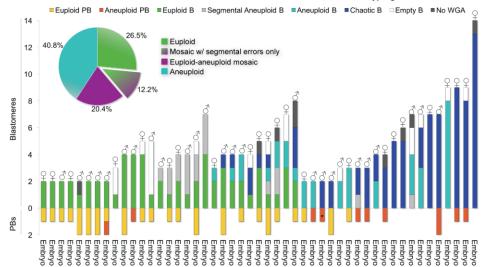

Rhesus

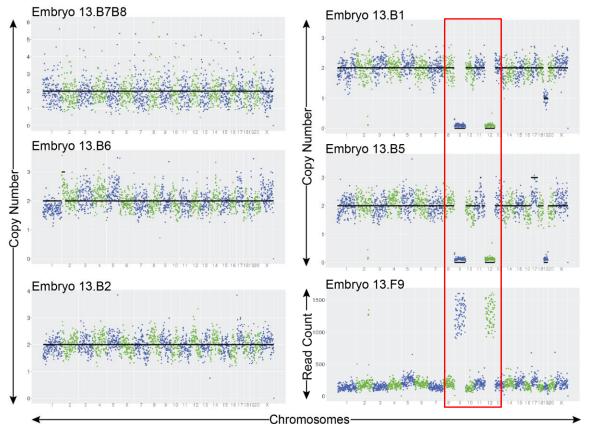
Human

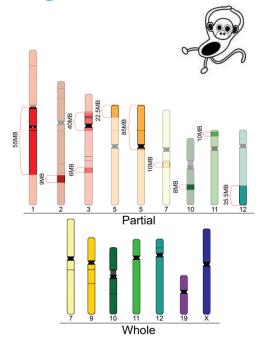
Micronuclei formation is often associated with cellular fragmentation


- Observed in ~50% or more of primate and equine embryos (15-20% of bovine embryos)
- Distinct from DNA fragmentation following cell death late in preimplantation development
- Evidence from multiple mammalian species, including human, that it occurs in vivo
- Fragmented human embryos often exhibit chromosome loss from blastomeres

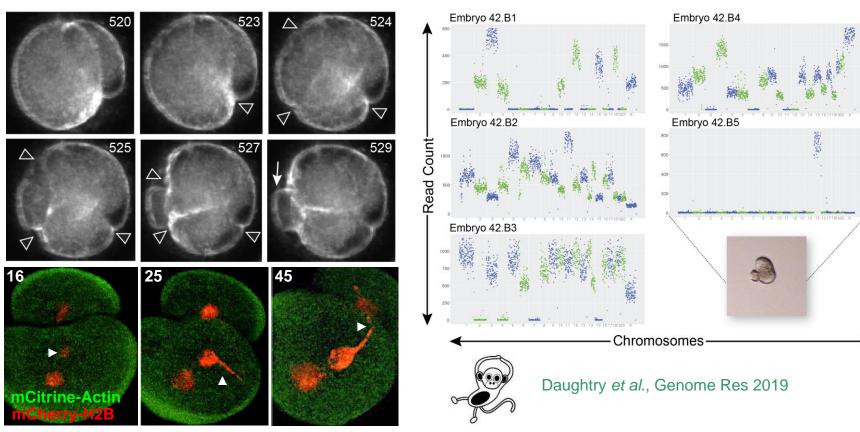

(Pereda and Croxatto, 1978; Buster et al., 1985; Dozortsev et al., 1998; Antczak and Van Blerkom, 1999; Alikani, M. et al., 1999; Viuff et al., 2001; Hardy et al., 2001; Rambags et al., 2005; Chavez et al., 2012)


Assessment of aneuploidy and chromosome loss via fragmentation in rhesus embryos

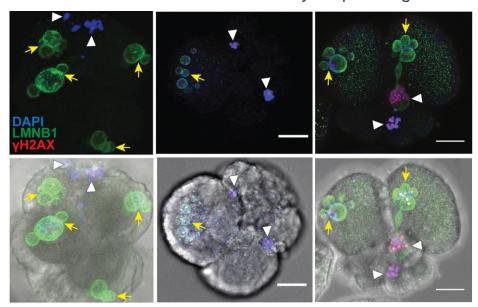


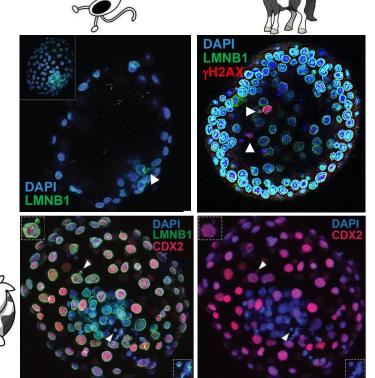


Chromosomes lost from blastomeres are contained within cellular fragments



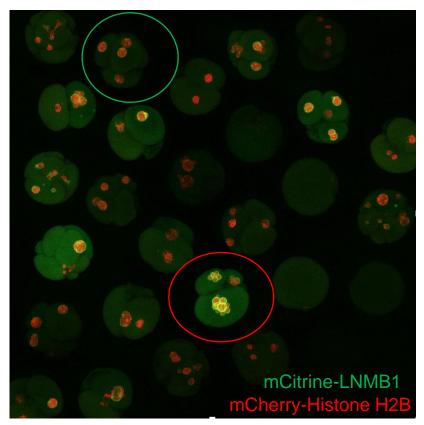
Daughtry *et al.*, Genome Res 2019

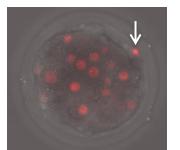

Multipolar divisions often lead to chromosome loss and chaotic aneuploidy

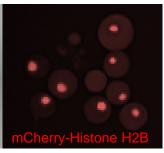


DNA damage is observed in chromosomecontaining cellular fragments and micronuclei

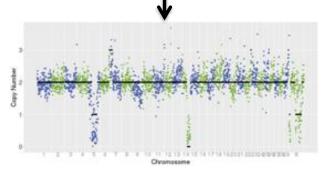
~18% of rhesus embryos had chromosomecontaining fragments, but only ~6% of all fragments contained DNA detectable by sequencing







Fluorescent live-cell imaging of cleavagestage embryos for DNA detection



Brooks, Daughtry et al., unpublished

Chromosomally mosaic embryos can still lead to the birth of healthy offspring

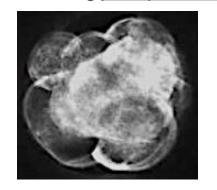
Healthy Babies after Intrauterine Transfer of Mosaic Aneuploid Blastocysts

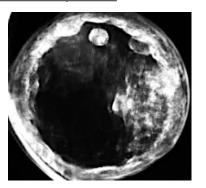
N Engl J Med 2015; 373:2089-2090 | November 19, 2015 | DOI: 10.1056/NEJMc1500421

Hum Genet DOI 10.1007/s00439-017-1797-4

Analysis of implantation and ongoing pregnancy rates following the transfer of mosaic diploid–aneuploid blastocysts

Gleicher et al. Reproductive Biology and Endocrinology (2016) 14:54 DOI 10.1186/s12958-016-0193-6


Reproductive Biology and Endocrinology


CrossMark

Accuracy of preimplantation genetic screening (PGS) is compromised by degree of mosaicism of human embryos

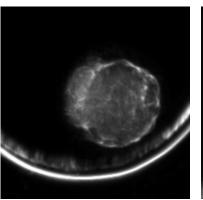
Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential Are there selective growth advantages for euploid cells and/or mechanism(s) for the elimination of aneuploid cells during preimplantation development?

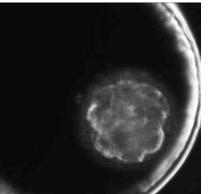
Blastocyst formation rate

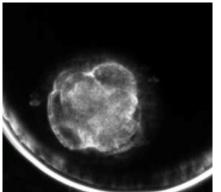
54.3% (N=50/92)

Euploid embryos

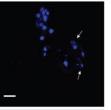
26.5% (N=13/49)

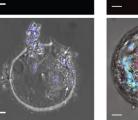

Mosaic embryos

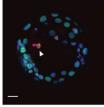

32.6% (N=16/49)



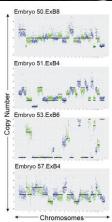
Blastomere and cellular fragment exclusion from blastocysts

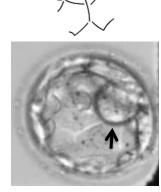


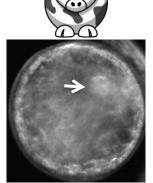


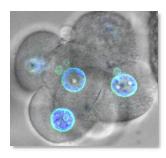





~16% of rhesus blastocysts exhibited fragment/blastomere exclusion, which may represent at least one mechanism to overcome aneuploidy during preimplantation development







Summary & Conclusions

- Rhesus preimplantation embryos have an equal incidence of micronucleation, aneuploidy*, and cellular fragmentation as human embryos (*maternal age-related aneuploidy still needed).
- Equine and bovine embryos share some of these features at a similar frequency, but the oocytes for IVF are often in vitro matured.
- Cellular fragments may contain whole and/or partial chromosomes lost from blastomeres that are susceptible to DNA damage.
- Despite the high incidence of aneuploidy at the cleavage-stage, blastomere/fragment exclusion and other mechanisms may provide a means to overcome chromosome instability and continue in development.

Acknowledgements

Brittany Daughtry* Jimi Rosenkrantz

Nash Redmayne

Chavez Laboratory

- Sweta Ravisankar
- Kelsey Brooks

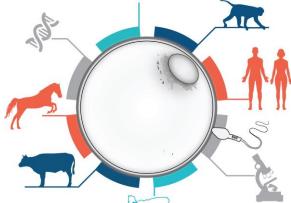
Carbone Laboratory

- Lucia Carbone
- Nathan Lazar*
- Kimmi Nevonen
- Brett Davis
- Mariam Okhovat

Funding

- NIH/NICHD R01HD086073-A1
- Medical Research Foundation of Oregon
- Jones Foundation
- Collins Medical Trust
- NCTRI P50 HD071836 (PI: Hennebold)

Adey Laboratory


- Andrew Adey
- Kristof Torkenczy
- Sarah Vitak
- Andy Fields

OHSU/ONPRC

- Suzi Fei
- Melissa Yan*
- Lina Gao
- Byung Park
- Cathy Ramsey
- Carrie Hanna
- Crystal Chaw
- Stefanie Kaech Petrie

^{*}Former member