The National Academies of
SCIENCES * ENGINEERING - MEDICINE

Forum on Drug Discovery, Development, and Translation
Roundtable on Genomics and Precision Health

SCIENCES
ENGINEERING
MEDICINE

The National
Academies of

The Role of Digital
Health Technologies

in Drug Development

A Workshop

March 24, 2020
Webinar

W #DigitalHealthTech

Please register on Zoom for the meeting at the following link by no later than March 24, 2020.

https://nasem.zoom.us/webinar/register/WN 8xfTtbfeQrGVh4Y1dAE38A



https://nasem.zoom.us/webinar/register/WN_8xfTtbfeQrGVh4Y1dAE38A

The National Academies of
SCIENCES * ENGINEERING - MEDICINE

The Role of Digital Health Technologies in Drug
Development: A Workshop

March 24, 2020
Webinar

Table of Contents

The Role of Digital Health Technologies in Drug Development Workshop Background......................
Z00M WEDINAN GUILANCE .....ecvveie ettt ettt st e s be et e st e e teesbesbeeneestesneeeenras p. 3
WWOTKSNOP AGENAA ...t b et b et b bbb n e s p. 4

Forum & Roundtable INFOrmMatioN............couiiiiiiiii e

Forum on Drug Discovery, Development, and Translation.............ccoccevoveeninienc s p.9
Roundtable on Genomics and Precision Health................cooi i p.11
Workshop Planning COMMUTIEE ...........cuoiiiiieiiie ettt st sre e e e teaneeseesreeneeneeas
Planning COMMILIEE BIOS ......cciiiiiiii ettt s te et b e saesreenaenre s p. 13
RSy O Lo 1 =] gl = oSSR p. 18
BaCKGIroUN REATING ......ccuiiiiiieieeee bbbttt bt b e
Building the Case for Actionable Ethics in Digital Health Research Supported by Artificial
101 | o T<] o o PP p. 22
Development of a Decision-Making Checklist Tool to Support Technology Selection in Digital Health
RESEAICI ...t p. 29
Digital Health: Meeting the Ethical and Policy Challenges...........cccccvvveviiiiiieiiiece e p. 41
Reimagining Human Research Protections for 215 Century SCIENCE .......c.oeririrrirerirceeeeriseees p. 50
Elements of Trust in Digital Health Systems: SCOping REVIEW..........cccccveveiviieie i p. 58
Traditional and Digital Biomarkers: Two Worlds Apart..........co.oe v e p. 68
Wearable Devices in Clinical Trials: Hype and HYpOthesis..........ccoviiriiiicics e p. 79
Data Science Approaches for Effective Use of Mobile Device—Based Collection of
REAI-WOTTT DALA ... bbbt b b n e p. 90
Evaluation of Wearable Digital Devices in a Phase | Clinical Trial..........c.cccccocevviiviieiiiiicncieeen, p. 93

Developing and Adopting Safe and Effective Digital Biomarkers to Improve Patient Outcomes ... p. 103



The National Academies of
SCIENCES * ENGINEERING - MEDICINE

Indicators of Retention in Remote Digital Health Studies: A Cross-Study Evaluation of 100,000

T Lot 0T UL €SP PSPRSSN p. 108
Using Digital Health to Enable Ethical Health Research in Conflict and Other Humanitarian
ST 0SSR p. 118
Vital Signs: Digital Health Law Update | Winter 2020............ccccoeiiiiieiieneee e p. 126
Accelerating Precision Health by Applying the Lessons Learned from Direct-to-Consumer Genomics
to Digital Health Technologies | DiSCUSSION PAPET..........ccccveiiiiiiiiieiie e p. 132
National Academies AcCtivities OF INTEreSt. .. ... e e
Examining the Impact of Real-World Evidence on Medical Product Development | Workshop Series
1T ] 1T p. 142

Virtual Clinical Trials: Challenges and Opportunities | Workshop Highlights...........................p. 146

Applying Bid Data to Address the Social Determinants of Health and Oncology | Workshop Statement
0] p. 150

Opportunities and Challenges for Using Digital Health Applications in Oncology | Workshop
StALEMENT OF TASK. .. ..ttt e e e e e e e e e p. 152

Other National Academies Activities of Interest............oooviiiiiiiii e, p. 154



The National Academies of
SCIENCES + ENGINEERING « MEDICINE

Forum on Drug Discovery, Development, and Translation
Roundtable on Genomics and Precision Health

The Role of Digital Health Technologies in Drug Development
A Workshop

March 24, 2020 = Zoom Webinar

Digital health technologies (e.g. smartphone apps, wearable sensors, and other remote, sensor-based
tools that combine hardware and software) have become increasingly available to consumers,
providers, and researchers. They offer new opportunities to address critical challenges or “pain points,’
better connect patients and health care providers, and incorporate patient input throughout the drug
research and development (R&D) life cycle. This workshop will provide a venue to discuss challenges
and opportunities in using digital health technologies to improve the probability of success in drug
development. Workshop participants may consider key components for an evidence-based framework
for applying digital health technologies towards drug research and development.

The public workshop will feature invited presentations and discussions to:

Discuss challenges/questions that digital health technologies may be uniquely suited to address
and opportunities for digital health technologies to enable better patient care and more efficient
clinical trials;

Consider strategies for evaluating and selecting digital health technologies that are fit for purpose
in drug development (e.g. establishing appropriate evidentiary criteria);

Discuss privacy, ethical, and regulatory issues related to the use of digital health technologies;
Examine currently validated and/or FDA-approved drug development applications for digital
health technologies;

Consider opportunities to enable the practical application of digital health technologies for
improving drug development (e.g. sharing best practices for the validation and use of digital health
technologies, harmonizing guidelines across sectors).

The planning committee will organize the workshop, develop the agenda, select and invite speakers and
discussants, and moderate or identify moderators for the discussions. Discussions may incorporate
examples and lessons learned from other fields, such as direct-to-consumer genetic testing. A proceedings
of the presentations and discussions at the workshop will be prepared by a designated rapporteur in
accordance with institutional guidelines.

The National Academies of Sciences, Engineering, and Medicine are private, nonprofit institutions that provide expert advice on some of the most pressing
challenges facing the nation and the world. Our work helps shape sound policigs, inform public opinion, and advance the pursuit of science, engineering, and
medicine. For more information about this workshop, please contact Carolyn Shore (cshore@nas.edu).
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ZOOM WEBINAR GUIDANCE

TO: Workshop Attendees

SUBJECT: Zoom Webinar guidance for National Academies virtual workshop, The Role of Digital Health
Technologies in Drug Development (March 24, 2020)

Please register on Zoom for the meeting at the following link by no later than March 24, 2020.

https://nasem.zoom.us/webinar/register/WN 8xfTtbfeQrGVh4Y1dAE38A

WORKSHOP BACKGROUND

This workshop will provide a venue to discuss challenges and opportunities in using digital health technologies
(e.g. smartphone apps, wearable sensors, and other remote, sensor-based tools that combine hardware and
software) to improve the probability of success in drug development.

Workshop objectives:

e Highlight critical barriers or ‘pain points’ along the drug R&D lifecycle for which digital health
technologies may be uniquely suited to address.

e Consider lessons learned from currently validated digital health technology applications that could be
generalizable for newer digital health technologies.

e Consider opportunities to enable the practical application of digital health technologies for improving
drug development (e.g. sharing best practices for the validation and use of digital health technologies,
harmonizing guidelines across sectors).

e Consider strategies to determine the evidentiary criteria for selecting digital health technologies that
are fit for purpose in drug development (e.g. examining existing frameworks).

e Discuss privacy, ethical, and regulatory issues related to the use of digital health technologies.

ZOOM WEBINAR GUIDANCE
Date/Time: Tuesday, March 24, 2020 (10:00 AM — 4:15 PM ET)

Registration: You must register via Zoom in advance of the workshop at the following link:

https://nasem.zoom.us/webinar/register/WN 8xfTtbfeQrGVh4Y1dAE38A

You will receive a confirmation email with a personalized link to attend the webinar, as well as
option to add the webinar to your calendar.

Webinar Participation:

All participants will be muted upon entry to the webinar. However, we encourage participation via the chat
box feature, which will be located at the bottom of zoom meeting window. If you have questions during the
webinar, please submit them through the Q&A box. We will be using the hashtag #digitalhealthtech and hope
you continue the discussion on social media.


https://nasem.zoom.us/webinar/register/WN_8xfTtbfeQrGVh4Y1dAE38A
https://nasem.zoom.us/webinar/register/WN_8xfTtbfeQrGVh4Y1dAE38A
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The Role of Digital Health Technologies in Drug Development

A Workshop
March 24, 2020
10:00 a.m. - 4:15 p.m. (ET)

Z0OOM WEBINAR REGISTRATION:
https://nasem.zoom.us/webinar/register/ WN_8xfTtbfeQrGVh4Y 1dAE38A

Agenda

Digital health technologies (e.g. smartphone apps, wearable sensors, and other remote, sensor-based tools
that combine hardware and software) have become increasingly available to consumers, providers, and
researchers. They offer new opportunities to address critical challenges or pain points, better connect
patients and health care providers, and incorporate patient input throughout the drug research and
development (R&D) life cycle. This workshop will provide a venue to discuss challenges and opportunities
in using digital health technologies to improve the probability of success in drug development. Workshop
participants may consider key components for an evidence-based framework for applying digital health
technologies towards drug research and development.

WORKSHOP OBJECTIVES:

e Highlight critical barriers or “pain points” along the drug R&D lifecycle for which digital health
technologies may be uniquely suited to address;

e Consider lessons learned from currently validated digital health technology applications that could
be generalizable for newer digital health technologies;

e Consider opportunities to enable the practical application of digital health technologies for
improving drug development (e.g. sharing best practices for the validation and use of digital health
technologies, harmonizing guidelines across sectors).

e Consider strategies for evaluating and selecting digital health technologies that are fit-for-purpose in
drug development (e.g. examining existing frameworks, establishing appropriate evidentiary
criteria);

e Discuss privacy, ethical, and regulatory issues related to the use of digital health technologies.

10:00 a.m. ET Welcome

ROBERT CALIFF GEOFFREY GINSBURG
Forum Co-Chair Roundtable Co-Chair
Verily Life Sciences Duke University School of Medicine


https://nasem.zoom.us/webinar/register/WN_8xfTtbfeQrGVh4Y1dAE38A

Openning Remarks

JENNIFER GOLDSACK, Workshop Co-Chair
Executive Director
Digital Medicine Society

JOSEPH MENETSKI, Workshop Co-Chair
Associate Vice President of Research Partnerships
Foundation for the National Institutes of Health

BRIEFING: ETHICAL CONSIDERATIONS

10:15a.m. ET Ethicist Perspective
CAMILLE NEBEKER
Director
Research Center for Optimal Digital Ethics
University of California San Diego

SESSION1 DIGITAL TOOLS FOR CHARACTERIZING DISEASE

10:45 a.m. ET Session Moderator
EFFY VAYENA
Professor
Health Ethics and Policy Lab, ETH Zurich

Non-Profit Perspective/Platform Research Perspective
LARSSON OMBERG

Vice President, Systems Biology

Sage Bionetworks

NIH Perspective

CHRIS LUNT

Chief Technology Officer
All of Us Research Program
National Institutes of Health

Patient Engagement Perspective
ALICIA STALEY

Senior Director, Patient Engagement
Medidata Solutions

Developer Perspective

Luca FOSCHINI

Chief Data Scientist & Co-founder
Evidation Health, Inc.

11:25 a.m. ET Panel Discussion with Speakers and Workshop Participants



11:45 a.m. ET BREAK

SESSION II DIGITAL TOOLS FOR RECRUITMENT AND SAFETY TRIALS

12:00 p.m. ET Session Moderator
DEVEN MCGRAW
Chief Regulatory Officer
Ciitizen Corporation

Regulatory Perspective

CHRISTOPHER LEPTAK

Director, Regulatory Science Program, Office of New Drugs
Center for Drug Evaluation and Research

U.S. Food and Drug Administration

Industry Perspective

Y VONNE YU-FENG CHAN

Senior Director, Medical Affairs for Digital Medicine
Otsuka Pharmaceutical Companies

Developer Perspective
Chris Benko

Chief Executive Officer
Konesksa Health

Academic Perspective
ERIC PERAKSLIS
Rubenstein Fellow
Duke University
12:40 p.m. ET Panel Discussion with Speakers and Workshop Participants

1:00 p.m. ET BREAK

FIRESIDE CHAT

1:30 p.m. ET Session Moderator
JENNIFER GOLDSACK, Workshop Co-Chair
Executive Director
Digital Medicine Society

Regulatory Perspective

AMY ABERNETHY

Principal Deputy Commissioner
U.S. Food and Drug Administration



SESSION III DIGITAL TOOLS FOR PIVOTAL TRIALS

2:00 p.m. ET Session Moderator
HUSSEINI MANJI
Global Therapeutic Head, Neuroscience
Janssen Research & Development

Regulatory Perspective

LEONARD SACKS

Associate Director of Clinical Methodology, Office of Medical Policy
Center for Drug Evaluation and Research

U.S. Food and Drug Administration

Industry Perspective

SEAN KHOZIN

Global Head of Data Strategy
Janssen Research & Development

Developer Perspective
RITU KAPUR

Head of Biomarkers
Verily Life Sciences

2:30 p.m. ET Panel Discussion with Speakers and Workshop Participants

2:50 pm. ET BREAK

SESSION 1V DIGITAL TOOLS FOR POSTREGISTRATION SURVEILLANCE

3:00 p.m. ET Session Moderator
CHRISTINA SILCOX
Managing Associate
Duke-Margolis Center for Health Policy

Industry Perspective

MICHELLE CROUTHAMEL

Director, Digital Health & Innovation
AbbVie

Patient Engagement Perspective

SALLY OKUN

Policy and Ethics

UnitedHealth Group Research & Development



Clinician/Health System Perspective
EDMONDO ROBINSON

Chief Digital Innovation Officer
Moftitt Cancer Center

3:30 p.m. ET Panel Discussion with Speakers and Workshop Participants

KEY REFLECTIONS AND NEXT STEPS

3:45p.m. ET Key Reflections and Next Steps

JENNIFER GOLDSACK, Workshop Co-Chair
Executive Director
Digital Medicine Society

JoserPH MENETSKI, Workshop Co-Chair
Associate Vice President of Research Partnerships
Foundation for the National Institutes of Health

4:15 p.m. ET Adjourn
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The Forum on Drug Discovery, Development, and Trans-
lation of the National Academies of Sciences, Engineering,
and Medicine was created in 2005 by the Board on Health
Sciences Policy to provide a unique platform for dialogue
and collaboration among thought leaders and stakeholders
in government, academia, industry, foundations, and patient
advocacy with an interest in improving the system of drug
discovery, development, and translation. The Forum brings
together leaders from private sector sponsors of biomedical
and clinical research, federal agencies sponsoring and regu-
lating biomedical and clinical research, the academic commu-
nity, and patients, and in doing so serves to educate the policy
community about issues where science and policy intersect.
The Forum convenes several times each year to identify, dis-
cuss, and act on key problems and strategies in the discovery,
development, and translation of drugs. To supplement the
perspectives and expertise of its members, the Forum also
holds public workshops to engage a wide range of experts,
members of the public, and the policy community. The Forum
also fosters collaborations among its members and constit-
uencies. The activities of the Forum are determined by its
members, focusing on the major themes outlined below.

INNOVATION AND THE DRUG DEVELOPMENT
ENTERPRISE

Despite exciting scientific advances, the pathway from
basic science to new therapeutics faces challenges on many
fronts. New paradigms for discovering and developing drugs
are being sought to bridge the ever-widening gap between
scientific discoveries and translation of those discoveries
into life-changing medications. There is also increasing rec-
ognition of the need for new models and methods for drug
development and translational science, and “precompetitive
collaborations” and other partnerships, including public-
private partnerships, are proliferating. The Forum offers a
venue to discuss effective collaboration in the drug discov-
ery and development enterprise and also hosts discussions
that could help chart a course through the turbulent forces of
disruptive innovation in the drug discovery and development
“ecosystem.”

Key gaps remain in our knowledge about science, tech-
nology, and methods needed to support drug discovery and
development. Recent rapid advances in innovative drug
development science present opportunity for revolution-
ary developments of new scientific techniques, therapeu-
tic products, and applications. The Forum provides a venue

to focus ongoing attention and visibility to these important
drug development needs and facilitates exploration of new
approaches across the drug development lifecycle. The Forum
has held workshops that have contributed to the defining and
establishment of regulatory science and have helped inform
aspects of drug regulatory evaluation.

CLINICAL TRIALS AND CLINICAL PRODUCT
DEVELOPMENT

Clinical research is the critical link between bench and
bedside in developing new therapeutics. Significant infra-
structural, cultural, and regulatory impediments challenge
efforts to integrate clinical trials into the health care delivery
system. Collaborative, cross-sector approaches can help artic-
ulate and address these key challenges and foster systemic
responses. The Forum has convened a multiyear initiative
to examine the state of clinical trials in the United States,
identify areas of strength and weakness in our current clin-
ical trial enterprise, and consider transformative strategies
for enhancing the ways in which clinical trials are organized
and conducted. In addition to sponsoring multiple symposia
and workshops, under this initiative, the Forum is fostering
innovative, collaborative efforts to facilitate needed change in
areas such as improvement of clinical trial site performance.

INFRASTRUCTURE AND WORKFORCE FOR DRUG DIS-
COVERY, DEVELOPMENT, AND TRANSLATION

Considerable opportunities remain for enhancement and
improvement of the infrastructure that supports the drug
development enterprise. That infrastructure, which includes
the organizational structure, framework, systems, and
resources that facilitate the conduct of biomedical science for
drug development, faces significant challenges. The science
of drug discovery and development, and its translation into
clinical practice, is cross-cutting and multidisciplinary. Career
paths can be opaque or lack incentives such as recognition,
career advancement, or financial security. The Forum has
considered workforce needs as foundational to the advance-
ment of drug discovery, development, and translation. It
has convened workshops examining these issues, including
consideration of strategies for developing a discipline of
innovative regulatory science through the development of a
robust workforce. The Forum will also host an initiative that
will address needs for a workforce across the translational
science lifecycle.

The National Academies of
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The Rockefeller University Indiana University School of
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National Cancer Institute, NIH
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New England Journal of Medicine Ann Taylor
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Clinical Trials Transformation
Carlos Garner Initiative

Eli Lilly and Company Joanne Waldstreicher

Julie Gerberding Johnson & Johnson
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Roundtable on GENOMICS and PRECISION HEALTH

The sequencing of the human genome is rapidly
opening new doors to research and progress in
biology, medicine, and health care. At the same time,
these developments have produced a diversity of new
issues to be addressed.

The National Academies of Sciences, Engineering,
and Medicine has convened a Roundtable on
Genomics and Precision Health (previously the
Roundtable on Translating Genomic-Based Research
for Health) that brings together leaders from academia,
industry, government, foundations and associations,
and representatives of patient and consumer interests
who have a mutual concern and interest in addressing
the issues surrounding the translation of genome-
based research for use in maintaining and improving
health. The mission of the Roundtable is to advance
the field of genomics and improve the translation of
research findings to health care, education, and policy.
The Roundtable will discuss the translation process,
identify challenges at various points in the process,
and discuss approaches to address those challenges.

The field of genomics and its translation involves
many disciplines, and takes place within different
economic, social, and cultural contexts, necessitating
a mneed for increased communication and
understanding across these fields. As a convening
mechanism for interested parties from diverse
perspectives to meet and discuss complex issues of
mutual concern in a neutral setting, the Roundtable:
fosters dialogue across sectors and institutions;
illuminates issues, but does not necessarily resolve
them; and fosters collaboration among stakeholders.

To achieve its objectives, the Roundtable conducts
structured discussions, workshops, and symposia.
Workshop summaries will be published and
collaborative efforts among members are encouraged

(e.g., journal articles). Specific issues and agenda
topics are determined by the Roundtable membership,
and span a broad range of issues relevant to the
translation process.

Issues may include the integration and coordination of
genomic information into health care and public health
including encompassing standards for genetic
screening and testing, improving information
technology for use in clinical decision making,
ensuring access while protecting privacy, and using
genomic information to reduce health disparities. The
patient and family perspective on the use of genomic
information for translation includes social and
behavioral issues for target populations. There are
evolving requirements for the health professional
community, and the need to be able to understand and
responsibly apply genomics to medicine and public
health.

Of increasing importance is the need to identify the
economic implications of using genome-based
research for health. Such issues include incentives,
cost-effectiveness, and sustainability.

Issues related to the developing science base are also
important in the translation process. Such issues could
include studies of gene-environment interactions, as
well as the implications of genomics for complex
disorders such as addiction, mental illness, and chronic
diseases.

Roundtable sponsors include federal agencies,
pharmaceutical companies, medical and scientific
associations,  foundations, and  patient/public
representatives. For more information about the
Roundtable on Genomics and Precision Health, please
visit our website at nationalacademies.org/GenomicsRT
or contact Sarah Beachy at 202-334-2217, or by e-mail
at sbeachy(@nas.edu.

500 Fifth Street, NW, Washington, DC 20001
Phone 202.334.2217 E-mail sbeachy@nas.edu nationalacademies.org/GenomicsRT
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Roundtable on Genomics and Precision Health Membership

Geoffrey Ginsburg, M.D., Ph.D. (Co-Chair) Duke University
Michelle Penny, Ph.D. (Co-Chair) Goldfinch Bio

Naomi Aronson, Ph.D.
BlueCross/BlueShield Association

Aris Baras, M.D., M.B.A.
Regeneron Pharmaceuticals

Karina Bienfait, Ph.D.
Merck and Co., Inc.

Vence Bonham, Jr., J.D.
National Human Genome Research Institute

Robert B. Darnell, M..D. Ph.D.

The Rockefeller University / NY Genome Center

Stephanie Devaney, Ph.D.
All of Us Research Program, NIH

Katherine Donigan, Ph.D.
U.S. Food and Drug Administration

W. Gregory Feero, M.D., Ph.D.
Journal of the American Medical Association

Jessica M. Gill, Ph.D., R.N., FAAN
National Institute of Nursing Research

Marc Grodman, M.D.
Genosity

Richard Hodes, M.D.
National Institute on Aging

Praduman Jain, M.S.
Vibrent Health

Sekar Kathiresan, M.D.
Massachusetts General Hospital

Muin Khoury, M.D., Ph.D.
Centers for Disease Control and Prevention

David Ledbetter, Ph.D.
Geisinger

Charles Lee, Ph.D., FACMG
The Jackson Laboratory for Genomic Medicine

Thomas Lehner, Ph.D., M.P.H.
National Institute of Mental Health

Debra Leonard, M.D., Ph.D.
College of American Pathologists

Patrick Loerch, Ph.D.
Johnson & Johnson

James Lu, M.D., Ph.D.
Helix

Sean McConnell, Ph.D.
American Medical Association

Mona Miller, M.P.P.
American Society of Human Genetics

Jennifer Moser, Ph.D.
U.S. Department of Veterans Affairs

Anna Pettersson, Ph.D.
Pfizer Inc.

Victoria M. Pratt, Ph.D., FACMG
Association for Molecular Pathology

Nadeem Sarwar, Ph.D.
Eisai Inc.

Sheri Schully, Ph.D.
NIH Office of Disease Prevention

Joan A. Scott, ML.S., C.G.C.
Health Resources and Services Administration

Nonniekaye Shelburne, C.R.N.P., M.S., A.O.C.N.
National Cancer Institute

Nikoletta Sidiropoulos, M.D.
University of Vermont Health Network Medical Group

Katherine Johansen Taber, Ph.D.
Myriad Women’s Health

Ryan Taft, Ph.D.
Illumina

Jacquelyn Taylor, Ph.D.
New York University

Sharon Terry, M.A.
Genetic Alliance

Joyce Tung, Ph.D.
23andMe, Inc.

Jameson Voss, M.D.
Air Force Medical Support Agency

Catherine A. Wicklund, M.S., C.G.C.
National Society of Genetic Counselors

Huntington F. Willard, Ph.D.
Genome Medical

Janet K. Williams, Ph.D., R.N., FAAN
American Academy of Nursing

Sarah Wordsworth, Ph.D.
University of Oxford

Alicia Zhou, Ph.D.
Color Genomics

Member TBD
American College of Medical Genetics and Genomics

Project Staff
Sarah H. Beachy, Ph.D., Roundtable Director

Siobhan Addie, Ph.D., Program Officer
Meredith Hackmann, Associate Program Officer
Kelly Choi, Senior Program Assistant

The National Academy of Sciences, National Academy of Engineering, and National Academy of Medicine work together as the National
Academies of Sciences, Engineering, and Medicine (“the Academies”) to provide independent, objective analysis and advice to the nation and
conduct other activities to solve complex problems and inform public policy decisions. The Academies also encourage education and research,
recognize outstanding contributions to knowledge, and increase public understanding in matters of science, engineering, and medicine.
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Planning Committee Biographies

CO-CHAIRS

JENNIFER GOLDSACK, M.CHEM., M.A., M.B.A,, is the Interim Executive Director at the Digital Medicine Society
(DIME), a new professional organization promoting the adoption of digital technologies for health. Previously, Ms
Goldsack spent several years at the Clinical Trials Transformation Initiative (CTTI) where she led development and
implementation several projects within CTTI’s Mobile Program and was the operational co-lead on the first
randomized clinical trial using FDA’s Sentinel System. Ms Goldsack spent five years working in research at the
Hospital of the University of Pennsylvania, first in Outcomes Research in the Department of Surgery and later in
the Department of Medicine. More recently, Ms Goldsack helped launch the Value Institute, a pragmatic research
and innovation center embedded in a large academic medical center in Delaware. Ms Goldsack earned her master’s
degree in chemistry from the University of Oxford, England, her masters in the history and sociology of medicine
from the University of Pennsylvania, and her MBA from the George Washington University. Additionally, she is a
certified Lean Six Sigma Green Belt and a Certified Professional in Healthcare Quality. Ms Goldsack is a retired
athlete, formerly a Pan American Games Champion, Olympian and World Championship silver medalist.

JOSEPH P. MENETSKI, PH.D., received his Ph.D. from Northwestern University Medical School with Dr. Stephen
Kowalczykowski and completed his post-doctoral training at the Laboratory of Molecular Biology, National
Institutes of Health (NIH/NIDDK) with Dr. Martin Gellert. He then started his career in industry in 1993 in the
Immunopathology Department at Parke-Davis (later Pfizer), where he established a discovery research program in
cellular inflammation that eventually transitioned to the molecular study of osteoarthritis. Joseph moved to Merck
in 2004. His first position was in the department of Immunology where he was involved in the osteoarthritis new
targets and biomarker program. While at Merck he has been a member of the Molecular Profiling group, the
Knowledge Discovery and Knowledge Management group and finally a Director in Global Competitive
Intelligence. Over the years, he has been a key contributor to many basic research and clinical programs in the areas
of arthritis, sarcopenia, osteoporosis and asthma. He has served as a core research team member on several external
basic research projects for identification of new targets and molecular biomarkers. His industry research and
development experiences include target identification, compound selection, translational biomarker identification,
clinical study design and analysis, and external scientific collaborations. In the commercial space, he has been
intimately involved in opportunity and asset identification and qualification, and in assessing the competitive
landscape of disease areas that he is supporting. During this time, he has been recognized by multiple research and
development awards for his contributions
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MEMBERS

LINDA BRADY, PH.D., serves as the Director of the Division of Neuroscience and Basic Behavioral Science at the
National Institute of Mental Health (NIMH). In this role, she provides scientific, programmatic, and administrative
leadership for an extramural research program portfolio in basic neuroscience to support NIMH’s mission of
transforming the understanding and treatment of mental illnesses. Dr. Brady has directed programs in
neuropharmacology, drug discovery, and clinical therapeutics and organized Consortia focused on ways to
accelerate the development and clinical application of radiotracers in clinical research. She has provided leadership
for many programs, including: Development and Application of PET and SPECT Imaging Ligands as Biomarkers
for Drug Discovery and for Pathophysiological Studies of CNS Disorders, the National Cooperative Drug/Device
Discovery/Development Groups for the Treatment of Mental Disorders, and First in Human and Early Stage
Clinical Trials of Novel Investigational Drugs or Devices for Psychiatric Disorders. Dr. Brady serves as co-chair of
the Neuroscience Steering Committee for the Biomarkers Consortium, a public-private research partnership of the
Foundation for the National Institutes of Health (FNIH) that focuses on discovery, development, and qualification
of biological markers to support drug development, preventive medicine, and medical diagnostics. From 2004-
2013, she co-led the Molecular Libraries and Imaging Program, a trans-NIH Common Fund initiative to provide
biomedical researchers access to small organic molecules that can be used as chemical probes to study the functions
of genes, cells, and biochemical pathways in health and disease. Dr. Brady was trained in pharmacology and
neuroscience. She completed her Ph.D. at Emory University School of Medicine, followed by post-doctoral work
and research positions at the Uniformed Services University of the Health Sciences and the NIMH Intramural
Research Program. She is the author of more than 70 peer reviewed scientific publications and is a member of the
Society for Neuroscience and a Fellow in the American College of Neuropsychopharmacology. Dr. Brady has
received NIH Director’s Awards and NIH Merit Awards in recognition of her activities in biomarker development
and drug development for mental disorders.

RAY DORSEY, M.D., M.B.A., is a professor of neurology and director of the Center for Human Experimental
Therapeutics at the University of Rochester Medical Center. Dr. Dorsey is investigating new treatments for
movement disorders and is working on ways to improve the way care is delivered for individuals with Parkinson's
disease (PD) and other neurological disorders. Using simple web-based video conferencing, he and his colleagues
are seeking to provide care to individuals with PD and neurological diseases. Dr. Dorsey's research has been
published in leading medical and neurology journals and has been featured on National Public Radio and in The
New York Times and The Wall Street Journal. He previously directed the movement disorders division at Johns
Hopkins and worked as a consultant for McKinsey & Company. He completed his undergraduate studies at Stanford
University, business school at the Wharton School and medical school at the University of Pennsylvania.

Deborah Estrin, Ph.D., M.S., is the Robert V. Tishman '37 Professor at Cornell Tech and in the Computer Science
Department at Cornell University, and currently serves as Associate Dean for Impact at Cornell Tech. She is founder
of the Health Tech Hub and directs the Small Data Lab at Cornell Tech, which develops new personal data APIs
and applications for individuals to harvest the small data traces they generate daily. Estrin is also co-founder of the
non-profit startup, Open mHealth.

Previously, Estrin was on the UCLA faculty where she was the Founding Director of the NSF Center for Embedded
Networked Sensing (CENS), pioneering the development of mobile and wireless systems to collect and analyze
real time data about the physical world and the people who occupy it.

Estrin was chosen as a 2018 fellow of the MacArthur Foundation.
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GEOFFREY GINSBURG, M.D., PH.D., is the founding director for the Center for Applied Genomics & Precision
Medicine at the Duke University Medical Center. He is also the founding director for MEDX, a partnership between
the Schools of Medicine and Engineering to spark and translate innovation. He is a professor of Medicine,
Pathology, and Biomedical Engineering, and a professor in School of Nursing at Duke University.

While at Duke, Dr. Ginsburg has pioneered translational genomics, the development of novel diagnostics, and
precision medicine, initiating programs in genome enabled biomarker discovery, longitudinal registries with linked
molecular and clinical data, biomarker-informed clinical trials, and the development of novel practice models and
implementation research for the integration of genomic tools and digital health technologies into heath care delivery
systems.

In 1990, he was recruited to the faculty of Harvard Medical School, where he was director of Preventive Cardiology
at Beth Israel Hospital and led a laboratory in applied genetics of cardiovascular diseases at Children’s Hospital. In
1997 he joined Millennium Pharmaceuticals Inc, as senior program director for cardiovascular diseases and was
eventually appointed vice president of Molecular and Personalized Medicine, where he was responsible for
developing pharmacogenomic strategies for therapeutics, as well as biomarkers for disease and their implementation
in the drug development process.

He has received a number of awards, including the Innovator in Medicine Award from Millennium in 2004, the
Basic Research Achievement Award in Cardiovascular Medicine from Duke in 2005, and the ILCHUN Molecular
Medicine Award from Korean Society for Biochemistry and Molecular Biology in 2014. In 2015 he was an honored
speaker at the White House Champions for Change in Precision Medicine. He received Duke’s Research Mentoring
Award in 2017. He is a founding member and former board member of the Personalized Medicine Coalition, a
section editor for The Journal of the American College of Cardiology and an editorial advisor for Science
Translational Medicine. In addition, he is the editor of Genomic and Personalized Medicine (Elsevier), 3rd edition
published in 2016. He is a member of the Faculty of 1000. He has been a member of the Secretary of Veterans
Affairs Advisory Council on Genomic Medicine, a member of the NIGMS External Scientific Panel for the
Pharmacogenomics Research Network, the Board of External Experts for the National Heart, Lung and Blood
Institute, the National Advisory Council for Human Genome Research at NIH, the Advisory Council for the
National Center for Advancing Translational Sciences at NIH (where he was the Vice Chair for the Cures
Acceleration Network Board), and the World Economic Forum’s Global Agenda Council on The Future of the
Health Sector. He is co-chair of the National Academies Roundtable on Genomic and Precision Health and co-chair
of the Global Genomic Medicine Collaborative and is a member of the Advisory Committee to the Director of NIH.

HusseINl K. MANJI, M.D., FRCPC.,, is the Global Therapeutic Head for Neuroscience at Janssen Research &
Development, LLC, one of the Johnson & Johnson pharmaceutical companies. He is also Visiting Professor at Duke
University. Dr. Manji was previously Chief of the Laboratory of Molecular Pathophysiology & Experimental
Therapeutics at the National Institutes of Health (NIH) and Director of the NIH Mood and Anxiety Disorders
Program, the largest program of its kind in the world.

The major focus of Dr. Manji’s research is the investigation of disease- and treatment-induced changes in gene and
protein networks that regulate synaptic and neural plasticity in neuropsychiatric disorders. His work has helped to
conceptualize these illnesses as genetically-influenced disorders of synaptic and neural plasticity and has led to the
investigation of novel therapeutics for refractory patients. Notably, Dr. Manji’s research demonstrated that AMPA.-
and NMDA-mediated synaptic plasticity may underlie the pathogenesis of depression, and that targeting these
pathways may produce robust and rapid antidepressant effects. Under his leadership, this has led to the FDA
Approval of the first novel antidepressant mechanism (NMDA-antagonism) in decades. Spravato (an NMDA
antagonist) was demonstrated to produce robust and rapid antidepressant effects and is approved for treatment
resistant depression. Phase 3 studies investigating its efficacy in the treatment of suicidal ideation are underway.
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Dr. Maniji has received a number of prestigious awards, including the NIMH Director's Career Award for Significant
Scientific Achievement, the A. E. Bennett Award for Neuropsychiatric Research, the Ziskind-Somerfeld Award for
Neuropsychiatric Research, the NARSAD Mood Disorders Prize, the Mogens Schou Distinguished Research
Award, the ACNP’s Joel Elkes Award for Distinguished Research, the DBSA Klerman Senior Distinguished
Researcher Award, the Briggs Pharmacology Lectureship Award, the American Federation for Aging Research
Award of Distinction, the Caring Kind Alzheimer’s Disease Leadership Award, and the Global Health & the Arts
Award of Recognition. He has received PhARMA’s Research & Hope Award for Excellence in Biopharmaceutical
Research, and has also been recognized as one of 14 inaugural “Health Heroes” by Oprah magazine.

Dr. Manji has been inducted into the National Academy of Medicine (formerly I0OM), the World Economic Forum
(WEF) Global Future Councils, and has held numerous leadership positions within the NAM, the FNIH Biomarkers
Consortium Executive Committee, the ACNP, and the Society of Biological Psychiatry.

Throughout his career, Dr. Manji has also been committed to undertakings related to medical and neuroscience
education and has worked with the National Board of Medical Examiners (NMBE), the Howard Hughes Medical
Institute Research Scholars Program, and numerous national curriculum committees. He founded and co-directed
the NIH Foundation for the Advanced Education in the Sciences Graduate Course in the Neurobiology of
Neuropsychiatric Iliness, and has received several teaching and mentoring awards. He has also served as Editor,
and on editorial boards of humerous scientific journals.

Dr. Maniji has published extensively on the molecular and cellular neurobiology of severe neuropsychiatric disorders
and development of novel therapeutics, with over 300 publications in peer-reviewed journals, including Science,
Science Translational Medicine, Nature Neuroscience, Nature Reviews Neuroscience, Nature Reviews Drug
Discovery , NEJM, J Clinical Investigation, PNAS, J Neuroscience, JAMA Psychiatry, Molecular Psychiatry.

DeEVEN McGRAW, JD, MPH, LLM., is the Chief Regulatory Officer for Ciitizen. Prior to joining Ciitizen, she
directed U.S. health privacy and security policy through her roles as Deputy Director for Health Information Privacy
at the HHS Office for Civil Rights (the office that oversees HIPAA policy and enforcement) and Chief Privacy
Officer (Acting) of the Office of the National Coordinator for Health IT. Deven also advised PCORNet (the Patient
Centered Outcomes Research Network), as well as the federal All of Us Research Initiative, on HIPAA and patient-
donated data research initiatives.

LAUREN OLIVA, PHARM.D., is the Global Regulatory Policy Lead for New Technologies at Biogen. She oversees
the development and execution of R&D’s policy roadmap for digital health tools and gene therapy to enable
Biogen’s neuroscience portfolio. In her time at Biogen she launched a widely used Regulatory Intelligence service
and served as a policy lead and regulatory strategy manager. Lauren received her PharmD from Rutgers University,
Ernest Mario School of Pharmacy and has previously served as adjunct faculty and lecturer at MCPHS University
in Boston, MA.

BRAY PATRICK-LAKE, M.F.S., is the Director of Strategic Partnerships at Evidation Health. She develops
collaborations to support the design and implementation of participant-centered studies, and serves on the All of
Us National Advisory Panel, the Digital Medicine Society Scientific Leadership Board, and the National Academies
of Sciences, Engineering, and Medicine (NASEM) Health Science Policy Board. Previously, Bray led engagement
for the Duke Clinical Research Institute Project Baseline Study Coordinating Center and served as co-chair on the
Advisory Committee to the NIH Director that authored the Precision Medicine Initiative's Cohort Program. Bray
holds a BS degree from the University of Georgia, and an MFS degree from National University.

LEONARD SACKS, M.D., received his medical education in South Africa, moving to the USA in 1987, where he
completed fellowships in immunopathology and Infectious Diseases. He worked as an attending physician in
Washington DC and South Africa and he joined the FDA in 1998 as medical reviewer in the Office of New Drugs.
Subsequent positions included acting director of the Office of Critical Path Programs and associate director for
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clinical methodology in the Office of Medical Policy in the Center for Drug Evaluation and Research. In this
capacity he has led efforts to support the use of electronic technology in clinical drug development. Besides his
involvement in the design and analysis of clinical trials, he maintains a special interest in tuberculosis and other
tropical diseases and has published and presented extensively on these topics. He is board certified in Internal
Medicine and Infectious Diseases and holds an academic appointment as Associate Clinical Professor of Medicine
at George Washington University.

JOYCE TUNG, PH.D., joined 23andMe in 2007 and manages the 23andMe research team, which is responsible for
consumer health and ancestry research and development, academic and industry collaborations, computational
analyses for therapeutics, and new research methods and tools development. While a postdoctoral fellow at Stanford
University, Joyce studied the genetics of mouse and human pigmentation. She graduated from Stanford with honors
and distinction with a B.S. in Biological Sciences and a minor in computer science, and earned her Ph.D. in Genetics
from the University of California, San Francisco where she was a National Science Foundation graduate research
fellow.

EFFY VAYENA, PH.D., studied Medical History and Bioethics at the University of Minnesota (USA) and completed
her habilitation in Bioethics and Health Policy at the University of Zurich. From 2000-2007 she worked at the
World Health Organization (WHO). In 2007, she joined the Institute of Biomedical Ethics and History of Medicine
at the University of Zurich, with which she remains affiliated. She is a consultant to WHO on several projects, and
visiting faculty at the Harvard Center for Bioethics, Harvard Medical School. In 2015 she was named a Swiss
National Science Foundation (SNSF) Professor of Health Policy and leads the newly-established Health Ethics and
Policy Lab in the Department of Public Health at the EBPI, University of Zurich. Her current research focus is on
ethical and policy questions in personalized medicine and digital health. At the intersection of multiple fields, she
relies on normative analyses and empirical methods to explore how values such as freedom of choice, participation
and privacy are affected by recent developments in personalized medicine and in digital health. She is particularly
interested in the issues of ethical oversight of research uses of big data, ethical uses of big data for global health, as
well as the ethics of citizen science. Using the ethics lens in innovative ways, her work aims to provide concrete
policy recommendations and frameworks that facilitate the use of new technologies for a better and more just health.
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AMY ABERNETHY, M.D., PH.D., is an oncologist and internationally recognized clinical data expert and clinical
researcher. As the Principal Deputy Commissioner of Food and Drugs, Dr. Abernethy helps oversee FDA'’s day-to-
day functioning and directs special and high-priority cross-cutting initiatives that impact the regulation of drugs,
medical devices, tobacco & food. As acting Chief Information Officer, she oversees FDA’s data and technical
vision, and its execution. She's held multiple executive roles at Flatiron Health and was professor of medicine at
Duke University School of Medicine, where she ran the Center for Learning Health Care and the Duke Cancer Care
Research Program. Dr. Abernethy received her M.D. at Duke University, where she did her internal medicine
residency, served as chief resident, and completed her hematology/oncology fellowship. She received her Ph.D.
from Flinders University, her B.A. from the University of Pennsylvania and is boarded in palliative medicine.

CHRIS BENKO, M.B.A., is the CEO and co-founder of Koneksa Health, the leader in developing and implementing
patient-focused digital biomarkers for drug development. By unlocking the potential of real-world data from
remote, wearable, and other digital technologies, Koneksa speeds up the time required to understand how a drug is
working, requiring fewer patients, and develops real-world evidence for how medicines can impact their daily lives.
Prior to founding Koneksa, Chris was a vice president in Merck’s corporate strategy office, working with its Global
Health Innovation venture capital fund. He began his career at Merck in 1995 and progressed through roles in
information technology as well as talent and organizational development, working in R&D, commercial, and at the
corporate level as vice president for global talent management.

YVONNE YU-FENG CHAN, M.D., PH.D., F.A.C.E.P., is the Senior Director of Medical Affairs for Digital Medicine
at Otsuka America Pharmaceutical, Inc., (Otsuka), a national leader in digital medicine research, and a board-
certified Emergency physician. At Otsuka, Dr. Chan develops advanced methodologies, digital tools, and
technology platforms to derive real-world clinical and health economics evidence in collaboration with internal and
external collaborators. She provides medical input to all aspects of product development at Otsuka’s Digital
Medicine division. Dr. Chan leverages her 15+ years of medical and digital health experience as a physician-
scientist to help lead Otsuka’s pioneering work in digital medicine in support of patients, physicians, and caregivers.
Previously, Dr. Chan was the Founding Director of the Center for Digital Health at the Icahn School of Medicine
at Mount Sinai. The mission of her Digital Health Center was to drive large-scale patient participation in biomedical
research and clinical care, by leveraging the latest digital technology and advanced analytic techniques to uncover
novel insights and actionable results.

Dr. Chan is an editorial board member of Nature Partner Journals (npj) Digital Medicine and Digital Biomarker
Journals. She is also a member of the Digital Medicine (DiMe) Society’s Scientific Leadership Board and the NIH’s
National Institute of Neurological Disorders and Stroke (NINDS) Common Data Elements for Stroke Group.

Dr. Chan received her B.A. and M.D. from Rutgers University (New Jersey Medical School) and completed her
Emergency Medicine training at Albert Einstein School of Medicine, Long Island Jewish Medical Center. At the
conclusion of her NINDS T32 Cerebrovascular Research Fellowship at Mount Sinai, she was granted the Mount
Sinai Institutional KL2 Clinical and Translational Research Career Development PhD Candidate award.
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MICHELLE CROUTHAMEL, D.B.A., is an industry thought leader in digital health with a broad spectrum of R&D
experience spanning across drug discovery, clinical development, project management, and digital health initiatives.

Her passion for driving patient-centricity/precision medicine in the pharmaceutical industry led her to become an
‘Intrapreneur’ at GSK, and the founding member of the Clinical Innovation Unit, which focuses on harnessing
digital technologies and platforms to improve clinical evidence generation and optimize trial operation. Michelle is
currently the Director of Digital Health & Innovation at AbbVie leading digital health strategy and implementation.
She is also involved in the industry-wide consortium, including TransCelerate, IMI and DiMe. Over the past 15+
years, Michelle led many successful programs in discovery and development. She is an inventor who holds multiple
patents and has published extensively in the areas of Neuroscience, Oncology, and Digital Health.

Michelle has a Bachelor’s degree in Nursing, a Master’s degree from the Institute of Neuroscience, and a Doctorate
from the Fox Business School, Temple University with a research focus on measuring the firm performance of
patient-centricity in the pharmaceutical industry.

LucA FoscHINI, M.S., PH.D., is the Co-founder and Chief Data Scientist at Evidation Health, responsible for data
analytics and research and development. At Evidation he has driven research collaborations resulting in numerous
publications in the fields of machine learning, behavioral economics, and medical informatics. Previously, Luca
held research positions in industry and academic institutions, including Ask.com, Google, ETH Zurich, and UC
Santa Barbara. He has co-authored several papers and patents on efficient algorithms for partitioning and detecting
anomalies in massive networks. Luca holds MS and PhD degrees in Computer Science from UC Santa Barbara,
and ME and BE degrees from the Sant'Anna School of Pisa, Italy.

SEAN KHOZIN, M.D., M.P.H., is an oncologist, physician-scientist, and research affiliate at MIT. Dr. Khozin is the
Global Head of Data Strategy for Janssen/J&J, focusing on incorporation of data science and advanced quantitative
methods (including AI/ML) into R&D activities. He joined the company from US FDA’s Oncology Center of
Excellence, where he built and led the Center’s bioinformatics capabilities and efforts. He was also the founder of
Information Exchange and Data Transformation (INFORMED), US FDA’s first data science and technology
incubator for de-risking solutions through internal R&D and strategic partnerships for improving global biomedical
research and advancing national public health priorities. Prior to his tenure in federal government, Dr. Khozin was
the cofounder of Hello Health, developing an integrated telemedicine, point-of-care data visualization, and
analytical platform for optimizing patient care and clinical research. The company’s core technology offerings were
first operationalized in a multidisciplinary network of clinics called SKMD that he founded and for which he served
as the Chief Medical Officer.

RITA KAPUR, PH.D., is the Head of Digital Biomarkers at Verily Life Sciences (formerly Google Life Sciences), a
translational research and engineering organization focused on improving healthcare by applying scientific and
technological advances to significant problems in health and biology. She serves as a cross-functional lead across
hardware, software, clinical operations and data science to develop and implement initiatives that leverage wearable
and passive sensing technology to help better diagnose, monitor, and intervene in disease. Dr. Kapur received a
Bachelor's Degree (cum laude) in Human Biology from Stanford University, and a Doctorate in Neuroscience from
the University of California, San Francisco, where she specialized in using in vivo awake behaving
electrophysiology and signal processing to study the brain systems underlying reward and learning. Prior to joining
Verily, she served as a Senior Clinical Research Scientist focused on the analysis of biosensor
(electrocorticographic) and clinical trial data to provide support for physicians in selecting, implanting, and
optimizing therapy with an implantable closed-loop brain stimulator for the treatment of epilepsy.

CHRISTOPHER LEPTAK, M.D., PH.D., completed his MD and PhD in microbiology/immunology at UCSF. After
residency in Emergency Medicine at Harvard’s combined Mass General and Brigham program, he joined FDA in
2007 as a primary reviewer in OND’s division of gastroenterology products, focusing on immunomodulators for
inflammatory bowel diseases. In 2010, he joined OND’s Guidance and Policy Team and became OND’s Biomarker
and Companion Diagnostics Lead. His focus is on biomarker and diagnostic device utility in clinical trials and drug
development, both for drug-specific programs. Chris is the Director of CDER’s Biomarker Qualification Program
which aims to improve regulatory consistency and policy development in areas of emerging science and technology.
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CHRIS LUNT, is the Chief Technology Officer for the All of Us Research Program at the National Institutes of
Health. All of Us is effort to build a national, large-scale research enterprise with one million or more volunteers to
extend precision medicine to all diseases. He has 20+ years of experience designing web services and data platforms.
He joined the NIH from Getlnsured, where he served as the Vice President (VP) of Government Solutions. There,
he worked with the federal government, states, and the vendor community to improve health insurance shopping
and enrollment systems. He also worked as an HHS entrepreneur for the Department of Health and Human Services.
Earlier in his career he led an IPO, and invented more than 10 social networking patents now owned by Facebook.

CAMILLE NEBEKER, Ed.D, M.S., is an Associate Professor of Behavioral Medicine in the Department of Family
Medicine & Public Health, School of Medicine, UC San Diego. Her research and teaching focus on two intersecting
area: 1- community research capacity building (e.g., citizen science and community engaged research) and, 2-
digital health research ethics (e.g., consent, privacy expectations, data management). She co-founded and directs
the Research Center for Optimal Digital Ethics (ReCODE.Health) and leads the Building Research Integrity and
Capacity BRIC programs and the Connected and Open Research Ethics CORE initiative. Dr. Nebeker's research
has received continuous support from government, foundation and industry sources since 2002.

SALLY OKUN, R.N., M.M.H.S., joined UnitedHealth Group Research and Development (UHG R&D) in 2020 to
focus on policy and ethics with emphasis on patient and consumer participation in care, research and policy. Prior
to joining UHG R&D Sally was the VP for Policy and Ethics at PatientsLikeMe. In her 12-year tenure she led the
development of the company's health data integrity, patient voice taxonomy, drug safety and pharmacovigilance
monitoring platform, Research Collaboration Agreement with the FDA and the Ethics and Compliance Advisory
Board. Sally advances the science of patient participation and integration of patient perspective into diverse health
policy initiatives at the national and global level. She is a member of numerous expert and advisory boards including
the National Academy of Medicine's Leadership Consortium on Science and Value Driven Healthcare; Public
Responsibility in Medicine and Research (PRIM&R) Public Policy Committee; Duke Margolis Center for Health
Policy Real World Evidence Collaborative Advisory Group; and the International Consortium for Health Outcomes
Measurement PROMSs National Steering Committee. Prior to joining PatientsLikeMe she practiced as a community-
based palliative and end of life care specialist. Sally completed her graduate studies at The Heller School for Social
Policy & Management at Brandeis University. She was a 2010 Fellow in Biomedical Informatics for the National
Library of Medicine and a 2014 Salzburg Global Fellow in New Paradigms for Behavioral and Mental Health.

LARSSON OMBERG, PH.D., as the Vice President of Systems Biology, oversees a research agenda that focuses both
on genomics and participant centered research where data is being collected using remote sensors and mobile
phones. The group focuses heavily on using open and team based science to get a large number of external partners
to collaborate on data intensive problems. Dr. Omberg has a background in computational biology and has been
developing computational methods for genomics analysis and disease modeling. Dr Omberg obtained a MSc in
Engineering Physics from the Royal Institute of Technology in Stockholm Sweden and a PhD. from the University
of Texas at Austin in Physics before performing a postdoctoral fellowship in Computational Biology and
Biostatistics at Cornell University.

ERIC PERAKSLIS, PH.D., is a Rubenstein Fellow at Duke University, where his work focuses on collaborative
efforts in data science that span medicine, policy, engineering, data science, information technology, privacy and
security. Eric is also Lecturer in the Department of Biomedical Informatics at Harvard Medical School, and Strategic
Innovation Advisor to Médecins Sans Fontieres. Prior to his current role, Eric served as Chief Science Officer at
Datavant and was Senior Vice President and Head of the Takeda R&D Data Science Institute. Prior to Takeda, Eric
was the Executive Director of the Center for Biomedical Informatics and the Countway Library of Medicine. Prior
to HMS, Eric served as Chief Information Officer and Chief Scientists (informatics) at the U.S. Food and Drug
Administration. In this role, Eric, authored the first IT Strategic Plan for FDA and was responsible for modernizing
and enhancing the IT capabilities as well as in silico scientific capabilities at FDA. Prior to his time at FDA, Eric
was Senior Vice President of R&D Information Technology at Johnson & Johnson Pharmaceuticals R&D. Eric has
a Ph.D. in chemical and biochemical engineering from Drexel University. He also holds BSChE and MS degrees
in chemical engineering.
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EDMONDO ROBINSON, M.D., M.B.A., F.A.C.P., serves as the Senior Vice President and Chief Digital Innovation
Officer for Moffitt Cancer Center. Dr. Robinson is responsible for expanding Moffitt's ecosystem from within and
outside of health care to deliver on consumer-oriented, real-world solutions for clinical practice, research and
administrative processes essential to support growth and competitive advantage. He also oversees Moffitt's portfolio
of digital innovation, including the development and commercialization of health products, tools and technology.
With this role, Moffitt aims to create and test new services, programs, partnerships and technologies that leverage
digital innovations, while challenging the status quo to reduce the cost of care, improve quality, increase access to
care, and enhance the patient experience. Previously, Dr. Robinson was the Chief Transformation Officer and Senior
Vice President of Consumerism at ChristianaCare, one of the largest health systems in the mid-Atlantic. He was
responsible for the transformation of health care delivery to advance population health initiatives and the move
from volume-based to value-based care with a special focus on developing and managing ChristianaCare's
consumerism and digital strategies. Dr. Robinson is an associate professor of medicine at Thomas Jefferson
University's Sidney Kimmel Medical College an adjunct senior fellow in the Leonard Davis Institute of Health
Economics at the University of Pennsylvania. He is also a fellow of the American College of Physicians and a
senior fellow of the Society of Hospital Medicine. He holds a medical degree from the David Geffen School of
Medicine at the University of California, Los Angeles; an MBA with an emphasis in health care management from
the Wharton School at the University of Pennsylvania; and a master's degree in health policy research also from the
University of Pennsylvania.

CHRISTINA SILCcOX, P.H.D., is a Managing Associate at the Duke-Margolis Center for Health Policy, working on
policy solutions to advance innovation in health and health care and improve regulation, reimbursement, and long-
term evaluation of medical products.

Dr. Silcox’s portfolio includes multiple areas in digital health policy and real-world evidence, with a focus on
medical devices. Currently, she is concentrating on challenges to regulating and adopting of artificial intelligence-
enabled software as a medical device, using mHealth to collect real-world data, and characterizing real-world data
quality and relevancy. Her projects have included the use of patient-generated health data in medical device
evaluations, the exploration of value-based payments for medical devices, and the convening the National
Evaluation System for health Technology (NEST) Planning Board.

Before she joined Duke-Margolis, Dr. Silcox was a senior fellow at the National Center for Health Research,
focused on federal regulation of and policies for medical products. She earned a M.S. from the Massachusetts
Institute of Technology (MIT) in Electrical Engineering and a Ph.D. in Medical Engineering and Medical Physics
from the Harvard-MIT Division of Health Sciences and Technology (HST).

ALICIA STALEY, M.B.A., M.S.1.S., is the Sr. Director Patient Engagement for mHealth at Medidata. She has over
20 years of experience in software design and information systems management and works to infuse the patient
perspective throughout the product development lifecycle and help engage patients in novel ways.Alicia is also a
three-time cancer survivor, first diagnosed with Hodgkin’s disease as a sophomore during college. Over the past 10
years, she has applied her engineering background to improve the patient experience for those dealing with
cancer. With an extensive network of patient advocates and non-profit organizations, she collaborates with a wide
range of stakeholders to improve processes and policies that affect patient care and clinical trials. She has co-led
several research studies on how patients share information in online forums and seek out clinical trial opportunities.
An early adopter of social media, she co-founded #BCSM, which attracts over 250 global participants each week
to its scheduled online discussions. This foundational online social media support channel is recognized as the gold
standard for disease-specific social media networks. Prior to joining Medidata, Alicia worked at Cure Forward and
Science 37 leading their patient recruitment and engagement initiatives to help advance clinical research. As a
champion of patient advocacy and engagement, she understands the critical issues facing patients looking to engage
in clinical research. With a keen focus on improving access to clinical trials, Alicia is passionate about making a
difference for all patients searching for information about clinical trials.
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Building the case for actionable ethics ")
in digital health research supported by
artificial intelligence

Camille Nebeker?”, John Torous® and Rebecca J. Bartlett Ellis*

Abstract

The digital revolution is disrupting the ways in which health research is conducted, and subsequently, changing
healthcare. Direct-to-consumer wellness products and mobile apps, pervasive sensor technologies and access to
social network data offer exciting opportunities for researchers to passively observe and/or track patients ‘in the
wild" and 24/7. The volume of granular personal health data gathered using these technologies is unprecedented,
and is increasingly leveraged to inform personalized health promotion and disease treatment interventions. The
use of artificial intelligence in the health sector is also increasing. Although rich with potential, the digital health
ecosystem presents new ethical challenges for those making decisions about the selection, testing, implementation
and evaluation of technologies for use in healthcare. As the ‘Wild West’ of digital health research unfolds, it is
important to recognize who is involved, and identify how each party can and should take responsibility to advance
the ethical practices of this work. While not a comprehensive review, we describe the landscape, identify gaps to
be addressed, and offer recommendations as to how stakeholders can and should take responsibility to advance
socially responsible digital health research.

Keywords: Research ethics, Bioethics, Digital health, Digital medicine, Artificial intelligence, Precision medicine

Background this opinion essay provides a selective overview of the
The digital revolution is disrupting the ways in which  rapidly changing digital health research landscape, iden-
health research is conducted, and subsequently, chan- tifies gaps, highlights several efforts that are underway to
ging healthcare [1-3]. The rise of digital health tech- address these gaps, and concludes with recommenda-
nologies has resulted in vast quantities of both tions as to how stakeholders can and should take re-
qualitative and quantitative ‘big data} which contain  sponsibility to advance socially responsible digital health
valuable information about user interactions and trans-  research.
actions that may potentially benefit patients and care- Direct-to-consumer wellness products and mobile
givers [4]. Digital data ‘exhaust] or the traces of everyday apps (e.g., Fitbit, Strava), wearable research tools (e.g.,
behaviors captured in our digital experiences, are of par-  SenseCam, ActivPAL), and access to social network data
ticular interest because they contain our natural behav-  offer exciting opportunities for individuals [6], as well as
iors gathered in real time. No doubt, important societal  traditional health researchers [7], to passively observe
conversations are needed to shape how these sociotech- and/or track individual behavior ‘in the wild’ and 24/7.
nical systems influence our lives as individuals, as well ~The volume of granular personal health data gathered
as the impact on society [5]. While not a formal review, using these technologies is unprecedented, and is in-
creasingly leveraged to inform personalized health pro-
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than trained humans — particularly in the fields of can-
cer, cardiology, and retinopathy [8]. The digital thera-
peutics sector is also seeking to expand and bring
products into the healthcare system, with the goal of
complementing or providing an alternative to traditional
medical treatments [9]. While the digital health revolu-
tion brings transformational promise for improving
healthcare, we must acknowledge our collective respon-
sibility to recognize and prevent unintended conse-
quences introduced by biased and opaque algorithms
that could exacerbate health disparities and jeopardize
public trust [10, 11]. Moreover, it is critical that the min-
imal requirements used to make a digital health technol-
ogy available to the public are not mistaken for a
product that has passed rigorous testing or demon-
strated real world therapeutic value [12].

Although rich with potential, the digital health ecosys-
tem presents new ethical challenges for those making
decisions about the selection, testing, implementation
and evaluation of technologies in healthcare. Researchers
began to study related ethical issues over 20 years ago,
when electronic health records technology was being
conceptualized [13], and as new forms of pervasive in-
formation communication technologies produce data,
guiding principles and standards are emerging within
academic research centers [14—16] and industry sectors
[17, 18]. Accepted ethical principles in health research,
including respect for persons, beneficence and justice,
remain relevant and must be prioritized to ensure that
research participants are protected from harms. Apply-
ing these principles in practice means that: people will
have the information they need to make an informed
choice; risks of harm will be evaluated against potential
benefits and managed; and no one group of people will
bear the burden of testing new health information tech-
nologies [19]. However, ethical challenges arise from the
combination of new, rapidly evolving technologies; new
stakeholders (e.g. technology giants, digital therapeutic
start-ups, citizen scientists); data quantity; novel compu-
tational and analytic techniques; and a lack of regulatory
controls or common standards to guide this convergence
in the health ecosystem.

It is of particular importance that these technologies
are finding their way into both research and clinical
practice without appropriate vetting. For example, we
have heard that, “if the product is free, then you're the
product.” This means that our search terms, swipes,
clicks and keyboard interactions produce the data that
companies use to inform product improvement. These
‘big data’ are used to train algorithms to produce, for ex-
ample, tailored advertisements. Consumers allow this by
clicking “I Accept” to confirm their agreement with the
Terms and Conditions (T&C), which are not necessarily
intended to be easy to read or understand. Why does
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this matter? When an algorithm is used to serve up a re-
minder about that yellow jacket you were eyeing, or the
summer vacation you mentioned to a friend the other
day, it may seem ‘creepy, but it might be nice in terms of
convenience. Sometimes the Al gets it right, and other
times it is not even close. For example, if you were to
write something on Facebook that its proprietary Al in-
terprets as putting you at serious risk, it may send the
police to your home! Is Facebook getting it right? We do
not know: Facebook has claimed that, even though its al-
gorithm is not perfect and makes mistakes, it does not
consider its actions to be ‘research’ [20]. Aside from
threats to one’s privacy, we should question the process
of informed consent, whether there is an objective calcu-
lation of risk of harms against potential benefits, and
whether people included in the product testing phase
are those most likely to benefit.

Governance in the ‘wild west’

Those involved in the development, testing and deploy-
ment of technologies used in the digital health research
sector include technology developers or ‘tool makers,
funders, researchers, research participants and journal
editors. As the ‘Wild West" of digital health research
moves forward, it is important to recognize who is in-
volved, and to identify how each party can and should
take responsibility to advance the ethical practices of this
work.

Who is involved?

In the twentieth century, research was carried out by sci-
entists and engineers affiliated with academic institu-
tions in tightly controlled environments. Today,
biomedical and behavioral research is still carried out by
trained academic researchers; however, they are now
joined by technology giants, startup companies, non-
profit organizations, and everyday citizens (e.g. do-it-
yourself, quantified self). The biomedical research sector
is now very different, but the lines are also blurred be-
cause the kind of product research carried out by the
technology industry has, historically, not had to follow
the same rules to protect research participants. As a re-
sult, there is potential for elevated risks of harm. More-
over, how and whether research is carried out to assess a
product’s effectiveness is variable in terms of standards
and methods, and, when the technology has health im-
plications, standards become critically important. In
addition, not all persons who initiate research are
regulated or professionally trained to design studies.
Specific to regulations, academic research environments
require the involvement of an ethics board (known as an
institutional review board [IRB] in the USA, and a re-
search ethics committee [REC] in the UK and European
Union). The IRB review is a federal mandate for entities
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that receive US federal funding to conduct health re-
search. The ethics review is a peer review process to
evaluate proposed research, and identify and reduce po-
tential risks that research participants may experience.
Having an objective peer review process is not a require-
ment for technology giants, startup companies or by
those who identify with the citizen science community
[10, 21]; however, we have a societal responsibility to get
this right.

What questions should be asked?

When using digital health technologies, a first step is to
ask whether the tools, be they apps or sensors or Al ap-
plied to large data sets, have demonstrated value with re-
spect to outcomes. Are they clinically effective? Do they
measure what they purport to measure (validity) consist-
ently (reliability)? For example, a recent review of the
predictive validity of models for suicide attempts and
death found that most are currently less than 1%; a
number at which they are not yet deemed to be clinical
viable [22]. Will these innovations also improve access
to those at highest risk of health disparities? To answer
these questions, it is critical that all involved in the
digital health ecosystem do their part to ensure the tech-
nologies are designed and scientifically tested in keeping
with accepted ethical principles; be considerate of priv-
acy, effectiveness, accessibility, utility; and have sound
data management practices. However, government agen-
cies, professional associations, technology developers,
academic researchers, technology startups, public orga-
nizations and municipalities may be unaware of what
questions to ask, including how to evaluate new tech-
nologies. In addition, not all tools being used in the
digital health ecosystem undergo rigorous testing, which
places the public at risk of being exposed to untested
and potentially flawed technologies.

Demonstrating value must be a precursor to the use of
any technologies that claim to improve clinical treat-
ment or population health. Value is based on the prod-
uct being valid and reliable, which means that scientific
research is needed before a product is deployed within
the health sector [12]. We should also not move ahead
assuming that privacy and the technology revolution are
mutually exclusive. We are in a precarious position in
which, without standards to shape acceptable and ethical
practices, we collectively run the risk of harming those
who stand to benefit most from digital health tools.

Decision-making framework

While there are discussions about the need for regula-
tions and laws, and incremental progress being made on
that front, until some consensus is reached, it is essential
that stakeholders recognize their obligation to promote
the integrity of digital health research [23]. The digital
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health decision-making domains framework (Fig. 1) was
developed to help researchers make sound decisions
when selecting digital technologies for use in health re-
search [24, 25]. While originally developed for re-
searchers, this framework is applicable to various
stakeholders who might evaluate and select digital tech-
nologies for use in health research and healthcare. The
framework comprises five domains: 1, Participant Priv-
acy; 2 Risks and Benefits; 3, Access and Usability; 4, Data
Management; and 5, Ethical Principles. These five do-
mains are presented as intersecting relationships.

The domains in this framework were developed into a
checKklist tool to further facilitate decision-making. The
checklist was informed via developmental research in-
volving a focus group discussion, and a design exercise
with behavioral scientists [25]. To demonstrate how the
decision-making domains can be put into practice, we
present a use case to illustrate the complexities and nu-
ances that are important for stakeholders to consider.

Use case: MoodFlex for mental health

MoodFlex is a private startup technology company that
has developed a mobile app to detect signals of poor
mental health by analyzing a person’s typing and voice
patterns from their smartphones. MoodFlex is negotiat-
ing with several municipalities to integrate their product
within the public mental healthcare system, with the
goal of delivering better services to people with mental
illness through predictive analytics. Since MoodFlex does
not claim to provide a clinical diagnosis or treatment,
approval from the US Food and Drug Administration is
not necessary. The vendor claims to have a proven prod-
uct; however, there are no publications documenting evi-
dence that it is safe, valid or reliable. The only research
that is formally acknowledged involves an evaluation of
the implementation process and uptake of the product
by health providers within the state mental health sys-
tem. The patient will be invited to download the app
after reviewing the vendor’s T&C — no other consent
process is proposed. The algorithm is proprietary, and
therefore, an external body is unable to determine
whether the algorithm that resulted from a machine-
learning process was trained on representative data, or
how decision-making occurs. Data captured about
people using the app are owned by the vendor.

Brief analysis

Before introducing MoodFlex into the public healthcare
system, decision makers — particularly the funding
organization — should evaluate evidence supporting the
efficacy of this product. Reproducible evidence is the
hallmark of evidence-based practice, and is the first step
prior to dissemination and implementation. If a product
is supported by evidence, the logical next step is the
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Access &
Usability

. Isaccessible to diverse
populations

. Can be tailored for end user

. Short or long term use is
feasible

Data
Management

Exdm

. Data collection and storage

protocols are appropriate

. Who can access the data is
described

. Data are secured using best
practices

Privacy Ethical Risks &
. . Benefits
&3 Principles e
. Personal data collected is N .
S Respect for Persons . Evidence exists to support
e product validity and
. Terms and Conditions and = reliabilit
Privacy Policies are reviewed 3 Y
e 2. Risks are disclosed
. Data sharing practices are . :

outweigh risks

Fig. 1 Digital health decision-making framework and excerpts from the companion checklist designed to support researchers [24]

translational phase, in which a ‘dissemination and imple-
mentation’ (D&I) design is appropriate. Unfortunately,
many health apps move straight into a D&I phase before
the evidence exists to support that direction.

Lacking evidence that the product is effective,
decision-makers should recognize that a testing phase is
necessary. As with regulated research involving people, a
research plan should be developed and reviewed by an
external and objective ethics board (i.e., REC or IRB)
that will assess the degree to which people who are in-
vited do not bear an inappropriate burden (justice), po-
tential risks are offset by the benefits (beneficence), and
individuals are provided with an ability to make an in-
formed choice to volunteer (respect). At this early stage,
it is reasonable for the vendor to provide the sponsor
with a robust data management plan, with explicit lan-
guage regarding data ownership, access, sharing and
monitoring. When involving vulnerable populations,
such as those with a mental health diagnosis, additional
precautions should be considered to ensure that those
involved in the study are protected from harms - in-
cluding stigma, economic and legal implications. In
addition, it is important to consider whether some
people will be excluded because of access barriers. For
example, it may be necessary to adapt the technology to
be useful to non-English speakers. Informed consent
must also be obtained in a way that results in a person
making a choice to participate based on having adequate
and accessible information this demonstrates the
principle of ‘respect for persons, and is a hallmark of re-
search ethics. Placing consent language for a research
study in the T&C is unacceptable. For patients who be-
come research participants, it is particularly important
for them to understand the extent to which the
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technology will support their healthcare needs. Patients
might falsely rely on the technology to provide the care
they believe they need when, in reality, they may need to
see their healthcare provider.

Digital research gaps and opportunities

This use case reflects the shift in health research associ-
ated with digital technologies, in that traditional
methods of developing an evidence base may be pushed
aside in favor of what appears to be exciting innovation.
The landscape is unsettled and potentially dangerous,
which makes governance important. We have identified
three notable gaps: 1, disciplinary/sector challenges; 2,
issues of data and technology literacy; and 3, inconsist-
ent or non-extant standards to guide the use of Al and
other emerging technologies in the healthcare settings.

Inter/trans/cross-disciplinary and sector challenges
Emerging technologies and Al systems require diverse
expertise when applied to digital medicine, which intro-
duces new challenges. Technology makers may not
understand patients’ needs, and develop tools with lim-
ited utility in practice [25, 26]. Computational scientists
may train Al using datasets that are not representative
of the public, limiting the ability to provide meaningful
assessments or predictions [27]. Clinicians may not
know how to manage the depth of granular data, nor be
confident in decisions produced by Al [28]. Research is
needed to examine this disconnect, and identify strat-
egies to reduce gaps and improve meaningful connec-
tions between these groups that are integral to digital
health research and the use of Al in the health care
sector.
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Digital/tech-literacy

The idea that keystrokes and voice patterns can be used
to aid diagnosis of Parkinson’s disease remains impres-
sive, but now it may also be possible to use keystroke
dynamics, kinematics and voice patterns to detect men-
tal health problems [29]. Knowing this information may
create public concern if not communicated in a way that
is useful and contextual, adding to fear, skepticism and
mistrust. The ‘public’ includes policy-makers, educators,
regulators, science communicators, and those in our
healthcare system, including clinicians, patients, and
caregivers. Research is needed to increase our under-
standing of what these stakeholders know, what they
want to know, and how best to increase their technology
literacy. This information can then be used to inform
educational resources targeting specific stakeholders. For
example, when reviewing manuscripts reporting digital
health research, reviewers and editors should be aware
of how to evaluate new methodologies and computa-
tional analytics to verify the accuracy and appropriate-
ness of the research and results.

Ethical and regulatory standards

As new digital tools and Al-enabled technologies are de-
veloped for the healthcare market, they will need to be
tested with people. As with any research involving hu-
man participants, the ethics review process is critical.
Yet, our regulatory bodies (e.g., IRB) may not have the
experience or knowledge needed to conduct a risk as-
sessment to evaluate the probability or magnitude of po-
tential harms [30]. Technologists and data scientists who
are making the tools and training the algorithms may
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not have received ethics education as part of their formal
training, which may lead to a lack of awareness regard-
ing privacy concerns, risks assessment, usability, and so-
cietal impact. They may also not be familiar with
regulatory requirements to protect research participants
[23]. Similarly, the training data used to inform the algo-
rithm development are often not considered to qualify
as human subjects research, which — even in a regulated
environment — makes a prospective review for safety po-
tentially unavailable.

New initiatives - what resources are available for
the digital health/medicine community?

Several initiatives have begun to address the ethical, legal
and social implications (ELSI) of the digital revolution in
healthcare. Prominent examples of such initiatives con-
cern Al Specific to Al the foci are broad, and include
autonomous vehicles, facial recognition, city planning,
the future of work, and in some cases, health. A few se-
lected examples of current Al efforts appear to be well-
funded and collaborative programs (see Table 1).

Across these initiatives are efforts to assess the poten-
tial ELSI of Al Similar to the impact of the European
Union (EU)'s General Data Protection Regulation
(GDPR) in countries beyond the EU, the intention of
groups assessing Al through an ELSI lens is to develop
standards that can be applied or adapted globally. In
practice, however, most current efforts to integrate ELSI
to Al are quite broad, and as a result, may overlap in
scope and lack specificity.

While AI has a place in the digital health revolutions,
the scope of technologies goes well beyond Al Other

Table 1 Al initiatives underway to inform broad cross-sector standards

Program Goal

Collaborators

The Partnership on Al [30]

Al-100 [31]
North America

Ethics and Governance of Al Fund [32]

Al Now Institute [33]

Initiative on Ethics of Autonomous and
Intelligent Systems [34]

Human Rights, Big Data and Technology
Project [35]

The Institute for Ethics in Artificial
Intelligence [36]

High-Level Expert Group on Artificial

Intelligence [37] on Al

Chinese Association for Artificial
Intelligence [38]

Al for Humanity [39]

Develop/test and share best practices

Impact of Al on urban life by 2030 in
Conduct evidence-based research

Conduct evidence-based research

Develop standards, certifications, codes

Analyze the use of big data, artificial
intelligence, associated technologies

Explore fundamental issues affecting
the use and impact of Al

Recommend ELSI policy development

Unite artificial intelligence science and
technology professionals

Create an international group of Al

80+ partners in 13 countries

E. Horvitz, R. Altman

Berkman Klein Center, Harvard and MIT
Media Lab

New York University
IEEE and ACM

University of Essex, United Nations
Technical University of Munich partnership
with Facebook

European Commission

Ministry of Civil Affairs, China

Future of Life Institute, France

experts to prepare for societal

transformation
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initiatives are looking more specifically at ELSI in mobile
apps, social network platforms, and wearable sensors be-
ing used in digital research. These include, for example,
the Connected and Open Research Ethics (CORE) initia-
tive at the University of California (UC) San Diego Re-
search Center for Optimal Digital Ethics in Health
(ReCODE Health), the Pervasive Data Ethics for Compu-
tational Research (PERVADE) program at the University
of Maryland, and the Mobile Health ELSI (mHealthELSI)
project out of Sage Bionetworks and the University of
Louisville. What these initiatives have in common is a goal
to inform policy and governance in a largely unregulated
space. These initiatives are but a few examples, and it is
important to note that many laboratories and institutes
are working on digital health ELSL

Conclusion

Being mindful of new health technologies with new ac-
tors in the arena, the gap between known and unknown
risks fundamentally challenges the degree to which
decision-makers can properly evaluate the probability
and magnitude of potential harms against benefits. Now
is the time to take a step back and develop the infra-
structure necessary for vetting new digital health tech-
nologies, including Al, before deploying them into our
healthcare system. Selecting and implementing technolo-
gies in the digital health ecosystem requires consider-
ation of ethical principles, risks and benefits, privacy,
access and usability, and data management. New tech-
nologies have the potential to add important value; how-
ever, without careful vetting, may exacerbate health
disparities among those most vulnerable.
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Development of a decision-making checklist tool to support
technology selection in digital health research

Camille Nebeker,"*” Rebecca ). Bartlett Ellis, John Torous™

Abstract

Digital technologies offer researchers new approaches to test
personalized and adaptive health interventions tailored to an
individual. Yet, research leveraging technologies to capture
personal health data involve technical and ethical consideration
during the study design phase. No guidance exists to facilitate
responsible digital technology selection for research purposes.
A stakeholder-engaged and iterative approach was used to
develop, test, and refine a checklist designed to aid researchers
in selecting technologies for their research. First, stakeholders
(n=7) discussed and informed key decision-making domains
to guide app/device selection derived from the American
Psychiatric Association’s framework that included safety,
evidence, usability, and interoperability. We added “ethical
principles” to the APA’s hierarchical model and created a
checklist that was used by a small group of behavioral scientists
(n= 7). Findings revealed the “ethical principles” domains of
respect, beneficence, and justice cut across each decision-
making domains and the checklist questions/prompts were
revised accordingly and can be found at thecore.ucsd.edu. The
refined checklist contains four decision-making domains with
prompts/questions and ethical principles embedded within the
domains of privacy, risk/benefit, data management, and access/
evidence. This checklist is the first step in leading the narrative
of decision-making when selecting digital health technologies
for research. Given the dynamic and rapidly evolving nature of
digital health technology use in research, this tool will need to
be further evaluated for usefulness in technology selection.

Keywords

Mobile health, Digital medicine, Decision-making
checklist, Research ethics, Tech ethics

INTRODUCTION

Personal health data are increasingly more ac-
cessible to researchers via mobile apps, wearable
sensors, social networks, and other emerging tech-
nologies. Given the potential for technology to im-
prove personal health and decrease healthcare costs,
ethical and regulatory concerns must be embedded
early in the technology selection/development and
subsequently, in the research design phase to opti-
mize benefit and reduce potential harm risks. For
the researcher, digital technologies allow the testing
of personalized and adaptive health interventions,
which can potentially be generalized to vulner-
able populations. Yet, research studie;gleveraging

Published online: XX XXXX 2019

Implications
Practice: Technology-enabled tools and strategies
are increasingly used in digital health research.

Policy: We lack guidance to make informed
choices about the technologies selected for use
in digital research and researchers, institutional
review boards, policy makers, and consumers
should be involved in shaping policy to ensure
safe, effective, and responsible practices follow.

Research: Future research is needed to qualify
potential risks of harm and against potential
benefits of tech-enabled research.

technologies raise critical and nuanced ethical chal-
lenges specific to informed consent, data collection,
bystander rights, risk assessment, privacy, and data
management [1,2].

Increase in digital health research and lack of associated
guidance

A recent analysis of NIH-supported research re-
vealed a 12-fold increase in studies using pervasive
sensing technologies at years: 2005, 2010, and 2015
[3]. While these studies accounted for only about
1.7% of the NIH research budget, it is a clear indi-
cation of how future research will be designed and
implemented into clinical practice. With the increase
in tech-enabled research tools, researchers are chal-
lenged to design studies which take into account
certain risks that may be unknown, particularly
around data management and patient privacy con-
cerns. Due to a lack of familiarity with digital health
tools, Institutional Review Boards (IRBs) are also
grappling with evaluating risks and determining ap-
propriate risk management strategies [2] for these
tools. A key challenge to developing guidance is
establishing the probability and potential magni-
tude of harm that a research participant may be ex-
posed to when using wearable and pervasive sensing
technologies. While researchers can identify some
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potential risks in advance and build in risk manage-
ment strategies, there are also unknown factors that
can only be learned in time [4].

Potential risks of using mobile apps and pervasive sensing
devices in health research

Despite encouraging early results, the future of digital
technologies is actually in jeopardy due to, in part,
the involvement of commercial products being used
as research tools. The foundation of all healthcare
is based on trust. However, consumer trust in tech-
nology and the companies developing these new
tools is shockingly weak. One industry study from
2015 noted that just 8% of those surveyed from the
general public actually trust technology companies
with their healthcare data [5]. For instance, well-
publicized cases of mobile apps disclosing sensitive
reproductive information [6], and concerns about
vulnerability of medical devices like pacemakers
to digital hacking [7] threaten public willingness to
trust new and innovative technology tools.

While commercial apps offer ready to use tech-
nology for health researchers, they present chal-
lenges upon closer inspection. Commercial apps
come with terms and condition of service agree-
ments, which the user must agree to in order to use
the app. When used for research, the participant
may be asked to agree with the terms and services as
part of enrolling in a study. In some cases, corporate
agreements require users waive their rights to liti-
gation, which directly conflicts with federal human
research protection requirements [2]. Moreover,
companies are not bound to protect participant con-
fidentiality nor obtain informed consent in the same
manner that health researchers must. Recent reviews
of commercial smartphone app agreements reveal
that user data are unprotected and open to sharing,
selling, and marketing [8]. A review of dementia
apps found that less than half of those that collected
personal health information offered any written de-
scription of how that data are used and shared, and
in those that did, 42% of privacy policies were not
relevant to the app or personal data collected [9].
A study reviewing diabetes apps found that up to
80% of these apps lacked a privacy policy and the
few that existed offered little protections for app
users or their personal health information [10]. The
lack of protections for health app users prompted
the US Department of Health and Human Services
to draft a report on the need to offer more consumer
protections across the entire digital health platform
space [11].

Emerging initiatives to guide ethical practice

There were several attempts to create guidance yet,

these attempts failed or remain in nascent stages.

The United Kingdom’s National Health Service

(NHS) created a curated app library to offer con-

sumers safe and useful health apps, but the service
30

was suspended in Fall 2015 when vetted apps were
noted to actually have data security flaws and little
evidence for utility [12]. A new iteration of the app
library has been online for less than 1 year at the
time of this writing. Similarly, in December 2016 the
American Medical Association house of delegates
voted to adopt a series of principles to promote
the safe use of health apps, although offered little
actual concrete guidance around evaluating these
principles  (https://www.ama-assn.org/press-center/
press-releases/ama-adopts-principles-promote-safe-
effective-mhealth-applications). The U.S. Federal
Trade Commission [13] released a website to help
app developers learn which regulatory statutes
their app may fall under. The US Food and Drug
Administration is piloting a new regulatory frame-
work for apps and other technologies it classifies as
software as a medical device in its Digital Health
Software Precertification (Pre-Cert) Program [14].
Individual medical societies such as the American
Psychiatric Association (APA) released app-related
guidelines for their clinician members [15] and new
initiatives are exploring guidance development. For
example, Xcertia has engaged the American Medical
Association, the American Heart Association and
a few other health organizations and professional
societies to develop guidelines [16]; however, it is
unclear whether or how these guidelines may sup-
port the needs of multiple stakeholders within the
digital health research ecosystem. The Connected
and Open Research Ethics (CORE) initiative is col-
lecting and curating tech-related research ethics re-
sources and has created a virtual global community
where over 600 researchers, ethicists, regulators,
and participants can discuss emerging issues [17].
However, no guidance exists to facilitate respon-
sible digital technology selection for research pur-
poses. The purpose of this article is to describe the
iterative development of a checklist tool to assist
researchers in the decision-making process when
selecting digital technologies for their research.

METHODS

A two-phase approach was used to develop and test
the checklist. In Phase 1, we engaged an expert panel
of key stakeholders to discuss the decision-making
domains of the checklist and its hierarchical struc-
ture. Phase 2 involved deploying a new version of
the checklist in a survey format to a small group of
behavioral scientists to identify whether the check-
list would prove useful to digital health researchers.
This formative research was conducted under an ex-
empt protocol approved by the IRB at the University
of California San Diego.

Phase 1

To develop a decision-making checklist, critical
domains were identified for selecting digital tech-
nology used in research. The APA’s App Evaluation

TBM
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model [15] was examined as starting point because
it applies to selecting apps, which are a common
digital technology increasingly being used in mental
health clinical care. Noting that little guidance was
available to facilitate app selection in clinical psychi-
atric healthcare, an APA working group developed
a decision-making framework in 2016 for clinicians
[18]. The APA pyramid-shaped framework features
four domains with safety at the base, followed by evi-
dence, usability, and interoperability. The hierarch-
ical nature of the APA model aligns with medical
decision-making of first evaluating risks and then
benefits. The hierarchical aspect emerged from a
clinician’s desire for a tool that was simple to apply
in clinical practice.

Utilizing the APA’s framework to support
decision-making in a research context, we added
ethical principles found in the Belmont Report [19]
(see Fig. 1) to further ground the framework. Our
formative research sought to determine whether
the APA framework, modified with the addition of
ethical principles, as the fifth and foundational do-
main, could be a useful tool for the digital health
“research” ecosystem. Another aim was to confirm
whether this framework was hierarchical, as pro-
posed by the APA working group.

Once the initial decision-making domains were
identified, we convened a group of key stakeholders
to participate on an expert panel to: (a) validate the
domains and (b) determine if any of the identified
domains were more important than others, lending
to the hierarchical structure that was conceptualized
by the APA working group.

Phase 1 recruitment

A 2.5-hr working group was convened in June
2017 in New York City composed of digital research
experts (n = 7) identified by the lead researcher
in collaboration with a member of the HUMAN

Meaningful Use?
Engaging?
Practical?

Privacy & Confidentiality

Privacy Policy?
Choice to Share?
Secure Storage?,
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research project team. Those invited included in-
dividuals with digital research expertise including
clinician/researchers, human research protections,
legal and social perspectives. With the permission of
attendees, the panel discussion was audio-recorded
and a research assistant took notes on a laptop.

Phase 1 procedures

The discussion began with an introduction to digital
health research including related ethical issues of
informed consent (i.e., technology literacy, data
literacy), bystander rights, and data management
[2]. A use-case was then distributed along with an
initial draft of the checklist which included the five
domains of the framework. The facilitator led the
group discussion by focusing on one domain at a
time and its relative importance in decision-making
when applied to the digital research tailored use-
case. The audio-recording was transcribed by the
research assistant and augmented by notes. The
transcripts were reviewed and coded by two re-
searchers (CN, JT) using traditional qualitative
methods [20].

Phase 2

During Phase 2, we incorporated feedback obtained
from the expert panel and developed the second
iteration of a decision-making checklist for use by
researchers and tested it with a group of seven be-
havioral scientists.

The checklist was expanded to include a set of
questions specific to each domain to prompt end
user reflection. This initial checklist was refined
during discussions among the coauthors and sub-
sequently pre-tested by one of the team members
using her own research as a use case scenario. Based
on responses and feedback the checklist was further
refined and put into an online survey format to add

skip logic based on response options (see checklist

Interoperability

Sharing Standards?
=) Ease of Transfer ?
) Ease of Access?

Evidence

Claims Supported?
Clinical Evidence?

Ethical Principles

Autonomy/Respect?
Benefit to Risk Ratio?
Just and Fair Access?

Fig 1 | The APA pyramid modified to include ethical principles as a foundation.
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and domains in Table 1). Using feedback obtained
during this iterative process, we developed the fol-
lowing descriptions for each of the five domains
of: Ethical Principles, Privacy and Confidentiality
Evidence, Usability and Interoperability.

Specific to ethical principles, we utilized the widely
accepted concepts in research ethics including:
Autonomy—the right for an individual to make
his or her own choice once provided with infor-
mation in a setting conducive to decision making;
Beneficence—evaluating research risks against po-
tential benefits; and Justice—emphasizing fairness
and equality among individuals and translation to
those who may benefit from the research results [19].

With respect to privacy, the focus is on both the
participants’ expectations about the control of infor-
mation they hold to be personal and how or whether
data they choose to share is managed. The privacy
factor prompts one to be familiar with the terms and
conditions of use as well as the terms of an associated
privacy agreement, should it exist. Confidentiality
concerns data management and whether data are
collected with appropriate consent, securely stored
and have clear standards for data sharing. When
commercial products are used for research pur-
poses, it is important to evaluate the location of data
storage, data transfer protocols as well as ownership
and ability to litigate if harm occur.

The evaluation of evidence is important as data fi-
delity is critical to answering research questions.
Evidence can take the form of peer-reviewed research
using the gold standard of a randomized controlled
trial to consumer ratings on a website. Knowing what
evidence is used to make an informed decision for
app/device selection factors into the risk to benefit
assessment. That is, if a device does not produce
meaningful data, it is a waste of participant time and
resources such that the risk exceeds possible benefit.
Given that these tools may not yet be tested for re-
liability and validity, research may be conducted to
generate the evidence.

With usability, the focus is shifted on to whether the
research participant knows how to use the app/device
(i.e., technology literacy), can actually use the device/
app and, subsequently adhere to it for the study dur-
ation. Usability influences data quality and, if it is not
usable for whatever reason, there may be increased
missing data or a complete lack of data. This became
evident to a researcher working with a community of
refugee women who agreed to wear a wrist worn de-
vice for tracking physical activity. The researcher later
learned, after finding no data on the devices, that a
wrist worn device was not suitable for their culture
and lifestyle [21]. Lastly, interoperability is the ability to
access and share data with others. For example, can
both the researcher and the participant access raw
data and, if appropriate, can the digital data be shared
with the research participant’s electronic health re-
cord, if desired?

33

To make the function of this checklist more salient
to a researcher, examples of how the domains and
checklist items can be applied in practice are pre-
sented through the following brief use case.

Professor Crystobal is a researcher studying sed-
entary behavior among Latina women and wants to
use a wearable sensor to detect participant’s daily
activity. Column 1 identifies the domain of interest,
column 2 lists items that should be considered, and
column 3 provides a few ideas on how this checklist
can be used in practice.

Phase 2 recruitment

Once the checklist tool was pre-tested internally, a
group of behavioral scientists (n = 7) affiliated with
the Society of Behavioral Medicine’s digital health
working group were asked to complete the checklist.

Phase 2 procedures

This group of scientists was asked to reflect on a
recent study they designed that used a digital tech-
nology. Using that study as their “use case” ref-
erence, they were prompted to reflect upon that
study while responding to the checklist items. Using
SurveyMonkey to deploy the checklist survey, parti-
cipants provided a narrative description of their use
case in response to “Describe the technology and
how it was used in your research.”

Researchers were asked to evaluate each of the
five domains for importance to the decision-making
framework and determine for each domain whether
it was explicitly considered in their study; and, based
on the question prompts in each domain, to identify
if something was missing from that particular section
of the checklist. Lastly, for each domain, we asked re-
spondents to identify whether additional items were
needed and, if so, to describe what would improve
the checklist. Researchers were also asked whether
they would approach their research differently in
the future, having completed the checklist.

RESULTS

Phase 1 expert panel

This group identified their expertise and training
as bioethics/law ( n = 1), bioethics/philosophy
(n = 1), research/clinical ethics (n = 1), bioethics/
anthropology (n = 1), human research regulatory
professionals (n = 3) with several participants also
identifying as researchers. All were employed by or-
ganizations in the greater New York City area when
the expert panel convened.

Discussion of each of the five domains resulted
in group consensus that: 1—all five were necessary
to guide decision-making; 2—there is uncertainty
about whether the framework would be useful to all
stakeholders in the digital health ecosystem; 3—clin-
icians should be involved as stakeholders only when
their patient is also a research participant and the

page 5 of 12

610z Ae|\ 62 uo Jasn (Areiqi 1deq boy ‘oay Jesg) obeiq ues ‘e Jo Aun Aq 9/9/6%S/¥20ZAl/WaycE0L 0 L/10pAdRIISqe-8|0e-0UuBAPE/W)/WOD dNo dlWapedk//:sd)y woly papeojumoq



ORIGINAL RESEARCH

page 6 of 12

participant wants to share data with their clinician,
and 4—the hierarchical structure weighting one
factor as more important than another was not en-
dorsed when applied to the research context.

As the model might be more or less useful de-
pending on represented stakeholders, participants
were asked to comment based on their role as a re-
searcher, regulatory/ethics/policy expert or as a po-
tential participant in digital health research.

Participants reflecting on the “researcher” role ex-
pressed an obligation to be informed about the tech-
nology and potential risks to participants, as noted
in the following,

Being a researcher and having an app and thinking
about whether to recommend it to a participant -
I would want to be responsible for knowing what this
app’s privacy policy is and what’s happening to the
data. ...I’d also feel responsible or compelled to explain
to the participant that this policy is there, but privacy is

contextual and in some ways the policy doesn’t cover.

In the discussion of privacy and confidentiality,
participants noted a need for increasing awareness
among IRB members. For example, concerns about
the potential for data to be subpoenaed or used to
profile an individual. The volume and granularity
of data captured via apps and devices was voiced as
an elevated risk with which neither researchers nor
regulatory bodies were sufficiently familiar.
One participant noted:

I think it would be useful to point out to a potential
participant, when it comes to privacy you’re asking
people to give information that was private and there
might be some existential or psychological harm that
comes from knowing you’re being constantly tracked.
All of a sudden, every movement you make is now
knowable information and accessible in a way it never
was before. Knowing it may help, but maybe there is
some self-policing that comes from knowing you’re
being watched. This is a type of potential harm that
people haven’t really thought about.

With devices that may be commercially available
and are planned for use in health-related research,
one participant referenced the Federal Trade
Commission’s (FTC) role specific to privacy:

The FTC would demand some sort of privacy agree-
ment and see whether you are conforming to it and

then there are state regulatory bodies as well.

While this may be true for studies that are testing a
regulated app or device, it is worthy to note that not
all technologies are regulated. For example, the health
wellness technology sector is not regulated by the FDA.

Discussions about whether a device or app was
suitable for research purposes led to questions about
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the quality of the product or what we called the
“Evidence” domain. Participants expressed concern
about the lack of trustworthy evidence available to
support the use of a particular device or app.

One participant asked if there was an evidence-
base that could inform researcher decisions:

Is there anything that is evidence based that you can
choose from... is there something already known that is
effective for what you want to use this for? If there isn’t
anything, then the bar for evidence for that particular

tool drops.

As well as concerns about the quality of evidence
available from which to form a decision about
whether it is the right tool for the project.

With evidence, it’s a little squishy in that we can say yes
these are peer reviewed articles, but it’s the evaluation
of those peer reviewed articles...

Lastly, the hierarchical structure of the model was
not deemed an optimal way to communicate the
framework. Several times during the discussion of
the various domains, participants would comment
about the hierarchical nature. When discussing the
need to evaluate “evidence” and the “usability” of a
product, one commented, “Maybe it’s not a pyramid
...not feeling the pyramid thing”; which was followed
later by “I don’t get the pyramid at all.” The group
majority voiced that all of the domains discussed
were equally important. For example, if a device has
not been assessed for usefulness by the researcher
in advance of deploying that tool in a study, it will
not work. Effectively, if a participant cannot use the
tool, then there is no data to protect as they are not
likely to use the device or use it correctly. Similarly,
a data transfer protocol (presently noted under the
“Interoperability” domain) may introduce data se-
curity threats, which can impact a participant’s
privacy and confidentiality of their data.

Specific to the foundation of “ethical principles,”
while presented as a discrete domain, it was evi-
dent that the principles of autonomy, beneficence,
and justice cut across the other four factors. For ex-
ample, if a privacy policy states that individual data
may be sold or shared, it naturally increases the risk
to a participant if strategies for protecting data are
not adequate. Evaluating risks is routinely a process
which takes place when determining beneficence—
that is, weighing the potential study benefits against
potential study risks. Likewise, data management is
a process for mitigating data breach and potential
compromises to the participant data confidentiality.

Results of our expert panel suggest an appropriate
model may actually be closer to a flexible Venn dia-
gram where all domains discussed above are neces-
sary but, of variable importance depending on the
unique context and proposed use.

TBM
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Phase 2 results

Seven behavioral scientists affiliated with the Society
of Behavioral Medicine completed the checklist
with six completing all questions. The checklist con-
tained 47 items and was dispatched in February
2018 via an online survey tool. Question 1 asked re-
spondents to identify their specialty which included
the following options, including behavioral scientist,
computer scientist, information scientist, designer/
usability expert, computational scientist, IRB/regu-
latory expert, privacy expert, and ethical/legal ex-
pert. While we had specifically targeted behavioral
scientists, six responders selected behavioral scien-
tist and one identified as a designer/usability expert.
The results of questions specific to the checklist are
reported below by domain.

Ethical Principles

Respondents were asked to reflect upon their spe-
cific digital health research use case, specific to
ethical principles. The initial prompt focused on
the informed consent process which represents the
application of the principle of autonomy or respect
for persons. Using the checklist, respondents an-
chored their answers via a 5-point Likert scale where
1 = strongly agree to 5 = strongly disagree, to docu-
ment the extent to which they conveyed information
about: 1-how the technology works; 2—the volume
and granularity of personal data produced; 3—best
practices for protecting participant privacy and
storing data; and 4—guidelines if bystander informa-
tion is obtained. After responding to each item, we
asked “Is there something missing from this section
of the checklist?” Four indicated “no” and two pro-
vided comments with one stating that more informa-
tion was needed on the term “bystander” rights as
noted here:

not missing, but perhaps more info on the last item (by-

stander info?).

Another noted their actual practice of informing
participants about data management as noted in this
passage:

We made it explicit that participants had full and com-
plete access to their data at any time with written re-
quest. We assessed participants’ physical activity data
using an armband for a week, and many wanted full
reports of their activity data. We believe participants
should have access to their data, so all requests to
produce and securely share their data with them were

honored.

The next item focused on the principle of benefi-

cence where responders were prompted to re-

flect upon “the risks associated with use of the

technology” using the following prompts: 1—are

known; 2—are potentially unknown; and 3—are
36

well managed; potential benefits outweigh study
risks; and study design is rigorous and will result
in developing new knowledge. We then asked if
there was something missing from this section of the
checklist and received one “yes” and three “no” re-
sponses with two comments. One comment focused
on distinctions of risk with the separate “privacy”
section as noted here:

It was unclear to me how these risks also related to the
privacy section below, as the main risks associated with
using my technology are loss of privacy/confidentiality.

The other response, “items on the benefits (as well as
risks)” was inferred as perhaps needing additional
focus on benefits within the checklist.

Lastly, we asked about the principle of justice
where responders were asked whether the people
invited to participate reflected those most likely
to benefit from the knowledge gained from the
study. When asked if something was missing from
the checklist, one reported “no” and two “yes” with
three comments. One comment focused on the need
to share results with the participants noting that this
return of information is not typically considered.

I wonder if you can reflect something here about the
need to SHARE RESULTS with those who are most
likely to benefit from study outcomes - this seems
like a critical part of the research process that is often
neglected.

Two comments focused on the potential for unin-
tended bias related to the time commitment needed
for some digital health studies as well as the issue of
accessibility to participation.

It’s possible that time commitment will deferentially
affect some groups of individuals, within the group of
those most likely to benefit. However, I'm not sure this
belongs here or whether it could be addressed.

Maybe whether people had equal access to participate?

Privacy and Confidentiality

Within the Privacy and Confidentiality domain, the
first prompt asked about the type of data collected
in their reference use case using an open-ended
format. Results focused on the digital aspects pri-
marily; however, it may not have been clear that
digital data were the focus of the prompts. Examples
of responses follow:

self-monitoring of steps and dietary intake; messages
sent between parents and children re: physical activity
and dietary intake; goals and rewards set for PA and
diet; views, clicks, log-ins on website; downloads of
study newsletter.

survey, ema [ecological momentary assessment], ac-

tivity, gps, weather.
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Not sure if this question relates just to the digital com-
ponent? The Fitbit® collected data on activity (mul-
tiple dimensions), heart rate, and sleep.

Responders were asked to reflect upon partici-
pant privacy and data confidentiality practices
using the following prompts: 1—Are data en-
crypted to enhance security? 2—Can data be ac-
cessed by the participant? 3—Are the data stored
in a secure cloud? and 4—Is storage HIPAA com-
pliant? Following this set of questions, we asked
who was authorized to access the data and what
data are shared and with whom using an open-
ended response. We then asked about the use of
commercial apps/devices, including whether they
had reviewed the privacy policy if, in fact, they
were using a commercial product. Specific to the
use of commercial products, prompts were in-
cluded to gauge potential increased risk to parti-
cipants including selling of participant-generated
data to a third party. The section concluded
by asking the respondents to identify whether
something was missing from this section of the
checklist whereby three indicated “no” and two
provided comments.

One respondent focused on the distinguishing
proprietary from commercial products and the
ability to control participant data as noted here:

this should be separated out for proprietary vs. commer-
cial products used; I know much more about the privacy
features of my own website than those of all the commer-

cial products recommended for download in my study.

Another stated that adding an item that focused on
the practice of keeping personally identifiable infor-
mation separate from the data were an important
factor, although challenging.

Maybe a question on whether/how personal info is kept
separate from data (user IDs); this is challenging when
incentives are delivered via email (e.g., gift card codes).

Evidence

Moving to the domain of “Evidence” we asked re-
sponders to reflect on what was known about the
technology using an open-ended response option
and whether there was evidence to support claims
using a forced choice option of “Yes,” “No,” and
“Other.” If the respondent selected “Yes,” they were
asked whether the evidence was peerreviewed.
When asked if something was missing from the
checklist, three indicated “no” and three commented
in lieu of selecting “Yes” or “No.” Comments focused
on the lack of clarity in the prompts and the need for
more guidance and direction in the instruction.

Other than some clarification of what is meant by
efficacy; and evidence. I could imagine it’s good to
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know if there’s evidence that the technology is well-
conceptualized, even though it’s not been tested yet
for key outcomes.

One person indicated “This section was difficult to
fill out!” and another stated, “I’'m not following this
anymore.”—both being useful comments to apply to
the next checklist iteration.

Usability

The domain of “Usability” included the following
prompts in response to the question: For the target
population: 1—Are the instructions, support, design,
and engagement appropriate? 2—Can it be tailored
to the end user? 3—Will the target population find
long-term use feasible? 4—Is it accessible to diverse
populations? 5—Need for internet?, and 6—Need
for a smart phone? For these items, a 5-point Likert-
scale was used ranging from “Not at All” to “A Great
Deal.” The final item asked if something was missing
from this checklist.

Three responders stated “no” that nothing was
missing and three added comments, but did not indi-
cate “Yes” as a response. The comments were some-
what diverse with one indicating that a special type
of smart phone would be useful and another noting
that the concept of tailoring was possibly too large
and needed to be more specific as noted below:

consider adding ‘need for particular type of smart-
phone’? seems to be an issue especially with many
research-created apps, etc., where they are only sup-
ported by iOS or Android

and

tailoring is very broad; maybe there are subcategories
such as time of use, display would help? I also wonder
if it would help to have a checklist option designed
specifically for technology that is being developed/im-
proved (Yes, No, In Development) to encourage use of
the checklist at all phases of development.

An unanticipated response included the potential
for a researcher to feel uncomfortable with past de-
cisions prompted by this reflection process. The fol-
lowing comment captured what a potential lack of
preparation can foster in digital health research and
supports the notion of using a checklist prospect-
ively during the early technology development and
research design phase:

With these questions, I'm just feeling guilty for doing
work; I'm feeling rather helpless in my ability to do
good work.

Given a goal of this exercise was to prompt reflection
of previous research planning, it should not come as a
surprise that scientists participating in this project were

TBM

610z Ae|\ 62 uo Jasn (Areiqi 1deq boy ‘oay Jesg) obeiq ues ‘e Jo Aun Aq 9/9/6%S/¥20ZAl/WaycE0L 0 L/10pAdRIISqe-8|0e-0UuBAPE/W)/WOD dNo dlWapedk//:sd)y woly papeojumoq



ORIGINAL RESEARCH

TBM

concerned that they had not considered all aspects
of the checklist prospectively. Moving forward, the
checklist will be used during the research planning
process to assist researchers in thinking through how
the five domains pertain to their specific study plan.

Interoperability

The final domain of “Interoperability” included six
prompts to reflect on data sharing including: 1—
Will data be shared with others so they can build
upon this research? 2—Are data transferrable to an
electronic health record? 3—Are data shared with
anyone else outside of clinical care or research? 4—
Are there limitations to access of data? 5—Can data
be accessed by the participant? and 6—Can data be
accessed by the investigator? A 4-point Likert scale
was used to record responses that ranged from “Not
at All” to “To a Great Extent.” The final questions
asked whether something was missing from the
checklist and, as before, three stated “no” and three
provided comments. One comment focused on an
internal practice for data storage and two comments
were more tailored to adding items to the checklist
that address the connection between different tech-
nologies as evidenced by this comment:

consider adding something about the connection be-
tween different technologies within a specific study -
for example, participants in my study accessed their
own data via the study website but also generated their
own data on commercial apps and these didn’t “talk”
to my website; other interventions are delivered via so-
cial media or other tech platforms and ask participants
to track on MyFitnessPal, Fitbit, etc. but all tech isn’t

nec [essarily] connected.

Future research planning

Using an open-ended response option, the final
survey questions asked participants if they would
approach research planning differently in the future
having now completed the checklist. Five of the six
responding indicated that the checklist was helpful
to think through the potential issues and that they
were unaware of the possible risks that they may
have introduced by not thinking about interoper-
ability, privacy, and consent as noted here:

There were various factors around interoperability
and privacy that I did not previously consider, espe-
cially with the use of commercial apps within my study.
Data from these apps weren’t collected for my study,
but I did request that participants try a variety of apps,
which could have put them at risk for loss of confi-
dentiality that wasn’t as clear at the time of the study.
Will consider this more in the future and also include
transparent language in the consent forms. It was very
helpful to think through all these questions/issues and
apply them to my project. And, yes, 'm sure I would
do things differently next time.

38

The issues of interoperability and data sharing should
be considered. IVR Systems have many systems in
place that ensure the safety, security, privacy and us-
ability of the technology, but the technology will ad-
vance as there are ways to analyze the sounds of the
participants voice which could lead to identification.
All tech can be breached so more considerations are

necessary today than yesterday.

One participant was fairly confident they had con-
sidered prospectively what needed to be addressed
yet, acknowledged that this had come from some
trial and error experiences.

I do not believe so. I think it was critical that when
using a commercial device, we included the creator as
a co-investigator. This helped us think through gener-
alizability and future applicability issues once the soft-
ware and hardware are updated. I have done other
studies in the past where we did not do this, and it
was a mess. I highly recommend doing this whenever
possible.

Lastly, one commented that this reflection process
was fostering an inability to feel confident that they
should be conducting this research.

... T also feel powerless as there is so little I feel I under-
stand in making decisions on use. Truly, I don’t know
how to handle this at this point as this is making me
think that we shouldn’t be doing any research any-
more; I don’t know how to do the proper due diligence
needed on the unknowns.

Refined framework and checklist

Our results led to a final step of revising the check-
list for future use by digital health researchers.
Terminology used in checklist and confusion as-
sociated with domain characteristics led to several
changes. First, we uncoupled the domain labeled
“Privacy and Confidentiality” leaving “Privacy,”
which pertains to the individual, asits own domain and
moving “Confidentiality,” which focuses on the data,
to the “Interoperability and Data Sharing” domain.
We then expanded the latter domain to broadly in-
clude: data collection, storage, sharing and interoper-
ability and renamed the “Interoperability and Data
Sharing” domain to “Data Management.” There was
some confusion specific to assessing risks and benefits
using the original domains of “Ethical Principles” and
subcategory of “Beneficence” with the “Evidence”
domain. Because establishing the existence or lack of
“Evidence” intersects with a traditional risk to benefit
assessment, we renamed the evidence domain to
“Risks and Benefits” and folded prompts previously
used under “Evidence” within this more compre-
hensive domain. The domain of “Usability” was ex-
panded to also include “Access.” Finally, we observed
that while “Ethical Principles” can stand as a separate
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domain, in practice, the ethical principles cut across
all domains. For example, a lack of evidence may ele-
vate the potential risks of harm when compared to po-
tential benefits or, “Beneficence.” Likewise, if an app
is not available across operating systems, it may limit
access to participation, which presents a “Justice”
issue. To demonstrate how the Ethical Principles cut
across the domains, a column was added so that re-
searchers could connect prompts within each domain
to the research plan development and the informed
consent process.

As a result of these changes, the final “Digital
Research Decision-making Framework” contains
five domains. A companion checklist is located on
the Connected and Open Research Ethics platform
(thecore.ucsd.edu) in the Resource Library under
the “Tools” tab. The domains are now labeled:
1—“Privacy,” 2—“Risks and Benefits,” 3—“Access and
Usability,” 4—“Data Management,” and 5—Ethical
Principles and are presented as a Venn Diagram
with Ethics at the center (see Fig. 2).

To use the checklist, the researcher is prompted
to evaluate the technology, the technology product
information, privacy policies and the literature in
the cases where the technology has been previously
used in research. The checklist response options are
yes, no, and unsure. In the cases where the researcher
checks no or unsure in evaluating the technology,
the researcher must consider whether the technology
poses risks to participants and the protection of their
rights or threats to the study design that would pre-
clude use of the technology for the intended re-
search purposes. The researcher must also consider
if an alternative technology should be selected or if
there are different approaches that can be taken in
the design and conduct of the study that would over-
come any potential risks or barriers. For example, if
the selected technology requires internet access, the
researcher will need to determine whether internet
access is possible and, if not, whether access will be
provided as part of the study design.

DISCUSSION
While the need for a framework and a checklist to
help inform decision-making in the digital health

The P: iatric A:

App Evaluation Model

A —==8
-

Potential for Benefit

AT -8

ecosystem is a growing imperative, the solution is
complex. The checklist domains evolved as our pro-
cessof engaging expertsrevealed important points for
further consideration. However, the linear ordering
and hierarchy of the model was deemed suboptimal.
Instead, the discussion identified the complex inter-
actions of ethics, privacy, safety, efficacy, usability,
and data management that, depending on the situ-
ation and stakeholder, assumed different priorities
and requirements. One expert panel member sug-
gested a goal of the decision-making framework is to
prompt reflection at the point of selecting the digital
technology and, is rarely about the tool as an object
of study. In the case of using artificial intelligence
with a camera and sensors, ideally the researcher
would pause and consider whether the participant
is adequately informed, that the camera and sensors
were vetted for appropriate privacy protections and
data management, etc. This comment reveals a po-
tential need to socialize the researchers about their
role in the tech-ethics ecosystem as being key actors
in advancing responsible research.

Results of this group discussion offer insight into
what a more optimal tool may look like, which were
further assessed by a group of behavioral scientists.
Considering the dynamic and rapidly evolving nature
of technology use in health research, a decision-making
tool must also be flexible. While the key domains are
useful to consider, the checklist questions/prompts
and other information is necessary to help users
evaluate each of these domains specific to a greater
context. Moreover, the framework and checklist must
evolve with the technologies themselves. We also rec-
ognize that it is important for the framework to inform
discussions about technology between different stake-
holder groups. For example, a researcher talking to a
participant about the use of an app needs to know the
participant’s level of technology literacy to fully assess
usability, which can influence protocol adherence.
Likewise, a potential participant needs to understand
the possible risks of a data breach in order to fully
understand the potential threats to their privacy and
related data security merits of an app. The IRB must
understand the researcher’s evidence for efficacy of a
category of apps before deciding if the proposal under
review will lead to scientific advancement through the

Interoperability

RISKS &
BENEFITS

* PRVECY  erhicaL
PRINCIPLES &3”DaTA
MANAGEMENT

Ethical Principles

ACCESS &
USABIL

Fig 2 | Decision-making framework progression from hierarchical to interconnected domains.
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production of generalizable knowledge. Creating this
type of tool is possible yet, presents a unique challenge
in untangling the inherent complexity of the possible
interactions.

There is a surprising gap in the scholarly litera-
ture on the knowledge base, readiness, and current
use of health technology for research among all
stakeholders and this presents an immediate op-
portunity for impactful survey research. The discus-
sion on stakeholder adoption identified an urgent
need for further education among all stakeholders
regarding technology use in health research. Even
offering simple use case studies suggested a poten-
tially high-impact intervention. Understanding how
to better evaluate the technical aspects of digital
security was raised as another area for educational
interventions. Consequently, the discussion of eth-
ical principles suggests that the role of ethics in this
emerging health technology research space cannot
be isolated by a single factor but, may be better rep-
resented as an integral element of all factors. In sum,
translating current thinking on research ethics into
updated and flexible strategies that inform how key
factors interact and map to principles of autonomy,
beneficence and justice is yet another high impact
research area for researchers to investigate.

Since initiating this work to develop a digital re-
search decision-making framework and checklist,
we reviewed the publication of other guidelines,
including a recent paper to describe key points to con-
sider [22] and the Xcertia initiative advanced with an
initial draft. That being known, none of these efforts
are tailored to the needs of the research community—
specifically those using digital tools for non-clinical
purposes. As we demonstrated in our research, the
need for clinician—patient developed frameworks are
likely not transferable, as the clinician—patient rela-
tionship is unique and distinct from the researcher—
participant. Regardless, it is encouraging to see new
efforts emerging in this important space.

Limitations

To our knowledge, this project is the first study to
query researchers, regulatory experts and research/
bioethicists to discuss strategies for fostering in-
formed decisions about the selection of apps/de-
vices as tools used in health research. As a result of
this work, the framework and checklist tool provides
insights from which to build upon for further re-
search. The nature of this developmental work is to
gather insight, rather than draw generalized conclu-
sions. This checklist will require further input and
the ongoing involvement of researchers, ethicists,
legal scholars and regulatory experts. Additional
research is needed to obtain perspectives of tech-
nology makers and consumers (e.g., research partici-
pants) to fully validate the checklist. As this checklist
is used by a wide and diverse audience, it will un-
doubtedly require further updating and refinement.

CONCLUSION

Creating an inclusive and informative tool remains
a complex challenge. Translation of clinician—pa-
tient tools or simple linear-hierarchical tools are
likely insufficient for the multi-stakeholder per-
spectives of participants, researchers, IRBs and
technology makers. We recommend that coordin-
ated efforts to develop best practices and standards
that support the responsible selection of technolo-
gies used in research remain a priority. Bearing in
mind the potential for digital research to impact
health and health care, it is critical for those in-
volved to build and choose tools that will provide
meaningful research that translates well to clinical
practice while protecting research participants in
the process.
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Summary

Digital health encompasses a wide range of novel digital
technologies related to health and medicine. Such tech-
nologies rely on recent advances in the collection and
analysis of ever increasing amounts of data from both
patients and healthy citizens. Along with new opportuni-
ties, however, come new ethical and policy challenges.
These range from the need to adapt current evidence-
based standards, to issues of privacy, oversight, account-
ability and public trust as well as national and international
data governance and management. This review illustrates
key issues and challenges facing the rapidly unfolding dig-
ital health paradigm and reflects on the impact of big data
in medical research and clinical practice both internation-
ally and in Switzerland. It concludes by emphasising five
conditions that will be crucial to fulfil in order to foster in-
novation and fair benefit sharing in digital health.

Keywords: digital health, personalised health, digital
ethics, data governance

Introduction

Digital health is a rapidly expanding medical field
premised on the availability of ever increasing amounts of
data about people’s lifestyles, habits, clinical histories and
pathophysiological characteristics. According to the US
Food and Drugs Administration (FDA) “[t]he broad scope
of digital health includes categories such as mobile health
(mHealth), health information technology (IT), wearable
devices, telehealth and telemedicine, and personalized
medicine” [1]. These categories rely heavily on human
health data. Conventionally, the collection of health data
is mediated by officially licensed medical devices, such
as diagnostic instruments or genome sequencers, operated
by health professionals in clinical environments and under
strict regulatory conditions. Moreover, clinical data are
typically stored in public health registries, at hospitals or
in the archives of individual physicians. Digital health, in
turn, entails connecting health-related data, including da-
ta generated by patients themselves, and harnessing the
medical potential of technological tools of common usage,
such as smartphones, wellness bands, apps, social media
and sensing devices disseminated in our dwelling environ-

ment. Most of these tools are not initially conceived for
medical use and are not marketed as medical devices. No-
tably, however, some prominent digital health technologies
already cut across the rigid distinction between licensed
and ordinary gadgets, and the latter have also started to re-
ceive official designation as medical devices (see table 1)
[16]. But digital health is not limited to ordinary technol-
ogy, nor to ordinary-turned-medical technologies. Certain
digital health tools present entirely novel features, as in the
case of digital pills that, thanks to a microcircuit activated
upon contact with liquids in the patient’s stomach, can tell
an external sensor whether and when a patient has taken
his or her medication.

The defining feature of digital health, however, has to do
with data rather than technology. What is distinctive about
digital health in this respect, is that — typically through
wearable, portable, ingestible or otherwise implantable de-
vices — it generates a “seamless flow of critical medical
data between patients, their families and their physicians”
[17]. The ambition of digital health is therefore aptly de-
scribed as generating a circulation of data from patients
(patient-generated data), to devices and/or health profes-
sionals (who analyse and make sense of the data), and then
back to devices that eventually provide the patient with in-
formation regarding their health status and how to manage
1t.

To this aim, phenotypic and behavioural information, as
well as data about socioeconomic status and dwelling envi-
ronment, need to be collected. Information posted on social
media can also turn out to be potentially relevant to both
individual and population health [18, 19]. Digital health
thus inhabits what has been recently labelled an “evolving
health data ecosystem* [20], a space that also includes data
gathered by healthcare services, such as electronic health
records, genetic or genomic data, diagnostic data, claims
data and the like. According to some, given their volume,
complexity, variety and propensity to be analysed through
data-mining techniques, such data qualify as big data [21]
or, more precisely, as biomedical big data [22—24]. This ex-
panded set of health-relevant data is expected to occasion
huge progress in medicine, for example by helping peo-
ple monitor their health status, assisting patients in cop-
ing with their conditions, inferring health-related issues
earlier on, personalising treatment to individual patients’
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characteristics, improving outcomes, reducing costs and
inefficiencies, and also boosting medical discovery and ac-
celerating drug development. Admittedly, there are signif-
icant expectations of digital health and there is strong in-
terest on the part of numerous stakeholders in promoting it
and seeing it flourish. At the same time, for digital health
to materialise several ethical and policy challenges need to
be overcome [25].

To review these challenges, a multidisciplinary symposium
was held at the University of Zurich (UZH) on 1 December
2016. The symposium, convened by UZH’s Health Ethics
and Policy Lab (now based at ETH Zurich), brought to-
gether different perspectives from national and internation-
al experts regarding the challenges that accompany the
development of digital health. Participants included scien-
tists, ethicists and lawyers, representative of national re-
search institutions such as the SAMS (Swiss Academy of
Medical Sciences) and the SNSF (Swiss National Science
Foundation), as well as policy specialists from interna-
tional organizations such as the OECD (Organization for
Economic Co-operation and Development) and the WHO
(World Health Organization).

Three key challenges impinging on the development of
digital health were identified and discussed:

1. How does digital health fare with respect to the de-
mands of evidence-based medicine?

2. How can public trust in digital health be generated and

sustained

Table 1: Examples of licensed and unlicensed digital health technologies.

Swiss Med WKkly. 2018;148:w14571

3. What policy gaps can and should be addressed through
global policy instruments and what instead require
specific initiative in the Swiss context?

Here, we provide key considerations on the above three
questions, based both on the discussions held at the sym-
posium and further literature review. These considerations
are of relevance to scientists, ethicists and public health ex-
perts, as well as developers and policy makers interested
in assessing the impact of big data in medical research and
clinical practice, both internationally and in Switzerland.

Digital health and the quest for evidence

The clinical development of digital health applications is
premised on the creation of very large data collections
recording sensitive personal data. In the public sector, ex-
amples include: the 100K genomes cohort in the UK,
which aims to sequence the genome of one hundred thou-
sand NHS cancer patients by 2017; the All of Us cohort
of the Precision Medicine Initiative in the US, which will
collect samples, and phenotypic and clinical data from one
million Americans; or the Million Veteran Program, which
currently constitutes the largest genomic database in the
world and also includes lifestyle information and access to
electronic health records for research purposes [26]. Be-
sides these large-scale public initiatives, the private sector
is also collecting huge amounts of phenotypic and genet-
ic data from users of health-related services and products.
For example, as of June 2015, the genetic testing compa-

Company

Product |Type Year of license

Licensing body Description

Licensed

AdhereTech, Inc.

Smart Pill Bottle [2] Wireless pill bottle

FDA, CE, ISO Smart wireless pill bottle capable
of alerting patients to missed dos-

es.

Airstrip Technologies

AirStrip ONE® [3, 4] Mobile app 2014

FDA Provides an interoperable platform
that simplifies clinicians’ and pa-
tients’ access to diverse health da-

ta.

AliveCor, Inc.

Kardia Mobile [5, 6] Wireless pad 2016

FDA Portable electrocardiogram device
displaying results on a smart-
phone. It can detect cardiac anom-

alies such as arrhythmia.

Blue Spark Technologies,
Inc.

TempTraq® [7, 8] Disposable patch

Inc.

Blue Spark Technologies,

TempTraq®[7, 8] Disposable patch

Natural Cycles

Natural Cycles [9] Wireless thermometer 2017

CE, ISO App to keep track of ovulation and
period, associated with a smart
thermometer to determine fertile
days. It can be used as a contra-

ceptive.

Proteus Digital Health

Proteus Discover [10, 11] |Ingestible sensor, wear- |2014
able sensor and mobile

app

FDA An ingestible sensor mounted on a
pill, which, when swallowed, sends
a signal to devices keeping track

of compliance with prescriptions.

Not licensed

Butterfly Network, Inc [12].

Compact ultrasound

Portable ultrasound machines
trained through deep learning al-
gorithms.

Fitbit, Inc.

Fitbit Aria™ [13] Wi-Fi smart scale

Used in conjunction with an app, it
tracks body mass index, weight,
body fat percentage and lean
mass.

Happify, Inc.

Happify ™ [14] Mental health app

Smartphone app aimed at alleviat-
ing stress and negative thoughts
through techniques in the form of
games and exercises.

MyFitnessPal, Inc.

MyFitnessPal [15] Calorie counter app

Free app to keep track of calorie
intake. It is said to help users who
want to lose weight.
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ny 23&Me had collected and genotyped DNA from more
than one million costumers [27]. In June 2016, the US-
based healthcare provider and insurer Kaiser Permanente
announced the constitution of a research biobank pulling
electronic health records, DNA and behavioural and envi-
ronmental information from 500 000 people [28]. Finally,
end-users of digital health devices such as heart monitoring
apps or fitness gadgets also contribute vast amounts of data
to service providers. Such data can be cross-linked to other
existing large-scale repositories both for research purposes
and for developing new digital health services to users and
professionals alike.

The evidence base for digital health

Mining large-scale data repositories creates challenges re-
garding data management, privacy protection and over-
sight mechanisms. Other challenges, however, relate more
directly to the composition of such repositories and to the
tools employed to mine the data they contain. For instance,
the use of convenience samples to populate precision med-
icine and precision public health cohorts can bias the sam-
ple compositions and compromise the representativeness
of target populations [29, 30]. Such issues can affect the
quality of the evidence derived from digital health research
and employed in digital health-based interventions, both
at the individual and at the population level. Taking into
account ethnicity, age, sex, socioeconomic status and ge-
ographical distribution in recruiting research participants
thus seems crucial to ensure the generalisability of research
findings. Similarly, the representativeness of the datasets
employed for product development and the robustness of
analytic tools to mine such datasets can affect the devel-
opment of effective digital health services and devices by
private companies.

There seems to be room for precompetitive research in
this area in order to at least create standards and possibly
reference datasets to enhance reproducibility. Meanwhile,
progress in regulatory science should enable better assess-
ments of evidence for safety, efficacy and cost-effective-
ness. In both cases, policy stimulus appears crucial to
achieve tangible results. As for more user-oriented digital
health applications, as with products and services devel-
oped outside the realm of licensed devices, there is the
need to enhance transparency and accountability by adopt-
ing forms of sector-specific self-regulation and adhering to
robust corporate responsibility schemes.

Data variety is also a key issue in digital health. For exam-
ple, although genetics can be extremely informative from
a medical point of view, with a few notable exceptions the
contribution of genetic variation to most common chronic
conditions is either unknown or relatively small. Instead,
other types of information, such as levels of physical ac-
tivity, diet and socioeconomic factors, are better suited for
predicting the risk of developing a chronic disease [31].
Therefore, to harness the full potential of data mining and
predictive analytics in digital health, genomic data alone
are insufficient [32, 33].

Novel modes of evidence generation could take into ac-
count multidimensional and unstructured data along with
conventional clinical measures. For example, in health out-
comes research or assessment of long-term effects of drugs
and interventions, pragmatic trial designs are raising con-

Swiss Med WKkly. 2018;148:w14571

siderable interest. Such studies employ less restrictive in-
clusion criteria than traditional clinical trials and allow for
concomitant morbidities and medications. Such models re-
ly on “real-world data” collected from actual patients [34]
— data that would simply not be available in randomised
controlled trials. Real world data include medical records,
data from portable devices and social media, as well as
environmental and socioeconomic data. Other than saving
on the high costs of randomised controlled trials, prag-
matic trials based on reals world data promise to be more
representative of real populations. At least when risks are
deemed reasonably low, real-world evidence obtained
through pragmatic designs could thus be used in support of
regulatory decisions about the safety and efficacy of dig-
ital health devices and applications. Moreover, real-world
evidence could also be employed to retrospectively assess
digital health applications that reached the market without
being cleared by regulatory agencies.

The technologies that are enabling extensive data collec-
tion and the development of digital health can be applied
to both individual and population health issues, contribut-
ing to the emerging fields of precision medicine and pre-
cision public health, respectively [35-38]. Both the former
and the latter promise more tailored interventions in their
respective domains, progress in the understanding of dis-
case causes and outcomes, along with reduced costs and
improved access to effective healthcare. Both precision
medicine and precision public health have specific sets of
ethical implications [39, 40]. In such areas, larger, more
representative and diverse databases are expected to tackle
very well-known issues of external validity that afflict ran-
domized controlled trials [41, 42]. Yet this prospect is af-
fected by the challenges discussed above. Moreover, the
use of artificial intelligence (Al) and deep learning [43]
to mine such large data repositories has led many to think
that digital health can dispense with mechanistic explana-
tions and hypothesis-driven research, replacing them with
mere algorithm-guided searches for correlations between
phenomena in large-scale observational studies [44—47]. It
has been noted, however, that even if those methods prove
effective in establishing robust correlations, controlled in-
terventional, randomised trials on stratified patient cohorts
will still be necessary to establish the safety and clinical
utility of novel therapies or public health interventions
[48].

Ethical and policy challenges in digital health

Privacy and security

Most of the debate about big data uses for health purposes
has focused on privacy. As more data sources become
available and advanced analytics can be applied for various
purposes, protecting privacy is undoubtedly a complex
challenge. What contributes to this complexity is that stan-
dard mechanisms of protection such as anonymisation, no-
tice and consent are excessively stretched in this environ-
ment of new capabilities. Consent for data uses can hardly
include the exhaustive list of all possible future data us-
es [49]. In turn, anonymisation technologies, even if ro-
bust, still leave re-identification in the realm of possibility
if enough resources were to be devoted to it. Data securi-
ty has also been a challenge, with cyber attacks, hacking
of databases and data kidnapping being reported frequent-
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ly. Incidents of data breaches and “kidnapping” (data held
by hackers for ransom) are on the rise. According to the
Breach Portal of the Health and Human Services (HHS)
Office of Civil Rights, millions of healthcare records have
been affected to date. In May 2017, healthcare databases in
one hundred countries faced a ransomware attack claiming
a ransom of $300 in bitcoin to unlock affected machines
[50]. The UK’s Information Commissioner’s Office notes
that the health sector accounts for most of the data inci-
dents reported to them. These incidents, along with grow-
ing public concerns about big data affecting most aspects
of contemporary life, have contributed to a bleak picture of
the future of privacy [51]. Understandably, such a picture
does not create an environment conducive to the demands
of digital health, namely easier data circulation between
individuals, devices and institutions. Against this back-
ground, the public needs to be reassured that robust secu-
rity measures are mandated and enforced through clearly
articulated policies. Concerns can be addressed with the
adoption of appropriate technologies, monitoring and eval-
uation of security systems, transparency and accountabil-
ity mechanisms such as legal remedies and compensation
for privacy harms resulting from security breaches. Secu-
rity will continue to evolve, but the big data approach will
continue to demand more technical skills, responsive poli-
cies and regulatory oversight.

Trust

Essentially what is at stake is the creation of a culture
of trust that will enable all stakeholders in the big data
ecosystem to benefit from the development of digital
health [52]. In particular, public trust in health data uses is
of paramount importance. The recent case of the care.da-
ta in the UK serves as a good example of how mistrust on
the part of the public can derail large-scale data initiatives
(see table 2). But trustworthy digital health activities re-
quire more than privacy protection. Elements of trust in-
clude transparency, accountability, benefit sharing and cer-
tainly more clarity about data ownership and data control.
What is important here is the realisation that trust cannot
only be built through achieving just one element, but rather
through a concerted effort to promote all of its elements.
Therefore, trustworthiness cannot merely be achieved by
innovative consent models offering more or less control
of data uses. Rather, consent innovation has to also be ac-
companied by clarity on how individuals and communities
will benefit from digital health developments, by oversight
mechanisms that protect common interests and by account-
ability mechanisms that can sustain public scrutiny.

Swiss Med WKkly. 2018;148:w14571

Accountability

With automated data mining for decisions of clinical or
public health relevance becoming one of the most promis-
ing features of digital health, accountability is of critical
importance. In particular, the adoption of these new tools
requires relevant adaptations in existing accountability
standards. For instance, in the field of digital epidemiolo-
gy, data mining can be used to analyse free, unstructured
text from social networks in order to make predictions
about the spread of infectious diseases [34]. Moreover, mo-
bile technologies can be used to target specific popula-
tions with health-related information that can help contain
the spread of infectious diseases. These new approaches
can increase the speed and accuracy of health dynam-
ics monitoring, leading to more targeted and effective in-
terventions. However, premature reliance on such innov-
ative tools could lead to an inappropriate use of public
resources, unnecessary public alarm and individual harm
from dispensable medications [55]. Similarly, it is antici-
pated that medical practice will increasingly be aided by
Al algorithms for diagnosis, treatment decisions and sur-
gical procedures [55, 56]. Progress in such areas is ex-
pected to greatly improve the quality of healthcare pro-
vision for individual patients. Such tools can range from
simply providing assistance to practitioners, to possibly
one day being fully autonomous from human supervision
[57]. Indeed, increasing sophistication could lead to more
accuracy. However, as more Al-guided tools become au-
tonomous, fewer human operators are able to override their
decisions. Hence, Al-guided medical devices have the po-
tential to jeopardise current norms of professional account-
ability in clinical practice, making it more complicated to
trace responsibility back to individual practitioners. It is
therefore crucial that ad hoc, robust evidence standards are
elaborated to guide the adoption of digital health technolo-
gies in clinical practice [58, 59].

Governance approaches in the development of
digital health

Global perspective

The strong technological component of digital health does
not imply that innovation in this area will affect only the
most affluent countries. Recent figures published by the
Global Observatory on eHealth of the WHO show that
health systems in most countries increasingly rely on data
[60]. In fact, the decreasing cost of digital technologies is
making it possible also for low- and middle-income coun-
tries to adopt telehealth, mHealth, eLearning, electronic
health records and big data. EHealth initiatives are under-
way in 83% of WHO Member States, and 90% of them

Table 2: Case study overview: care.data National Health Service (NHS) England [53, 54].

NHS launched care.data in 2013 as an initiative to collect and store patient data from GPs (general practitioners) around the country in the Health and Social Care Information
Centre database (HSCIC; now NHS Digital).

HSCIS already collected hospital data. Analysing GPs data as well was supposed to improve outcomes and customer service, as well as to further understanding of diseases
and treatments.

Despite initial endorsement by various professional societies, strong public reactions against the initiative were triggered by concerns about privacy, lack of transparency re-
garding data access and the involvement of commercial entities.

Reports by the National Data Guardian and the Care Quality Commission that highlighted that inadequacies in transparency and privacy led to the discontinuation of care.data.

The reports emphasised that citizens should be able to exercise their “right to know how their data are safeguarded. They should be included in conversations about the poten-
tial benefits that responsible use of their information can bring. They must be offered a clear choice about whether they want to allow their information to be part of this.”

Lessons learned: in order to build public trust in the use of health and care data, initiatives need to meet criteria of trustworthiness, transparency, open communication and a
clear sense of the distribution of benefits.
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have an eHealth strategy. Different forms of digital health
and digital health technology, however, present different
patterns of global distribution, with telemedicine being
more widely spread than electronic health records, which
are more commonly used than big data in healthcare set-
tings. Therefore, despite the fact that digital health repre-
sents a global phenomenon, it is adopted and implemented
differently across the globe.

Not surprisingly, from a global perspective the governance
of health data appears patchy, with only about half of
WHO countries having specific privacy protections in
place for personal health data. Robust national data gover-
nance frameworks tailored to the needs of real populations
are thus considered a precondition for digital health to de-
liver sustained health benefits and to meet global health
objectives such as universal health coverage. In addition,
the development of international interoperability standards
should continue in order to improve the capacity to mon-
itor health needs and to deliver more effective interven-
tions.

International policy organisations have addressed data
governance issues for digital health from a global perspec-
tive. The OECD, for instance, has published a set of rec-
ommendations for health data governance [61]. Besides
endorsing the idea that better health information systems
and more efficient data use can improve healthcare provi-

Swiss Med WKkly. 2018;148:w14571

sion, the OECD focuses on ways to maximise the usabili-
ty of data for public policy, ensuring that health data pro-
cessing serves the public interest, and secures public trust
in data-driven health systems. To this aim, the OECD high-
lights several areas of intervention, including: promoting
public engagement of a wide array of stakeholders; fos-
tering collaboration to enhance interoperability and data
sharing; providing clear information to individual data sub-
jects; ensuring appropriate informed consent procedures;
pursuing accurate review of data access and data process-
ing requests; promoting transparency through public infor-
mation about data use; and adopting effective control and
safeguard mechanisms to protect personal data.

At the European level, the recently promulgated General
Data Protection Regulation [62], which replaced the Data
Protection Directive of 1995, aims at creating a more ho-
mogeneous legal framework in European Union Member
States for the governance of personal data, including per-
sonal health data. This new framework stresses the impor-
tance of explicit consent to data processing, but recognises
that explicit consent is not always possible in the domain
of scientific research, in which data originally collected for
one project are likely to be re-used by multiple researchers
for purposes unrelated to the initial one. The GDPR also
recognises that data processing can take place without con-
sent if there is a pressing public health need to be ad-

tal health innovation.

r

Trust

Evidence

Data protection

GOVERNANCE
A

Data access

\.

Data generation

Figure 1: Conditions of innovation in digital health. This graph describes the conditions for innovation in digital health, for both licensed
and non-licensed products and applications. Along the continuum from data generation to health impact, several conditions need to be fulfilled
for digital health applications to have a tangible effect on individual and public health. To begin with, sufficient amounts of health data about in-
dividuals, as well as other types of data helpful to the detection, treatment and monitoring of health conditions in peoples and populations,
need to be accessible to developers. Secondly, digital health products need to comply with data protection and privacy requirements in the
countries in which they operate. Third, accountability mechanisms should be in place to trace responsibility for data uses and their conse-
quences on individuals, families and communities. Accountability also ensures transparent communication of health relevant information to da-
ta subjects. Fourth, solid evidence of safety and efficacy should back medical claims of digital health products. More rigidly enforced eviden-
tiary standards — including cost-effectiveness requirements — will foreseeably apply to digital health products seeking license from national
regulatory agencies (such as the FDA or EMA). Yet, also non-licensed products can and should have sufficient evidentiary bases. Only the ful-
filment of all such conditions creates trust in developers and regulators of digital health products and is conducive to fair benefit sharing of digi-

~
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dressed. Similarly, certain informational rights such as the
right to have one’s data erased can be limited in the name
of public health emergencies, while certain sensitive data
— like genetic data, for instance — can enjoy special pro-
tections set by individual member states. At any rate, the
governance of data processing for research purposes and
the processing of data from health registries remain sub-
ject to national rules. In terms of governance, the GDPR
puts the burden of demonstrating compliance with its pro-
visions entirely on the shoulders of data controllers, thus
considerably raising the bar of accountability demands in
comparison with the previous data protection directive.
Governance should enable digital health innovation to ad-
dress the challenges discussed above, which include not
only accountability but also privacy, quality of evidence,
data access and sharing, and ultimately trust. Essentially,
these are five key conditions that can determine whether
digital health innovation can lead to health benefit (fig. 1).
It remains to be seen whether, and how, a global gover-
nance approach can achieve this. For any approach it will
be crucial to ensure that all stakeholders are involved and
engaged. In this respect, the emphasis that the WHO puts
on public participation and engagement of broad arrays of
stakeholders aptly recognises the need to ensure that digi-
tal health serves the public interest and facilitates patients’
engagement in health-related decisions.

The Swiss context

The development of digital health faces similar challenges
in most developed countries. However, individual coun-
tries face these challenges to different degrees depending
on the quality of their IT infrastructure, regulatory frame-
works, healthcare systems and so on. Currently, a number
of significant developments mark a turning point for digital
health in Switzerland. First, the enactment of the Swiss
electronic patient dossier legislation [63], on 15 April
2017, is an important step toward further digitalisation in
the country’s healthcare sector. The dossier, a voluntary
electronic collection of personal medical documents, is de-
signed to provide healthcare professionals with easier ac-
cess to patient information, thus improving the safety and
accuracy of diagnosis, with the ultimate goal of a posi-
tive impact on patient treatment and care. Whereas some
Swiss regions have already put digital patient dossiers in
place (see for instance the Geneva health information ex-
change e-toile [64], or the project dossier patient partagé -
Infomed in the canton of Valais [65]), no provider has been
officially certified to date, and both the legal and organi-
sational prerequisites are being gradually implemented this
year with a view to have the system running by mid-2018.
Even though Switzerland benefited from the insights of
major ongoing eHealth projects in Europe [66], the process
towards more centralisation of national digital health pol-
icy-making has been slow and non-linear [67, 68]. Never-
theless, the electronic patient dossier has overcome various
political and organisational hurdles and can help advance
other digital health services and initiatives, such as the
cross-border harmonisation of e-medication records [69].
One crucial factor for the development of digital health is
data accessibility. Ideally, data should be made available
for further research uses that promise progress in individ-
ual or population health, and research and clinical institu-
tions should be willing to open up their patients’ data for
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that aim. Despite repeated appeals on the importance of da-
ta access, however, this practice is still implemented to an
insufficient degree. Some barriers to data sharing are more
regulatory in nature, such as the inability of data subjects to
truly consent to uses that are not foreseeable at the moment
of data collection. Some others are more organisational, as
in the case of institutions that are reluctant to share data for
liability issues. Currently existing patient data are collected
through diverse technological systems and with variations
in the consent that authorises further uses.

The second important development in Switzerland aims to
address this issue through the proposal of a national broad
consent template. Spearheaded by the Swiss Academy of
Medical Sciences, a so-called “general consent” has been
developed after extensive consultation with various stake-
holders. The aim of this broad consent is to harmonise the
conditions under which further data uses can take place.
The model of broad consent has been highly debated in
the bioethics literature, however, and commentaries range
from full approval to complete rejection [70-73]. Broad
consent may not be the ultimate solution to conducting
ethical secondary uses of data. However, if accompanied
by robust oversight and accountability systems it can be a
pragmatic solution that facilitates ethical digital health re-
search [74].

The third relevant development in Switzerland is the
launch of the Swiss Personalized Health Network (SPHN)
[75] — a national initiative designed to build the necessary
infrastructure to improve the utilisation of health-related
data for research and innovation. The development of dig-
ital health, as that of other data-driven activities, depends
on the development of appropriate technical standards to
make data securely exchangeable and efficiently com-
putable. Accordingly, the SPHN aims to develop interop-
erability standards that will enhance data accessibility for
research uses in Switzerland. The SPHN’s vision on data
governance is based on an ethics framework including four
principles: respect for persons, data fairness, privacy, and
accountability. Such a soft law instrument, while indicat-
ing the direction for improving data sharing, is also flexi-
ble enough to adapt to stakeholders’ organisational needs.

Public engagement

Citizens and patients are increasingly becoming the driving
forces behind digital health developments [76, 77]. The ex-
tensive adoption and sustainability of health data exchange
thus depend upon information technology that facilitates
patient engagement and the earning of public trust [78]. To
build on the support of the public, it should be made clear
that digital health is a tool for citizens and professionals
alike [79-81]. This is a condition for fostering trust around
digital health [82]. Furthermore, public policy needs take
into account the digital divide and the capacity of citizens
to engage with e-health [83—86]. And whereas it is certain-
ly important to promote collaboration among healthcare
professionals and institutions, other agents, such as start-
ups and the industry in general, ought to be included in the
country’s digital health transformation with mechanisms
to incentivise partnership, investments and data sharing
[87—89]. This can take the form of public/private partner-
ships [90], such as the Digital Switzerland Initiative [91]
and the Opendata.ch Foundation [92].
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Other innovative models to leverage private initiatives and
foster public engagement are emerging. In Switzerland, the
MIDATA cooperative is a case in point [93]. MIDATA of-
fers data subjects the possibility of storing health data from
different sources and leaves it to the data subjects to decide
collectively on data access requests [94, 95]. All data con-
tributors are equal shareholders of the cooperative, which
is a not-for-profit entity and will re-invest any potential in-
come generated by granting access to its data. This unique
model is already active in digital health-related projects in
Switzerland and will promote the inclusion of patient-gen-
erated data that are needed to develop digital health into
clinical applications.

Conclusion

Innovation in digital health faces several ethical and policy
challenges. We have argued that, for digital health products
and applications to produce tangible innovation and health
impacts, be it at the individual or at the population level,
five conditions need to be met. First, data are of paramount
importance for digital health: access to sufficient amounts
of data is thus a primary condition for the development of
innovative diagnostic, therapeutic and monitoring tools is
this area. Second, alignment with existing legal provisions
regarding data protection, data security and privacy are key
to digital health innovation. Legal frameworks can thus
have a major impact in facilitating or hindering progress in
this field. Nonetheless, legal provisions do not address the
full range of ethical issues in data processing. Nor do they
cover the full spectrum of legitimate concerns of data sub-
jects. Third, robust and transparent accountability mecha-
nisms should ensure the precise identification of responsi-
bility for data uses and their consequences on individuals,
families and communities. What is more, accountability
also sets up mechanisms for communicating health rele-
vant information to data subjects. Fourth, evidence of safe-
ty and efficacy is a significant condition for the success
of digital health. Licensed digital health products and ap-
plications will have to go through extensive assessment
processes and will have to meet cost-effectiveness require-
ment before they can be reimbursed by insurers and public
healthcare systems. This does not, however, mean that un-
licensed products and applications can lack some form of
evidence to back up their claims. Fulfilling these require-
ments will foster the fifth condition for digital health in-
novation, that is, trust in both developers and regulators,
which in turn will facilitate the uptake of digital health by
healthcare providers and lead to fair benefit sharing of dig-
ital health innovation.
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Abstract

Background: Evolving research practices and new forms of research enabled by technological advances require a redesigned
research oversight system that respects and protects human research participants.

Objective: Our objective was to generate creative ideas for redesigning our current human research oversight system.

Methods: A total of 11 researchers and institutional review board (IRB) professionals participated in a January 2015 design
thinking workshop to develop ideas for redesigning the IRB system.

Results: Ideas in 5 major domains were generated. The areas of focus were (1) improving the consent form and process, (2)
empowering researchers to protect their participants, (3) creating a system to learn from mistakes, (4) improving IRB efficiency,
and (5) facilitating review of research that leverages technological advances.

Conclusions: We describe the impetus for and results of a design thinking workshop to reimagine a human research protections
system that is responsive to 21st century science.

(J Med Internet Res 2016;18(12):e329) doi:10.2196/jmir.6634

KEYWORDS

ethics committees, research; biomedical research; telemedicine; informed consent; behavioral research

http://www.jmir.org/2016/12/¢329/ J Med Internet Res 2016 | vol. 18 | iss. 12 | €329 | p.1
50 (page number not for citation purposes)


mailto:cbloss@ucsd.edu
http://dx.doi.org/10.2196/jmir.6634
http://www.w3.org/Style/XSL
http://www.renderx.com/

JOURNAL OF MEDICAL INTERNET RESEARCH

Introduction

Over half a century ago, in response to egregious cases of
research participant mistreatment, the US government proposed
prospective review of research involving human participants.
This prospective review process is what we now know as the
institutional review board (IRB) system. Today, IRBs are firmly
entrenched within the fabric of academic research institution,
with estimates putting the number of IRBs in the United States
at around 6000 (I Prichard, Senior Advisor to the Director of
the Office for Human Research Protections, Department of
Health and Human Services; oral communication, September
2014).

IRBs have aimed to serve an important function, which is to
protect human research participants. While IRBs have helped
address this critical need, the IRB system has not kept pace with
the evolution of research methods and practices or current and
emerging trends in science and technology. The fact that the
system has become antiquated calls into question whether the
IRB continues to foster the protection of human research
participants per the principles originally put forth in the Belmont
Report [1]. New forms of research enabled by technological
advances in information technology and data science appear to
be particularly challenging to IRBs [2], yet clear standards to
guide best practices are not well established [3-5]. We propose
that the time has come to reimagine and ultimately work toward
redesigning our human research protections system so that it is
responsive to both the evolution of general research practices
and new forms of research enabled by technological
advances—what we refer to here as 21st century science. This
is critical for the proper protection of research participants,
ethical and efficient use of research resources, and facilitation
of research insights important for human health specifically and
knowledge production more generally.

A Changing Research Landscape

The IRB model was created when research was typically
conducted by a single principal investigator in a single academic
institution, and when data were both scarce and expensive to
collect. Today, multiple principal investigator, multi-institution,
and even multicountry studies are common, and such studies
have resulted in unprecedented insights regarding human health.
Researchers now need, or are even expected to share, data
between different universities, across entities in different sectors
(eg, universities, corporations, and nonprofits) and frequently
across international borders. It also used to be that the scale of
research was closely linked to the research methods. For
instance, intervention studies were conducted with small
numbers of participants in tightly controlled environments, and
large-N surveys tended to collect data in ways that limited the
possibility of individual identification and promoted easy
anonymization. Today, expanding computational capabilities,
social media, and broad research networks allow us to conduct
an intervention study on Facebook with millions of participants
[6], engage patients using mobile phone technology [7], study
the whole genomes of thousands of individuals [8], or collect
digital traces of human activity [9] at such granular levels that
reidentification of individuals is possible if one possesses the
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right tools and expertise [10]. While traditional approaches to
research require collecting only as much data as is necessary to
test a hypothesis, data mining and other big data techniques
derive their power from large data sets, where it may be
impossible to determine, a priori, which variables will be of
interest.

A Static Regulatory Environment

In contrast to the evolving research practices landscape,
procedures for research oversight have been markedly static.
The Common Rule, which refers to a set of regulations that
specify the procedures for establishing and operating IRBs, was
adopted in 1991, and the Belmont Report and the Common Rule
remain the primary sources for guiding review of human
research. In 2011, recognizing that these regulations had not
kept pace with the evolving human research enterprise, the US
Department of Health and Human Services issued an Advance
Notice of Proposed Rulemaking (ANPRM) aimed at “enhancing
protections for research subjects and reducing burden, delay,
and ambiguity for investigators” [11]. In 2015, the ANPRM
transitioned to a Notice of Proposed Rulemaking (NPRM), the
next step in the process to update federal regulations [12]. The
NPRM updates include, for example, new consent requirements
for biological specimens, use of a central IRB for multisite
studies, and changes to procedures for determining exempt
versus expedited study review categories. Use of a central IRB
is particularly contentious, with concerns focusing on whether
protection of participants may be compromised for the increased
efficiency of a single IRB [13]. Regardless, in June 2016, the
US National Institutes of Health published a policy requiring
single IRB review for multisite studies [14]. While the NPRM
reflects important and potentially promising activity toward
IRB system improvements, many have questioned or objected
outright to some of the proposed changes, and even supporters
have suggested they are not ideal [15]. Most recently, a report
by the National Academies of Science, Engineering, and
Medicine Committee on Federal Research Regulations and
Reporting Requirements issued a report criticizing the NPRM,
citing that the proposed changes would be detrimental to
advancing research [16]. This committee recommended that the
US Congress authorize the presidential appointment of a national
commission to examine and update the ethical and regulatory
frameworks governing human research protections. Regardless
of whether and to what extent the Common Rule or principles
of the Belmont Report are revised, the extent to which IRBs
can keep abreast of changes in the research landscape and be
responsive to studies that leverage emerging technologies
remains questionable at best.

A Flawed Institutional Review Board System

There is increasing evidence that the IRB system is deeply and
inherently flawed [17]. Lidz and colleagues captured the tip of
the proverbial iceberg in their study of 20 IRB panels at 10 large
medical institutions, where they documented 104 protocol
reviews [18]. They found that IRBs consistently discussed the
informed consent document, one of the Common Rule’s central
mandates, and requested changes to the consent document in
88% of those cases. They also documented a disturbing
observation, which was that other elements of the Common
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Rule (eg, data monitoring and protection of vulnerable
populations) that are intended to promote research ethics were
rarely discussed. Furthermore, in studies that exceeded minimal
risk of harm, 21% of reviews did not address the inclusion of
strategies to minimize risk. Likewise, they noted that 50% of
reviews did not compare risks and benefits, and 60% of the
protocols that excluded groups of potential research subjects
without explicit justification were not discussed. They also
found that critical review of the research design and
methodology was not uncommon, and that IRBs often requested
that investigators make changes to their research design, which
is typically considered outside the purview and mission of IRBs.

Taken together, these observations call into question whether
IRB members are sufficiently familiar with the standards
intended to guide their review of research. Furthermore, while
this is the case with respect to studies that leverage traditional
research methods (eg, clinical trials), these concerns are
magnified when the studies under review involve emerging
technologies and nontraditional methods that the IRB was not
originally designed to handle and that IRB members often do
not understand. Examples of such studies are those that use
smartphone capabilities to measure physical activity, social
media to assess adverse drug reactions, or N-of-1 genome
sequencing studies for diagnosis of rare disease. Such studies
raise new and nuanced ethical issues regarding participant
privacy, informed consent, and data security. Some of these
novel methods also inadvertently include nonparticipants [19]
or “bystanders” [20] in the research record, raising potential
concerns that further challenge IRB processes.

Methods

How Might We Redesign the Institutional Review
Board?

In light of these issues, in January 2015 we assembled a
multidisciplinary group of 11 researchers and IRB professionals
drawn from academic and research institutions in San Diego,
California, to consider how we might reimagine and redesign
human research protections for 21st century science. The
half-day workshop was set up as a brainstorming session to
generate ideas for addressing IRB challenges related to review
of human studies, with a particular focus on studies that leverage
emerging technologies and methods. The aim was not only to
stimulate creative thinking about how the existing IRB structure
and process could be modified to meet the often cited challenges
of the current system, but also to generate ideas for exploring
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entirely new ways of evaluating research to ensure that research
participants are informed and protected.

Design Thinking

A central feature of this workshop was the use of design thinking
strategies in the brainstorming process. Design thinking is a
formal method for practical and creative resolution of problems
[21] that emphasizes a phase during which the group or team
focuses on generating as many ideas as possible using thoughtful
prompts (eg, How might we advise as opposed to restrict? How
might we simplify IRB review?). Design thinking is also
considered particularly useful when the problem itself, in
addition to the solution, may be unknown or ill defined at the
outset of the problem-solving exercise.

Workshop Description and Stages

Workshop participants included a facilitator (SK), a cofacilitator
(CB), and 9 participants (the remaining authors). A high-level
goal of the session was to generate ideas for how we might
reimagine and ultimately redesign the human research
protections system to foster the ethical conduct of research in
the changing landscape of 21st century science.

The design thinking protocol consisted of 3 primary stages.
During the first stage, we asked participants to brainstorm ideas
using 6 categories as prompts: (1) settings, scenarios, and steps;
(2) stakeholders and extreme users; (3) utopia and dystopia; (4)
change levers; (5) change agents and obstacles; and (6) things
to find out. During the second stage, we asked participants to
consider the ideas generated in stage 1 and to complete the
sentence “How might we...?”” using the stage-1 ideas as prompts.
A total of 22 “How might we...?” statements were generated
(see Textbox 1). From the full list of “How might we...?”
statements generated in stage 2, we asked participants to select
3 ideas that they were most interested in pursuing further.

In stage 3, participants were broken into groups based on
overlapping interests to further discuss and expand on specific
ideas. The 5 refined “How might we...?” statements that
received the most votes were (1) How might we redesign the
consent form and process? (2) How might we empower
researchers to protect their participants? (3) How might we learn
from our efforts to protect participants? (4) How might we make
the IRB system more efficient? and (5) How might we help
IRBs review new forms of research enabled by technological
advances? The group discussions related to each of these ideas
are presented below.
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Textbox 1. “How might we...?” statements.
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o Start a learning health system experiment?

o Share all of our data?

e  Conduct bold experiments? (Incentivize and facilitate)

e Make consent actually informed?

e Increase transparency of IRB processes and outcomes?

e  Simplify IRB review?
e Abolish IRBs?
¢  Reframe the IRB as a research partner rather than a research barrier?

e  Increase confidence in anonymization?

«  Engage the public in research and in helping IRBs?

e Collect more empirical research on the current state of the IRB?

. Create a movement around IRB?

[ESCRO] committee)
e  Seek an IRB waiver process?
e Include topic experts in IRB decision-making processes?
e Advise as opposed to restrict?

e Move from permission to forgiveness?

«  Prevent those interested in profit from taking advantage of those interested in science?

«  Expedite institutional review board (IRB) review? (More appropriately classify)

e Set up an appropriate surveillance system to monitor ethical violations?

e  Create a learning system where IRB evolves along with research practices?

e Assess the true cost of the IRB system? (Direct and indirect; What are we not doing [that we should be] because of the current IRB process?)

o Influence current legislation wisely? (Start at the state level to guide national policy; eg, California Embryonic Stem Cell Research Oversight

Results

Redesigning the Consent Form and Process

The ethical principle of respect for persons implies that
individuals should be informed about and voluntarily consent
to participate in research. How do we ensure that consent is
actually informed? How do we ensure that research participants
from diverse backgrounds truly understand research study risks
and opportunities? In regard to the first question, one idea may
be to establish mechanisms through which participants can
provide real-time feedback about their experiences to
researchers. These mechanisms could serve to collect empirical
data regarding the clarity of consent forms and potential
participants’ perceptions of risks and benefits. These data could
inform and drive potential revisions to the consent form and
other aspects of the research protocol. Relatedly, it is often the
case that investigators write their consent forms to adhere to
institutional templates, which may prompt the inclusion of
content that is not relevant to or appropriate for a study. Thus,
accurate and understandable descriptions of research should be
encouraged in consent forms and processes, and inappropriate
adherence to templates should be discouraged.

In addition, to make the informed consent process more
accessible, one idea may be to think of the Creative Commons
licenses [22] as a model. Similarly to the “three layers of
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licenses” used by Creative Commons, research studies could
create three consent forms: one that contains all the legalese
and scientific exposition; one in plain English that presents the
facts; and a third that is simplified even further and presents
risks in bullet point format. To make the process of obtaining
consent culturally appropriate for underserved and
underrepresented populations, community leaders, such as a
Promotor/a in a Latino community, could be asked to help
design the consent form and facilitate its use in ways that address
community-specific concerns that researchers might not
anticipate. Researchers could work with the community leader
to help communicate these risks in a way that resonates with
the community.

Empowering Researchers to Protect Participants

It may be worthwhile to consider how to construct a system of
human research protections that fosters the ethical conduct of
research without relying on an institution like the IRB. How
might we start anew and reimagine and redesign research
oversight without the traditional IRB in mind? What would an
alternative system look like? One idea is to place responsibility
for participant protection on the researcher rather than on the
IRB. Researchers intending to engage in human-participant
research could produce a document that lays out plans and risks
of the research. They could then offer those documents, along
with an outline of the proposed consent process, for review by
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their peers. Peers would be researchers in the field of relevance
for the research. These documents could be posted on the Web
in the same way clinical trials are registered; not to get approval
but to create a public record of the research. Peers who review
the documents might be accredited with some type of
certification in human research protections, although an open
question would be what entity would design and provide such
certification (and how such an entity would look different from
a traditional IRB). Obtaining this certification and participating
in this process could be incentivized for researchers by
considering these activities to be professional service required
for career advancement and academic promotion. In this
scenario, responsibility for ethical conduct during the study
would be shared by both the researchers and the peers who
agreed that the plan would adequately protect participants.

To make it easier to create high-quality plans, researchers could
consult a Web-based resource similar to Stack Overflow [23],
a resource that software developers often use to obtain quick
answers from experts about specific technical issues. With this
resource, the median response time is 11 minutes [24], and the
people responding are rated, which provides information
pertaining to their credibility and expertise. Using this
Web-based resource, within a few hours, researchers posing
questions such as “How do I ensure that I won’t cause harm by
asking this interview or survey question?” would receive
answers from researchers who have been rated in terms of
experience and expertise in human research protections.
Elements of the plans could ultimately become like “protection
modules” that could be swapped in and out of consent forms
and research protocols, drawing attention to highly ranked
modules. We note, however, that such a solution would require
an active community with a critical mass of users, which may
or may not be realistic depending on whether the IRB process
ever became truly standardized. Importantly, if such a system
were found to be feasible, it is an approach that could be coupled
with a system that punishes offenders (see below).

Reinforcement and Learning From Experience

This notion also begins with the premise that the burden to
protect participants be shifted to the researcher rather than
remain with an IRB or other regulatory body. How might we
simultaneously reduce the bureaucratic burden of IRBs for
researchers, particularly those conducting low-risk studies, and,
at the same time, improve protection for research participants?
In addition, how might we transform universities into learning
ethics institutions that continuously improve their capacity to
conduct ethical research [25]? One model for doing this could
be the US Federal Aviation Administration’s Aviation Safety
Reporting System [26]. Pilots who have a “bad” landing or
make another safety-related error who self-report their mistake
are spared from punishment, but those who do not report it
themselves are penalized if someone elects to report [27].
Analogously, as an alternative to an IRB, in this system,
researchers who create a protocol they believe to be safe, who
then observe a harm during the research and who report that
harm to their university or institution, present an opportunity
for the research institution and community to learn how to
prevent future harm. This expectation would be reinforced
because, if the harm were to be reported by anyone else,
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including research staff or the research participant, the researcher
would be sanctioned. That being said, there are clearly potential
risks of supplanting the traditional IRB with a system entirely
driven by researcher self-regulation. There could be conflicts
between the researchers’ mandate to conduct studies and publish
them and their mandate to protect participants, thus creating the
opportunity for bias, the perception of bias, or, in extreme cases,
maleficence. A system of researcher self-regulation would need
to carefully consider and guard against these potential threats.

Increasing Efficiency of the Institutional Review Board

We suggest that, in order to improve the IRB process, it is
essential to understand its costs, both direct and indirect. How
might we collect and analyze empirical data on costs of the IRB
system? Obvious tangible costs associated with the IRB system
include salaries of personnel, IRB fees, space and infrastructure
costs, and fees paid for training, education, and accreditation.
In addition, for researchers, costs include the amount of time
required for study staff to prepare and process a study protocol
through the IRB. Depending on the institution and the type of
protocol, IRB submissions can be extremely time intensive to
prepare, which is an opportunity cost in terms of other ways in
which that time could be spent. For research participants, costs
include the time and cognitive effort needed to understand
increasingly complex and bureaucratic consent forms. There
are also less-tangible costs related to the broader public health
caused by unnecessary delays to research imposed by IRBs.

One idea to increase efficiency may be to use the “Cooperative
Research” process (see 45 CFR 46.114 [28]) to reduce the
multiple IRB review of multisite studies and to use the “exempt”
category to a greater degree, as it was intended. The exempt
category is frequently appropriate for the vast majority of social
and behavioral science studies, yet it is underused, which leads
to delays in review and approval [29] and, thus, wasted
resources. In addition, IRBs could take care to ensure that the
process of review for exempt studies is reasonable and truly
reflects their low-risk nature. Interestingly, exempt research,
according to US federal regulations, does not need to be verified
or reviewed by IRB staff. If institutions permitted, determining
exempt status could be made the responsibility of the researcher.
Overall, the idea that the bureaucracy of the IRB creates a
significant burden to the research enterprise while producing
unclear or intangible benefits to research participants is
consistent with the purported rationale cited for the development
of the proposed revisions to the Common Rule in the form of
the NPRM [11] discussed above. We suggest that the IRB may
benefit from an analysis of costs and benefits of its own
activities, much like it does with the studies it oversees.

Review of Research That Leverages Technological
Advances

New forms of research enabled by technological advances in
information technology, data science, and other fields appear
to be particularly challenging to IRBs. How might we develop
resources that would facilitate appropriate review of 21st century
science? The California Institute for Regenerative Medicine
(CIRM) research oversight process could serve as a model. In
CIRM 1.0, a committee separate from the IRB called the
Embryonic Stem Cell Research Oversight (ESCRO) committee
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was formed to review stem cell research. Recognizing that few
IRB members would have sufficient expertise to provide a
meaningful review, the ESCRO committee, which is composed
of scientists and a community representative, serves in an
advisory capacity to the IRB. Such a model could be replicated
for studies using emerging technologies about which IRBs may
be similarly unfamiliar to ensure that experts are involved in
the review.

For example, mobile, visual imaging, pervasive sensing, and
geolocation tracking technologies present new ethical and
regulatory challenges [20]. For instance, visual imaging using
wearable sensors have made it possible for researchers to
measure physical activity, diet, travel, and the settings in which
these behaviors occur using a first-person point-of-view
wearable camera. Given the increasing interest in these methods
for studying behavior “in the wild,” we anticipate increased
research using visual methods, which raises privacy concerns
and issues related to the rights of bystanders. Likewise, with
wearable sensors, mobile phone transmission, and analytics in
the cloud, health information can be captured continuously in
real time. Location tracking technologies provide spatial data
and the opportunity for assessing the context in which behavior
is occurring, as well as identifying underlying spatial
relationships such as clustering or transmission pathways. These
data are fine grained and specific down to the exact longitude
and latitude at a given point in time. Standards for how these
data are transmitted, stored, and shared are necessary, since the
introduction of the US Health Insurance Portability and
Accountability Act, in most cases (at least at present), does not
apply. A virtual network composed of researchers, technologists,
and bioinformatics experts may prove to be a workable solution
to augment or replace the traditional IRB review process
resulting in an informed and meaningful human protections
review of 21st century science.

Discussion

In this paper we imagine, and offer some ideas for the design
of, a progressive, responsive, and nimble human research
protections system. By encouraging broad and innovative ideas,
the design thinking method not only opens up new avenues for
exploration, but also provides clarity about some of the
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Abstract

Background: Information and communication technologies have long become prominent components of health systems. Rapid
advancesin digital technologiesand data science over the last few years are predicted to have avast impact on health care services,
configuring a paradigm shift into what is now commonly referred to as digital health. Forecasted to curb rising health costs as
well asto improve health system efficiency and safety, digital health success heavily relies on trust from professional end users,
administrators, and patients. Yet, what counts as the building blocks of trust in digital health systems has so far remained
underexplored.

Objective: The objective of this study was to analyze what relevant stakeholders consider as enablers and impediments of trust
indigital health.

Methods: We performed a scoping review to map out trust in digital health. To identify relevant digital health studies, we
searched 5 electronic databases. Using keywords and Medical Subject Headings, we targeted all relevant studies and set no
boundaries for publication year to allow a broad range of studiesto be identified. The studies were screened by 2 reviewers after
which a predefined data extraction strategy was employed and relevant themes documented.

Results:  Overdl, 278 qualitative, quantitative, mixed-methods, and intervention studies in English, published between 1998
and 2017 and conducted in 40 countries were included in this review. Patients and health care professionals were the two most
prominent stakeholders of trust in digital health; a third—health administrators—was substantially less prominent. Our analysis
identified cross-cutting personal, institutional, and technological elements of trust that broadly cluster into 16 enablers (altruism,
fair data access, ease of use, self-efficacy, sociodemographic factors, recommendation by other users, usefulness, customizable
design features, interoperability, privacy, initial face-to-face contact, guidelines for standardized use, stakeholder engagement,
improved communication, decreased workloads, and service provider reputation) and 10 impediments (excessive costs, limited
accessibility, sociodemographic factors, fear of data exploitation, insufficient training, defective technology, poor information
quality, inadequate publicity, time-consuming, and service provider reputation) to trust in digital health.

Conclusions: Trust in digital health technologies and services depends on the interplay of a complex set of enablers and
impediments. This study is a contribution to ongoing efforts to understand what determines trust in digital health according to
different stakeholders. Therefore, it offers valuable points of reference for the implementation of innovative digital health services.
Building on insights from this study, actionable metrics can be devel oped to assess the trustworthiness of digital technologiesin
health care.

(J Med Internet Res 2018;20(12):€11254) doi: 10.2196/11254

KEYWORDS
digital health; digital health technologies; health care; health systems; trust
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Introduction

Background

Digital health broadly refers to the use of information and
communication technologies to improve human health, health
care services, and wellnessfor both individuals and popul ations
[1,2]. It has been argued that the capacity to collect, store, and
analyze extensive amounts of health data is the chief driving
force of digital health [3]. The accessibility of such data is
rejuvenating the processinvolved in diagnosing, managing, and
treating disease, thus exceeding the conventional boundaries of
how health care institutions and providers operate. A case in
point is the myriad number of smartphone apps that allow
patients to seamlessly monitor various aspects of their health
care beyond the confines of a health care institution [1].

Thereiscurrently no consensus on adefinition for digital health.
The term “digital medicine” for instance, resembles digital
health, as it aso refers to the use of digital technologies such
as hiosensors and smartphones to refine and individualize
medicine [4]. Given how they are often described, electronic
health, mobile health (mHealth), telecare, and telehealth could
also be used interchangeably with digital health [5]. This
ambiguity calls for a need to generate an inclusive definition
that captures the different terms that may be used to portray
digital health.

The US Food and Drug Administration (FDA) depicts digital
health as comprising of mHealth, wearable devices, telehealth,
telemedicine, personalized medicine, electronic health records
(EHRs), and health information technology (IT) [6]. In this
review, we adopt this as our working definition of digital health.
Throughout this paper, the term “digital health” refersto all of
the aforementioned categories. So far, there has been aprolific
development of digital health technologies, and the value of
such ventures continuesto rise at a steady pace. In 2017 alone,
the global net worth of the digital health industry was estimated
at US $25 hillion (£19 billion; €21 hillion). Some estimates
even project that digital health could cut back up to US $7
billion of US hedalth care expenditure annualy [7].

Beyond economic gains, improved safety and efficacy are
among the anticipated benefits of digital health [7-10]. Current
evidence supports the notion that digital health does indeed
bolster safety within health systems[11]. Inthe domain of hedlth
careddlivery, digital health promisesto abate mortality, shorten
hospital admissions, and decrease medication errors [11].
Despite these advances, there are privacy and data protection
concerns associated with the pace of development of digital
health products [7,12]. Moreover, as data from digital health
tools such asmHealth appsincreasingly inform medical decision
making, theissue of medical liability comestothefore[13,14].
The considerations about privacy and data protection highlight
the ethical challenges that bear directly on the trustworthiness
of digital health. While numerous studies have analyzed such
ethical issues[15-19], the determinants of trust in digital health
are yet to receive comparable levels of attention [1,3,20-22].

https://www.jmir.org/2018/12/e11254/
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What isTrust?

Trust is an elusive concept that is difficult to pin down in
operationa terms. Relationships of trust can exist between
individuals, between individuals and the organizations they
comeinto contact with, or between 2 organizations of any given
nature [23]. Trust is oftentimes illustrated as a relationship
between one party (a trustor) and another (a trustee) with
optimistic anticipation that the trustee will fulfill the trustor’'s
expectations[23,24]. Trust relationships often lack enforceable
obligations and are thus vulnerable to deception [25].
Consequently, different sets of reasons encourage trust
relationships. Chief among them are the trustee's reiability
(possessing agood reputation), competence (having the technical
skillsto perform thetask at hand), and integrity (generally acting
in an honest way) [26].

Within health systems, trust is a prominent component of
doctor-patient relationships[27-29]. It improves not only health
care access but also treatment outcomes and patient satisfaction
[30,31]. However, whether or not it is appropriate to talk about
trust between people and inanimate objects—such as
technological products—remains an open question in the
literature [21,32]. Indeed, the inclination of individuals to
purchase or use products that are derived from “expert
systems’—those structures that rely on either technical
know—how or professional expertise and whose outcomes are
consequently pervasive, opague, or easily taken for granted—has
been described as a tangible component of trust [33].

Some experts suggest that trust is propelled by contingency
rather than risk, while others maintain that the ability to weigh
risks and to choose between different actions drives trust [34].
Despite the risk of deception within any trust relationship, it is
disputable whether one choosesto trust solely by weighing risks
or actively by evaluating alternative options. Be that as it may,
in the case of medical technologies, institutional trust and
technical reliability are deeply intertwined [35]. In terms of
digital health technologies, we hypothesize that trust is likely
to develop if the risks and uncertainties associated with their
use can be minimized.

As hedth care becomes increasingly dependent on digital
technologies, exploring what determines and what foregoes
trust in digital health is of paramount importance. Identifying
the factors pertinent to trust can inform the development of
novel heath care services as well as meet the needs and
expectations of users and patients. In addition, such factors can
be taken into account for the assessment of both new and
existing digital health services. Thus, this study seeks to
contribute to this discourse by analyzing what the relevant
stakeholders in digital health consider as the enablers and
impediments of trust in digital health.

Methods

Overview

This review aimed to summarize the enabling and impeding
factors of trust in digital health. To this end, we conducted a
scoping review using Arksey and O'Malley’s proposed
framework on scoping reviews [36]. A scoping review
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methodology was chosen, as it appropriately captures broad
and ambiguous topics, like digital health, that may involve a
myriad of study designs. We searched for studies that reported
on the perspectives of different digital health stakeholders. From
these perspectives, we discerned views on what was reported
to facilitate trust and what hindered it. Often, some of these
same factors were recognized as relevant for the acceptance of
aparticular technology. By acceptance, we mean adoption and
use grounded in or at least co-occurring with trust on the part
of users. Thisunderstanding of trust as a potential determinant
of acceptance reflects some credited models of technology
acceptance in the health care sector [37].

I nformation Sources

We searched 5 databasess MEDLINE, EMBASE, the
Cumulative Index to Nursing and Allied Health Literature,
PsycINFO, and Web of Science for peer-reviewed studies as
well as gray literature. We worked with aresearch librarian at
the University of Zurich, Switzerland, to identify relevant
bibliographic databases and to construct a search strategy that
would ensure comprehensive resullts.

Search Strategy

The search strategy involved formulating keywords and Medical
Subject Headings around the 2 main themes of this study,
namely, trust and digital health. Since the concept of trust can
be ill-defined within the literature [35], we set out to include
synonyms such as expectation, mistrust, confidence, and
experience to capture the heterogeneity of trust descriptions
within the literature (Multimedia Appendix 1). Digital health,
on the other hand, was disaggregated into its distinctive
components as described by the FDA: mHealth, wearable
devices, telehealth, telemedicine, personalized medicine, and
health IT. The searcheswererestricted to publications available
in English, French, German, Italian, and Spanish with no
publication date restrictions, to alow the search results to
encompass a broad range of relevant studies. The searches
commenced on July 20, 2017, and concluded on August 18,
2017. Therecovered studieswere then exported into the Endnote
X8.2 reference software.

Eligibility Criteria of Included Studies

To capture thewide array of studiesthat may berelevant to this
topic, wedid not predefine the study designs of included studies.
This allowed for the inclusion of qualitative, quantitative,
intervention, and mixed-methods studies. We assessed the
relevance of the retrieved studies to ensure that they related to
either of the abovementioned digital health technologies.
Moreover, each study was required to meet at least 1 of the
following criteriac (1) investigate stakeholder perceptions,

https://www.jmir.org/2018/12/e11254/
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attitudes, expectations, and perspectives toward digital health
or (2) highlight some potential enablers and impediments to
trust in digital health technologies and services.

Study Selection, Categorization, and Data Extraction

Asis customary in scoping reviews, we employed an iterative
approach to select, categorize, and extract data from the
recovered studies [36]. We used a 2-step process to select
relevant articles. At first, 1 author (AA) reviewed al of thetitles
and abstracts derived from the search. In order to reduce
sampling bias [38], a second author (AB) reviewed a random
sample of 243 titles along with their associated abstracts
(constituting 10% of the total sample after duplicates had been
removed). To assess the level of agreement between the 2
reviewers, aninterrater reliability score using Cohen kappawas
computed along with its corresponding Cl and P value. The
Cohen kappa score for the 2 coders (AA and AB) was .661
(95% CI 0.465-0.857; P<.001). According to McHugh (2012),
a kappa of.661 signifies a moderate agreement between the
coders[39].

Overal, we retrieved a total of 3940 search results from the 5
databases. Of these, 1474 were identified as duplicates and
discarded. However, during the screening process, we
discovered an extra 28 duplicates, increasing the total number
discarded to 1502. Thisled to screening the titles and abstracts
of 2438 articles of which 438 were €ligible for full-text
screening. The Preferred Reporting Items for Systematic
Reviews and Meta-Analyses flow diagram below (Figure 1)
lays out these proceduresin more detail [40]. The final number
of articlesincluded in the review was 278.

From each article, we documented the author’s name, year of
publication, country of origin, sample size, study design (eg,
qualitative or quantitative), digital health type as well as the
relevant stakeholders. A descriptive, analytical approach was
used to summarize the outcomes of the studies. We identified
the trust elements (enablers and impediments) by charting the
key themes and issues identified from each study [36]. To
develop these themes, the results section of each study was
scrutinized to identify various stakeholder priorities,
perspectives, expectations, perceptions, and attitudes toward a
particular digita health technology or service. Multimedia
Appendix 2 shows the studies from which each element was
derived. Since either an enabler or impediment could be derived
from the same study, we reported the overall number of studies
that support each element rather than percentages.
Simultaneously, we compiled alist of recurring terminologies
that were used to represent or describethe variousdigital health
technologies, which we termed “ health technology types.”
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Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Anayses (PRISMA) flow diagram.

Records identified through
database searching
(N=3940)

Duplicates removed
(n=1502)

1

Records after
duplicates removed
(n=2438)

Title and abstracts

Records excluded

screened
(n=2438)

(n=2000)

* Full-text articles

Full-text articles
assessed for
eligibility
(n=438)

Studies included in
scoping review
(n=278)

Results

Characteristics of Articles

Of the 278 articlesincluded in this review, 51 (51/278, 18.3%)
related to telemedicine and telehealth, 24 (24/278, 8.6%) to
personalized medicine, 47 (47/278, 16.9%) to mHealth, 73
(73/278, 26.3%) to health IT, 73 (73/278, 26.3%) to EHRs, and
4 (4/278, 1.4%) to wearable devices, while 6 (6/278, 2.2%)
concerned 2 or more digital health technologies. Most of the
studieswere conducted in 2015 (50/278, 18.0%), and the median
year was 2014. The oldest study was conducted in 1998, while
the most recent study was from 2017. There were 98 qualitative
studies, 133 quantitative studies, 45 mixed method studies, and
2 intervention studies. Data from Web-based sources were
collected in 7 studies. Overal, the studies were conducted in
40 countries; the United States was the most represented
(101/278, 36.3%). The United Kingdom had the second highest
number of studies (47/278, 16.9%) followed by Austraia
(16/278, 5.8%) and Canada (15/278, 5.4%; see Multimedia
Appendix 3).

Digital Health Technologies and Services

For each digital health technol ogy, we uncovered several health
technology types employed to provide digital health services.
Within each digital health category, there appear to be multiple
terminologies to describe identical or variable technologies or
services. In many instances, there were only slight variations
differentiating one service from the other. For example,
electronic patient records, electronic medical records, and

https://www.jmir.org/2018/12/e11254/

excluded
(n=160)

* Duplicates=9

* Reference not
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electronic health care records were variable forms of EHRS,
while Web-based consultations, online support groups, and
Web-based health information were some examples of health
IT. Multimedia Appendix 4 provides a list of the variable
terminologies identified from the included studies.

Stakeholders

In our analysis, we identified 2 mgjor stakeholders:. patients or
the public (187 studies) and health care professionals (HCPs;
101 studies). A third less predominant group—health
administrators (HAs; 20 studies)—was a so identified. For the
sake of clarity, HCPs refer to a broad range of health care
speciaizationsthat include pharmacists, occupational therapists,
physical therapists, physicians, and nurses. Other stakeholders
that were considerably less represented in the analyzed studies
included medical and nursing students, consumer groups, health
policy makers, data controllers, academic researchers, socia
workers, counselors, and I T technicians.

Trust Enablersand | mpediments

Our findings indicate that trust in digital health technologies
and services is affected by a variety of elements. In this study,
trust enablersrefer to those factors that encourage stakeholders
trust in digital health, while trust impediments denote thefactors
that can potentially hinder trust. These trust enablers and
impediments, therefore, underscore the elements that influence
stakeholder decisions on whether or not to place their trust in
digital health technologies.
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Personal Elements

By personal elements, we designate factors that influence trust
indigita health at theindividual level. The higher thelikelihood
of a digital heath technology or service to enhance job
performance, the more likely stakeholders areto trust it dueto
convenience and usefulness (110 studies). Moreover,
sociodemographic factors (84 studies) such as ethnicity, income,
and educational status affected an individual’s trust in digital
health either positively or negatively, thereby acting
simultaneously as enablers and impediments. Ease of use (53
studies)—the propensity for systems to require minimal effort
for use—also influenced trust positively. Other personal
elementsincludefair data access (21 studies), recommendations
(17 studies) from family members, acquaintances and colleagues
aswell as self-efficacy (15 studies). Thelatter denotes arefined
acumen to manage one's own health [41]. Altruism (9 studies)
also contributed to stakeholder involvement in digital health
enterprises and was driven by the prospect of contributing to
novel and beneficial therapies that would benefit society.

A number of studies reported excessive costs (34 studies) and
limited accessibility (55 studies) as potential barriers to trust
and, therefore, acceptance. Fear of data exploitation (25 studies)
from third parties such as insurance and pharmaceutical
companies was another pal pable impediment to trusting digital
health systems.

Technological Elements

The technological elements refer to the technical components
of digital health technol ogiesthat make them appealing to accept
and use. Interms of sensitive personal data such as genetic data,
robust systemsthat delivered on safety and privacy (73 studies)
were crucial to trust. There was a high affinity for customizable
design features (28 studies) that allowed stakeholders to tailor
devicesto their specific needs. Since HCPswere often required
to utilize disparate software programs, they requested
interoperable (10 studies) systems that ensured that newer
systems are compatible with currently existing ones. Relating
to trust impediments, defective technology (32 studies) was a
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culprit for the minimal use of digital health technologies or
services.

I nstitutional Elements

The ingtitutional elements denote the strategies that are
implemented within establishments that influence stakehol der
trust in digital health. Several studies highlighted that various
stakeholders had suggestions, expectations, or feedback to
provide on how best to improve digital health services.
Consequently, stakeholder engagement (71 studies), which
involves taking stakeholders opinions into account, emerged
as a relevant condition to increase trust in digital health.
Improved communication (46 studies) was a cross-cutting
expectation from digital health technologies. Both patientsand
HCPs valued the many communication avenues that digital
health provided. In 40 studies, it appeared that there was a need
for initial face-to-face interactions prior to the introduction of
digital health services. Generally, stakeholders expected digital
health technologies to build upon and improve on existing
systems. Hence, they preferred technologies that decreased
workloads (82 studies).

The reputation of service providers (71 studies), however,
served as either an enabler or impediment to trust in digital
health. A good reputation encouraged trust and vice versa.
Time-consuming (42 studies) technol ogies aswell asthose that
provided information of poor quality (51 studies) impeded trust.
Other impedimentsidentified included insufficient training (54
studies) and uncertainties originating from inadequate publicity
(44 studies) about the capabilities, existence, and risksinvolved
in using digital health. Finally, trust was also hindered by the
absence of guidelines for standardized use (22 studies).

In Table 1, we provide a summary of these findings and
highlight the stakeholders for whom these elements appeared
pertinent. In thetable, found in parenthesis next to each element
are the total number of studies (n). A checkmark is also used
to illustrate the respective trust elements that each stakeholder
is associated with.
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Table 1. Trust enablers and impediments alongside their corresponding stakehol ders.

Element classification Enablers of trust Impediments to trust Stakeholders
Patients HCP?  HAS
Personal elements Altruism (n=9) N/AC nd N/A N/A
Ease of use (n=30) N/A O O
N/A Excessive costs (n=34) g g
Fair data access (n=21) N/A O O N/A
N/A Fear of data exploitation (n=25) g N/A N/A
Recommendation by others (n=17) N/A g g N/A
Self-efficacy (n=15) N/A O O N/A
N/A Limited accessibility (n=55) g g N/A
Sociodemographic factors (n=84)¢ Sociodemographic factors (n=84)€ u U N/A
Usefulness (n=110) N/A a O N/A
Technological elements Customizable design features (n=28) N/A O N/A
N/A Defective technology (n=32) ad g
Interoperability (n=10) N/A N/A 0 N/A
Privacy (n=73) N/A 0 0 N/A
Ingtitutional elements Decreased workloads (n=83) N/A N/A O
Guidelines for standardized use (n 22) N/A N/A ad
Improved communication (n=46) N/A ] |
N/A Inadequate publicity (n=44) g ad
Initial face-to-face contact (n=40) N/A O O N/A
N/A Insufficient training (n=54) g ad g
N/A Poor information quality (n=51) ] | 0
Service provider reputation (n=71)¢ Service provider reputation (n=71)¢ U 0 N/A
Stakeholder engagement (n=71) N/A a a N/A
N/A Time-consuming (n=42) N/A g g

3HCP: health care professional.
PHA: health administrator.
°N/A: not applicable.

dCheck mark indicates respective trust elements that each stakeholder is associated with.
®These elements (sociodemographic factors and service provider reputation) are simultaneously trust enablers and impediments.

Discussion

Principal Findings

This study highlights the enablers of and impediments to trust
in digital health technologies and services. Our results show
that digital health encompasses a wide variety of health
technology types and their respective services. Altogether, we
identified 3 primary stakeholders: patients, HCPs, and HAs.
Moreover, our findings map out cross-cutting personal,
technological, and institutional trust elements in the form of
enablersand impedimentsto trust in digital health technol ogies.
Of these elements, sociodemographic factors and service
provider reputation acted simultaneously as enablers and
impediments.
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A possible interpretation of the ambivalent nature of
sociodemographic factors may lie in the fact that a lack of
resources, be them material or educational, render peoplein a
vulnerable state. Within health care settings, individuals often
compensatefor their vulnerability by perceiving health workers
as potential threats [42]. Thelevel of risk involved in instances
of unfulfilled or broken trust impacts the willingness of
vulnerable people to entrust individuals, institutions, or
technologieswith varioustasks. In asimilar fashion, those sitting
at the high end of the socioeconomic spectrum may be prone
to trust new technologies because of their perceived ability to
control them. Alternatively, they may have higher expectations
with regards to health care services and, thus, set the bar of
trustworthiness much higher than the more disadvantaged strata
of the population.
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The ambiguity that we uncovered in this study reflects what
other studies on trust vis-a-vis sociodemographic status have
highlighted. Available evidence on the role of sociodemographic
factors (eg, ethnicity, gender, and educational status) within the
health care context is mixed. For instance, 1 study, has shown
that patient characteristics (with the exception of age) rarely
predict trust in patient-doctor relationships [43]. Conversely,
others have identified patient characteristics such as age,
ethnicity, income status, educational level, and literacy levels
as crucial factors affecting the use of electronic health [20,44].
In light of these discrepant findings, further research is needed
to clarify the underlying effects of sociodemographic factorsin
digital health.

A prevaent themethroughout thisreview wasthat stakeholders
appear to trust profit-making entities such as insurance and
pharmaceutical companies much less than they do public
institutions like universities. Thisis awidespread phenomenon
that reflects greater public assumptions about the private sector’s
interests and profits [45]. Our findings support the importance
of reputation to trust even though service provider reputation
was identified as both a trust impediment and enabler. On the
one hand, when a service provider embodies high ethical
standards and is proficient at providing required services, they
attain the advantage of shaping the expectations of stakeholders
positively. In contrast, negative performance statistics of a
service provider stand to give rise to negative expectations about
their proficiency.

Degspite stakeholder optimism about digital health tools, there
are notable concerns about the accuracy of digital information
exacerbated by the absence of uniform quality controls and
standards [23]. Onora O’ Neill has underscored the importance
of enacting policies that address these challenges [26]. Based
on the studies concerning Web-based health information
included in thisreview, it was observed that patients and HCPs
struggled to establish the quality of digital information.
Consequently, in order to gauge the authenticity, veracity, and
usefulness of digital health technologies or services, they relied
quite significantly on recommendations from family members,
colleagues, or acquai ntances.

The FDA definition that we adopted for this review features
personalized medicine as one of the components of digital
health. Domains such as personalized medicine rely on the
creation of large cohorts of deeply characterized individuals,
asisthe casewith the 1 million participant research cohort being
built for the Precision Medicine Initiative in the United States
[3,46,47]. Success in this area will crucially depend on trust
[48,49]. How to gain the degree of public support and personal
commitment that is needed to build such infrastructures is far
from obvious. In such cases, the ability to measure
trustworthiness against a validated set of criteria will greatly
increase the odds of success for such initiatives. Our study can
be considered as a vital step in this direction, laying the
conceptual groundwork for the development of such tools.

As we have shown, trust in digital health technologies and
services depends on the interplay of a complex set of enablers
and impediments. This study sheds light on what determines
trust in digital health according to different stakeholders. More
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specifically, our findings can be of help in the implementation
of innovative digital health technologies and services as well
asin the management of existing digital health infrastructures.
Building on insights from this study, actionable metrics such
as the patient trust in telemedicine services tool can be
developed to assess the trustworthiness of digital technologies
in health care [50]. Each metric would need to undergo a
validation process before being deployed in practice by HAs
charged with monitoring or developing digital health services.

Overdl, engaging with efforts to investigate the different
dimensions of trust is particularly urgent given the growing
attention from entities such as governments. This heightened
level of attention is warranted due to the potential impacts of
ever more innovative forms of digital health. Some approaches
to digital health, in particular, those relying on big data,
predictive analytics, and artificial intelligence [51-53] will
require dedicated governance modelsin order to deliver on their
promises while meeting the expectations of their users [54].
Reliable ways of measuring trustworthiness will, thus, be akey
tool in such arapidly evolving scenario.

Limitations

A drawback to this study is the unequal number of studiesin
each digital health category. Although thiswas unlikely to have
skewed our findings, there were relatively fewer studies on the
newer forms of digital health such aswearable devices. Despite
suggestions for reviews to be screened by 2 individuas, the
volume and the complicated 2-step processinvolved in gleaning
relevant information meant that only 1 author (AA) could fully
screen al of the publications. Nevertheless, a second author
(AB) screened 10% of the total publications for which akappa
statistic was calculated to ensure aminimal level of bias. Even
though there was a moderate interrater agreement score
(kappa=.661; 95% CI 0.465-0.857; P<.001), our kappastatistic
is well above the .60 value that represents an inadequate
agreement threshold [39]. L astly, we acknowledge that scoping
reviews can have several shortcomings [55]. However, the
poorly-defined nature of both digital health and trust within the
literature required a method that could map out the discourse
and, thus, pave the way for a systematic review.

Conclusion

Rapid advances in digital technologies and data science over
the last few years are predicted to have a tangible impact on
health care services, configuring a paradigm shift into what is
now commonly referred to as digital health. Digital health,
however, relies heavily on trust to succeed. What counts as the
building blocks of trust in digital health systems has so far
remained underexplored. In this study via a scoping review
approach, we seek to fill this gap by analyzing what relevant
stakeholders consider as the constitutive elements of trust in
digitae health. Overdl, 278 qudlitative, quantitative,
mixed-methods, and intervention studies in English were
included in this review. Patients and HCPs were the 2 most
prominent stakeholders to trust, while HAs were a third and
substantially less prominent stakeholder. Altogether, the trust
elements that either enabled or hindered trust in digital health
clustered into personal, technological, and institutional factors.
This study pavesthe way for the implementation of the criteria
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necessary to measure and anticipate trust in emerging health  care technologies.
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Biomarkers are an integral part of biomedical research and clinical practice. Many
common research assays and clinical tests, such as measuring cholesterol levels, blood
pressure, body temperature, or pulmonary function tests serve as biomarkers for assessing
health states. In clinical trials, well-defined traditional biomarkers are importantand accepted
metrics to objectively assess clinical status, therapeutic effects such as early predictors for
clinicalendpoints,and adverse events. Due to the globallyincreasingimportance of biomarkers
in modern healthcare, in 1998 the US National Institute of Health (NIH) Biomarkers Defini-
tions Working Group began to define clinically associated terms and opinions on the qualifi-
cation of novel methodologies for medicine development. Since, they have also been adopted
by the European Medicines Agency (EMA) Committee for Medicinal Products for Human Use
(CHMP) [1]. A biomarker is defined as “a characteristic that is measured as an indicator of
normal biological processes, pathogenic processes, or responses to an exposure or inter-
vention including therapeutic interventions. This can include molecular, histological, radio-
graphic, or physiologic characteristics” [2].

The FDA-NIH Joint Leadership Council put together the Biomarkers, Endpoints and other
Tools Resource (BEST) in order to harmonize translational science by standardizing medical
terms and improve scientific understanding regarding biomarkers in clinical development
and practice [2]. In BEST, the FDA-NIH Biomarker Working Group defined two categories of
biomarkers: (i) disease-associated biomarkers (susceptibility/risk biomarker, diagnostic
biomarker, prognostic biomarker, monitoring biomarker), and (ii) drug-related biomarkers
(predictive biomarker, pharmacodynamics/response biomarker, safety biomarker). For
example, body mass index (BMI) measurement is a risk biomarker used to assess the risk for
metabolic diseases such as diabetes mellitus, hypertension, and dyslipidemia, and can lead to
preventative health measures [3]. Biomarkers can also be safety indicators for determining
health status, such as liver function, by measuring serum creatinine, blood urea nitrogen, and
cystatin C [4, 5]. The working group also describes other clearly standardized biomarker-
relevant definitions, e.g., “fit for purpose” and “context of use (COU)” [2].

Duetothelongandresource-intensive process,incorporation offully qualified biomarkers
in the medical field is very challenging. It begins with biomarker discovery, animal experi-
ments, clinical or epidemiological studies, analytical validation, and interventional studies
with the gold standard endpoints [6-8]. Additionally, there are many stakeholders involved
in the qualification of biomarkers: academia, technology companies, biopharmaceutical
industry, regulatory agencies, doctors, and patients add to the complexity of biomarker qual-
ification and acceptance.

As digital devices have begun to be integrated into the medical landscape, digital
biomarkershavebecome an excitingnew tool foradvancing precision medicine and supporting
clinical trials. Digital biomarkers are objective, quantifiable, physiological, and behavioral
measures that are collected by means of digital devices that are portable, wearable,
implantable, or digestible [9]. These data are often used to explain, influence, and/or predict
health-related outcomes. Individualized measures can now be recorded to create person-
alized baselines for health. The inclusion of digital biomarkers has specifically impacted the
field ofneurology wherethereisagreatunmetneed for objectiveand non-invasive biomarkers.
Currently, a number of digital biomarkers are being tested for feasibility and reliability in
Parkinson’s and Alzheimer’s disease and clinical outcome assessments [10, 11].

Asthe emerging field of digital biomarkersjoins traditional biomarkers in the health(care)
innovation process [12], it is crucial to address rising new possibilities and challenges, but
most importantly define a standardized nomenclature and process to allow for a more rapid
clinical uptake. To tackle this pressing need, the BaselArea.Swiss organized the DayOne
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Fig. 1. Digital technologies have
enabled the measurement of digi-
tal biomarkers. Traditional bio-
markers are divided into seven
categories depending on the clini-
cal goal for the biomarker (i.e.,
safety, predictive, diagnostic,
etc.). We propose that digital
technologies enable the measure-
ment of digital biomarkers, which
contribute new and unique fea-
tures (e.g., longitudinal, continu-
ous measurements) while sharing
the same traditional biomarker
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clinical goals.

Workshop “Traditional and Digital Biomarkers - Two Worlds Apart” on March 27, 2019 in
Basel, Switzerland. A diverse and relevant group of stakeholders from academia and industry
attended, bringing together multiple viewpoints. In this perspective, we present our findings
on identifying similarities and differences between traditional and digital biomarkers and a
discussion on how these fields could be further harmonized by addressing semantics, features
unique to each area, and novel applications in the medical field.

A Comparison of Traditional and Digital Biomarker Characteristics

Despite the apparent similarities between traditional and digital biomarkers in the way
they address important challenges related to the health-disease continuum, there are also
important differences in culture, innovation, scientific and technical maturity, and the nature
of the data. Simply, digital biomarkers fall within the scope of traditional biomarkers in
relation to addressing health-related questions, with use of a digital and portable technology
that adds new dimensions, unique features and challenges (Fig. 1; Tables 1, 2).

Traditional biomarkers are often well embedded into clinical practice and research,
usually in proximity to the pathological event of interest. They are generally limited in
analytical complexity and can range from being qualitative to quantitative. However, such
traditional biomarkers can be invasive and expensive to measure. Due to the dynamic,
complex nature of disease, traditional biomarkers often present an incomplete view due to
the limited number of measurements that can be collected over time (“snapshot” problem).
Alternatively, digital biomarkers are usually less or non-invasive, modular, and often cheaper
to measure. They can produce qualitative and quantitative measurements, but most impor-
tantly, they provide easier and cheaper access to continuous and longitudinal measurements.
Nonetheless, digital biomarkers are still new and therefore are not commonly implemented
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Table 1. Overview of traditional and digital biomarker features, novel applications, and published examples

Biomarkers

Definition: “a characteristic that is measured as an indicator of normal biological or pathogenic processes, or responses to an
exposure or intervention” [2]

Feature in digital Novel applications Examples

biomarkers

Individual/ Clinical trial patient stratification Detection risk of dementia with computerized cognitive
population Clinical trial patient recruitment testing [13]

level health data

Development of personalized/population
baselines
Population health management

Wearable sensors to monitor gait performance in
Huntington disease (recorded >14,000 assessments vs. 20 in
the clinic) [14]

Longitudinal and

More data points will lead to higher

Analysis of finger tapping and memory tests conducted on

continuous granularity and stronger analysis smartphones for characterization of longitudinal
measurements Clearer understanding of health status characteristics of Parkinson’s disease [15]
High resolution of data to stratify Voice, finger tapping, gait, and reaction time on smartphone
subgroups within a population application for developing an objective measure of PD
Measures change over time severity [16]
Serves as a control for disease states Wearable devices for real-time detection of epileptic seizures
Measure/observe episodic medical to better understand the condition and option to contact
occurrences in real-time, outside of clinic emergency services [17]
Passive Facilitates monitoring outside of hospital Automated analysis of free speech to predict psychosis onset
monitoring Objective data (individual-independent) in youths [18]

Low patient burden; higher adherence

Passively acquired accelerometer data as primary endpoint
to measure the effect of isosorbide mononitrate treatment in
patients with heart failure [19]

Table 2. Current challenges of digital biomarkers in medical settings

Challenges

Explanation

Semantics

Lack of standardization in the choice of words describing novel concepts in digital biomarkers
(e.g., longitudinal data)

Data standardization

Large number of heterogeneous data sources, formats, scales

Data privacy: protection
of user data, anonymization

Regulatory guidelines on privacy, right to opt out, informed consent, data ownership is not fully
developed, continuously changing, and different between countries

Data storage

Large volumes of complex data are being generated but there are few guidelines on how they
should be stored

Identification of relevant
data and interpretation

Identification of pertinent data is important for analysis, and how to correctly analyze the data
and use accurate baselines is still unclear; this process is often not transparent due to
proprietary issues

Regulatory approval: data
analytics, algorithm and tool
validation

Regulatory standards lag behind rapid innovation in tool, analytics, and algorithm development

in clinical development and practice. Ease-of-use and low cost come to the detriment of often
measuring distally from pathological events, and producing large, complex data that are chal-
lenging for data analytics. Some additional drawbacks include data integrity assessment and
reliability, hardware malfunctions, identification of relevant data, multiple interpretations,
and baseline determination.

KARGER

71



-.dgical Digit Biomark 2019;3:92-102

DlomarKEFS DOI: 10.1159/000502000 © 2019 The Author(s). Published by S. Karger AG, Basel
www.karger.com/dib

Babrak et al.: Traditional versus Digital Biomarkers

In any emerging field, a high degree of ambiguity in semantics is typical. In digital
biomarkers this results from the merging of several fields (healthcare, engineering, and
analytics), from the commercial marketing of mobile products directly to the public, and from
a lack of shared practices and standardization. Further, proprietary devices and corre-
sponding digital biomarkers are introduced in the market with differing terminologies used
for medical, scientific, and marketing purposes. For example, gait - the way an individual
walks - is termed and described differently depending on the context (e.g., medical, engi-
neering, analytics) and would be described differently for marketing purposes depending on
the target demographic group. Adding to this disparity, there is also a cultural and historical
ambiguity in terminology. There are terms in the regulatory space that have legacy connota-
tions that may no longer apply, or are co-opted or newly created without sufficient standard-
ization and consensus among participating stakeholders. These semantic issues generate
confusion by creating conflicting or divergent terms. While a certain degree of semantic ambi-
guity is present, we propose using traditional biomarker semantics to describe digital
biomarkers. While terms such as “surrogate endpoint,” and “validation” can apply to both
types of biomarkers, additional concepts such as continuous and longitudinal data must be
defined to encompass these new parameters and how these terms relate to each other.

Community-based semantic disambiguation in emerging areas is no trivial pursuit and
requires an agile, iterative process of refining and shaping terms that enables the community
to focus on areas that need our attention first, considering the costs of non-action. For these
new terms to be incorporated and modified, a living and dynamic standard for terms needs
to be assembled and maintained. This allows new terms to be integrated while removing
outdated, irrelevant terms. This living dictionary will need to be flexible, keep up with the
rapid speed of technological innovation, and reflect community decisions by expert decision-
makers, producers, and users of data, and be based in the regulated field of patient healthcare.

While traditional biomarkers are applied to a population group seeking to improve or
assess their health status, the digital biomarker application landscape is broader. It encom-
passes three different population groups: (i) the casual, curiosity, or fitness-based individual
for non-clinical use (often in the healthier section of the health-disease continuum), (ii) the
commercial-based group, and (iii) the regulatory and clinical trial group (typically in the
more diseased cluster of the health-disease continuum; Fig. 2). To fully understand and
address the challenges in the field of digital biomarkers, the diversity of the population groups
that produce these data needs to be identified and attributes described. Figure 1 depicts three
different population groups and highlights several unique characteristics within these groups.
The first group falls into the casual non-clinical use of digital biomarkers, which includes
those who are curious, fitness-trackers, the “quantified self,” and individual-driven pheno-
typing or status tracking. This population group consists of the largest number of individuals,
but contains the least amount of reliable, validated, and consistent data, and is at a higher risk
of data breach [20, 21]. These attributes prevent the use of this type of data in a medical
context. Technological industries associated with this group typically change products
rapidly, preventing them from complying with complex regulatory settings which would
normally slow down the ability to adapt products quickly to a rapidly changing market.

The second population consists of users of digital biomarkers for commercial purposes
such as fitness coaching for professional athletes and for facilitating decision-making in
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Fig. 2. User populations. Different populations of data producers of potential digital biomarkers and device
users are grouped based on application, size of population, consistency of measure, and data security risk,
and are categorized based on the best potential use of the data for discovery of novel digital biomarkers or
validation. The y-axis describes the number of individuals measured and the x-axis describes the consistency
of the measure. Consistency is defined as accuracy, precision, reproducibility, calibration, and traceability.

healthcare. These users are often located somewhere in the center of the health-disease
continuum. This group is highly variable in size but is generally smaller than the first popu-
lation group. For example, ORECCO, a privately-owned company, provides professional
athletes with performance results based on the digital biomarkers they collect [22].

The third population group consists of the device users and data producers involved with
clinical or regulatory decision-makers, pharmaceutical companies, medtech, or physicians.
This population group is the smallest and the security against improper alteration of the data
needs to be high due to the medical and regulatory implications. The consistency and quality
of the data (i.e., accuracy, precision, reproducibility, calibration, and traceability) is the
highest, containing strict definitions, protocols, and predetermined analyses, making this
group ideal for digital biomarker validation. In this group, physicians specialized in particular
diseases typically recruit participants according to specific inclusion and exclusion criteria,
and traditionally no information optimized for interpretation by patients goes back to the
patients.

Despite their differences, the three population groups can provide valuable information
with regard to population baselines and health status (casual and commercial groups), which
can be formally implemented for biomarker validation (regulatory/clinical study group). In
the digital biomarker landscape, the number of individuals measured, data security, and
consistency of data vary greatly. Due to the diversity of features demonstrated by each popu-
lation group depicted in Figure 2, there is an expected level of confusion and uncertainty
regarding how to define terms and apply regulatory applications. We need to recognize that
there is a breadth of digital biomarker applications and each should be defined separately,
standardized appropriately, and regulated accordingly depending on the population group.
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The Classification of Digital Biomarkers

Although there are many perspectives on how digital technologies can be classified (i.e.,
clinical outcomes or biomarkers), we set to further clarify and describe digital biomarkers in
the scope of clinical development and practice. We propose a method of classifying digital
biomarkers by taking into account the digital measurement tool and clinical outcome
assessment (COA; Fig. 3, adapted from [23]). COA is the monitoring of how a patient feels,
functions, or survives. An important corollary to the COA definition is that a biomarker is not
a measurement of how a patient feels, functions, or survives. Digital biomarkers and their
associated clinical assessment outcomes are partitioned into three types. “Approved”
describes biomarkers that improve or accelerate generally accepted practices. These are
digital biomarkers that consist of approved measurements such as heart rate, pulse, and
known clinical outcomes, such as cardiac risk [24]. “Original” characterizes biomarkers from
two scenarios: (i) a novel measurement with a known clinical outcome such as gait
measurement for Parkinson’s disease assessment [10] and (ii) an approved measurement,
such as heart rate to describe a novel clinical outcome such as depression [25]. “Novel”
describes a novel measurement such as physical activity or facial expressions, with a novel
clinical outcome such as depression [26]. “Approved” digital biomarkers will likely be the first
ones to be used as they are already medically validated and implemented in the clinic. Digital
biomarkers in “Original,” and especially in “Novel,” will require rigorous testing and vali-
dation to become adopted in clinical development. This new classification system will help
facilitate and clarify the type of biomarker and clinical outcome being described and facilitate
regulations.

Regulatory Concepts in Digital Biomarkers
The regulatory procedures concerning biomarkers, including digital, is complex because
they can be applied to a broad spectrum of uses such as drugs/biologicals and medical devices,

and regulated differently in various countries. In Switzerland, the council directive concerning
medical devices 93/42/EEC (Swiss Agency for Therapeutic Products, Swissmedic) defines
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“medical device” broadly as any instrument, apparatus, appliance, software, material, or
other article, whether used alone or in combination, used specifically for diagnostic and/or
therapeutic purposes. In the USA, the Food and Drug Administration (FDA) oversees the
Center for Drug Evaluation and Research (CDER), the Center for Biologics Evaluation and
Research (CBER), and the Center for Devices and Radiological Health (CDRH), which manage
the approval of new drugs, biologics, and medical devices, respectively. Currently in Europe,
the European Medicines Agency (EMA) manages the approval of medical devices and drugs,
but recently, a new legislation has created the Medical Device Regulation (MDR), which will
oversee all new medical devices and enforce more stringent rules compared to the CDRH for
medical device approval in 2020 [27]. Generally, in the USA, medical devices with software
that operates the device and sensors have been categorized as “software in medical device”
(SiMD). With the introduction of digital biomarkers, new terminology was introduced:
“software as a medical device” (SaMD). SaMD is defined as software that performs a medical
function without being part of the hardware (e.g., machine learning tools in mobile apps) [28].
An example of an SaMD is the Apple Watch software for atrial fibrillation detection where the
Apple Watch serves a component supporting digital biomarker measurements (atrial fibril-
lation).

For drug and biological measurements and approvals, digital tools are being adopted in
the first three phases of clinical trials, and the data derived need to be collected early and
consistently to develop the necessary evidence for internal decision-making (phase I and II
clinical trials) and regulatory approval (phase III) [28]. In the regulatory area, tools and
measurements for medical product development are termed drug development tools or
medical device developmenttools. The FDAalso hasaPrescription Drug-Use-Related Software
that is developed for use with prescription drugs (e.g., drug ingestion tracking, dose calcu-
lation, remainders, and drug instructions). Similar to the drug-related products described
above, medical devices go through a process for clearance or approval [28]. In this process,
the technical aspects of the design of the product are more carefully considered. The intended
use of the device determines if and how the item is regulated. If the medical device is only
intended to be used for wellness purposes then no regulation is necessary, but if the same
device claims to diagnose or monitor a health condition, it needs to be regulated. Whether
software is considered a device is determined by a regulatory body and will be highly
dependent on the intended functions. The FDA continues to update guidelines in order to
clearly determine which devices should be regulated, but the distinctions of whatis considered
a medical device is still unclear, and often exceptions are made.

Digital biomarkers are also extremely well suited for applications and medical areas that
rely on subjective measures such as neurology and psychiatry. Digital biomarkers can provide
objective measurements to base and support diagnosis, prognosis, and measure therapeutic
outcomes. In fields like Alzheimer’s and Parkinson’s disease, digital outcome measurements
bring a paradigm shift of how treatment outcomes are measured and assessed, particularly
in very early (prodromal) disease states [29]. Currently, many pharmaceutical companies are
running pilot studies to test the feasibility of using digital biomarkers. For example, Roche has
built a Parkinson’s disease app to measure active and passive PD tests and assess disease
severity [30], Biogen is in partnership with PatientsLikeMe trying to understand physical
activity measurements in patients with multiple sclerosis [31], and Neurotrack has remotely
measured cognitive ability to assess cognition in patients with Alzheimer’s disease [32]. In
psychiatry, using “digital behavioral biomarkers” such as phone usage patterns in health
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disorders has had encouraging results [33]. Additionally, digital biomarkers are predictive
for the diagnosis and prognosis of symptom severity in patients with major depressive or
bipolar disorders [34]. Unfortunately, there are few published results and currently it is
difficult to assess the overall feasibility, technology and biology behind digital biomarkers.

Digital continuous monitoring has brought a wealth of new data to healthcare. Retrospec-
tively in science, there have been many instances where new technology has propelled a
paradigm shift that enabled new questions and novel insights. Digital biomarkers may not
shift the medical paradigm directly, but these novel ways of measuring health status provide
observations and perspectives into disease that were unavailable before. They supplement
and enhance conclusions from traditional biomarkers (e.g., dynamic changes measured with
digital biomarkers during the course of a disease). Detailed longitudinal measurements,
combined with accurate and precise assessments from molecular characterization of health
and disease, have the potential to redefine diagnosis and the medical classification of diseases.
Similar to novel stratifications in cancer groups due to molecular profiling, digital biomarkers
can further support precision medicine and lead to innovative treatments. Lastly, digital
biomarkers provide information that has the potential to greatly influence not only what we
know about disease and prevention, but our very understanding of health.
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Wearable Devices in Clinical Trials: Hype and

Hypothesis

Elena S. Izmailova’, John A. W/'agner1 and Eric D. Perakslis

The development of innovative wearable technologies has raised great interest in new means of data collection in
healthcare and biopharmaceutical research and development. Multiple applications for wearables have been identified in
a number of therapeutic areas; however, researchers face many challenges in the clinic, including scientific methodology
as well as regulatory, legal, and operational hurdles. To facilitate further evaluation and adoption of these technologies, we
highlight methodological and logistical considerations for implementation in clinical trials, including key elements of
analytical and clinical validation in the specific context of use (COU). Additionally, we provide an assessment of the maturity
of the field and successful examples of recent clinical experiments.

WHY CONSIDER USING DIGITAL DEVICES IN CLINICAL
TRIALS?

Use of (and hype surrounding) wearable technologies has sky-
rocketed in recent years. We define here wearable technologies as
sensors and/or software applications (apps) on smartphones and
tablets that can collect health-related data remotely, i.e., outside
of the healthcare provider’s office. The data can be collected pas-
sively or may require a user’s input. An accelerometer embedded
in a wristband or a cell phone is an example of a sensor passively
collecting data about a person’s physical activity and movement.
Software (e.g, ePRO (electronic Patient Reported Outcome))
can output a patient’s report capturing health-related informa-
tion, collected by means of a cell phone app or a web-based inter-
face. Additionally, some technologies, such as smart-cap bottles
designed to monitor medication adherence, can use a combina-
tion of a sensor and app-based data collection. The event record-
ing is triggered by a user action (opening the bottle), but the data
are transmitted from a sensor to a server passively via Bluetooth.
The transmission is mediated by a cell phone app.

Ten years on since the introduction of the iPhone, we have
witnessed an almost complete change in how people communi-
cate with each other, access media/content, and interact with
that content. Most noticeably, in healthcare and beyond, this
shift has led to a complete change in the expectations surround-
ing reporting of events. Digital disease detection has shifted
outbreak-detection timeframes from months to hours with social
media.! The US Food and Drug Administration (FDA) now
encourages safety adverse event reporting via mobile apps. Hospi-
tals are using Fitbits on inpatients to monitor recovery and

mobility. Patients interact regularly online with healthcare facili-
ties. Twitter and other social media can report and post opinions
on products and services far faster and more broadly than almost
any business.””

At the same time, rising costs of healthcare are of immense con-
cern and the possibility of healthcare virtualization via digjtal devi-
ces has been heralded by relentless hype. For remote monitoring of
cardiovascular parameters, activity (including gait, balance, and
many other forms of motion measurement), body temperature, gal-
vanic skin response, blood oxygen saturation, and multisensor/
multisystem monitoring,4 advanced wearable device research and
development is continuously improving. Common form factors
include wearable watches/bracelets, patches, textiles, and garments
(Table 1). All of these sensor devices are being built with the abil-
ity to monitor continuously and communicate data in real time or
intermittently. While maturity, promise, and quality all vary greatly
at the moment, clearly these sensors and devices have the potential
to become an integral part of the future of healthcare and biophar-

maceutical development.

PROMISES AND CHALLENGES OF USING WEARABLES IN
CLINICAL TRIALS

Promises in healthcare

Wearable devices can collect data on a 24/7 basis in natural set-
tings as people go through their daily routines at home and work.
The data collection can be enhanced by digital diaries depicting
key features of personal health and lifestyle. The best-known
wearable devices are commercial fitness trackers that collect
mobility and some vital sign data.’ Similar wearables cannot be

1Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA. Correspondence: Elena S. Izmailova (elena.izmailova@takeda.com)
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Table 1 Examples of wearable sensors
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Device type Data collected Examples

Wrist worn Actigraphy, HR (Heart Rate), BP (Blood Pressure), Actiwatch Spectrum by Phillips, ActiGraph Link by ActiGraph,
EDA (Electrodermal activity) E4 by Empatica, ViSi Mobile by Sotera Wireless

Skin patch ECG (Electrocardiography), actigraphy, BioStampRC by MC10, HealthPatch by Vital
skin temperature Connect, BodyGuardian by Preventice

Cuffs BP, HR Intellisense Digital BP Monitor by Omron Healthcare

Finger worn HR, Sp02 iSp02 Pulse Oximeter by Massimo

Clothing embedded sensors  HR, HRV (Heart Rate Variability), ECG,

Breathing Rate, actigraphy

Smart shirts by Hexoskin

Headbands

EEG (Electroencephalogram), EMG (Electromyography)

EMOTIV EPOC by Emotiv, 4D FORCE by 4D FORCE

marketed as medical devices unless the device performance has
been established prior to release to the market. This is a big step
forward compared to the traditional means of health-related data
collection. For example, basic physiological data, e.g., vital signs
and telemetry, are traditionally collected only during doctor’s
office visits or as a part of medical product clinical trial proce-
dures. These data represent a very limited snapshot of a person’s
phenotype and physiology. Inferences about a person’s health are
made based on the extrapolation of such a snapshot to extended
periods of time, potentially weeks and months. This extrapola-
tion is also based on patients’ memory recall of incidents preced-
ing the office visit. Decisions about the patient’s health, disease
status, and treatments are made comparing data collected in
doctor’s offices to population averages, which may or may not be
relevant to a particular individual. Additionally, there are
well-known issues related to in-clinic measurement of vital signs,
including white-coat hypertension.® There is a growing recogni-
tion that population-based values need to be adjusted for factors
such as age, gender, medication status, demographics, and other
factors.”® These adjustments can be made if there are data avail-
able for specific subpopulations of interest. This may also be
done using the individual’s own baseline data collected over
extended periods of time, which would enable a precision medi-
cine approach. Data frequently collected over extended periods of
time can provide deeper understanding of disease variability,
which is likely to be an important contributor to treatment
response variability. Having larger and denser datasets will help
to characterize intra- and interpatient variability. Additionally,
there is growing evidence that replacing paper diaries with elec-
tronic versions can greatly improve the quality of subjectively
reported outcome data,”" such as pain and functional status, by
ensuring compliance, timely collection of the data, avoidance of
secondary data entry errors, and reduced administrative burden.'!
Replacing paper diaries and patient memory recall with electronic
means of data collection is likely to continue and expand with
technological advances in the future. Moreover, wearable device
data combined with other data such as genomics or other high-
throughput technologies have the potential to create a compre-
hensive multilayer picture of a person’s health and can deepen
our understanding of how to combine genotyping with deep
phenotyping.

CLINICAL PHARMACOLOGY & THERAPEUTICS | VOLUME 104 NUMBER 1 | JULY 2018 80

Promises in drug development

The applications mentioned above are also attractive for drug
development in both early- and late-stage clinical trials. Collect-
ing dense data from trial participants using wearables in natural
settings—often not collectible otherwise—may fundamentally
change how clinical trials are designed and conducted. In early
clinical drug development, collection of dense physiological data
may identify early safety issues and inform dose adjustments and
dosing frequencies, or lead to discontinuation of development of
certain drug candidates. The study subjects would not have to be
confined to the pharmacology units all the time to have the data
collected. In the late stages of clinical development, creating novel
endpoints by means of wearable technologies has applications in
multiple disease areas (Table 2). These novel endpoints may pro-
vide more sensitive measures of disease activity compared to tra-
ditional scales, enabling faster and more objective readouts in
clinical trials. Additionally, sensors can provide objective mea-
sures of traditionally subjectively reported outcomes, such as pain
and fatigue, complementing or even completely replacing self-
reports. Another attractive feature includes portability to home
settings and simplification of measures traditionally done in hos-
pitals. Sleep data collection by means of actigraphy can serve as
an exalmple.12 Important parameters of sleep, such as sleep dura-
tion and number and duration of awakenings, can be collected by
wrist-worn actigraphy devices. This could replace sleep studies
that are not practical for long-duration monitoring and provide
data collected in natural home settings, which are more likely to
represent a person’s regular sleep patterns. Although actigraphy
data do not provide details on a deeper level, e.g, sleep phases,
the procedure is very noninvasive and ecasy to implement.
Actigraphy-based sleep data also highlights the need for clinical
validation of new wearable-based endpoints.

Other promising wearable technology can be seen in phone/
tablet apps. The best-known examples include medication adher-
ence monitoring, medication reminders, and patient engagement.
Medication adherence is a big area of concern in multiple thera-
peutic areas."” The reasons behind nonadherence are multiface-
ted and include socioeconomic factors, access to health care,
communication means with healthcare professionals, patients’
education, and understanding of the impact of nonadherence to
the treatment outcome.'* Moreover, cell phone apps can provide
data to monitor medication adherence and help with timely
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Table 2 Novel endpoints: application, benefits, and examples

Application

Benefit

Examples and references

Safety monitoring/patient
phenotyping

e Early safety signal, dose and frequency adjustments,
discontinuation of certain drug candidates

Vital sign, e.g. HR, RR, skin temperature,
BP, and actigraphy>"->°

e Better understanding of mechanistic and pharmacological
drug profile if combined with PK and wet lab test data

Novel endpoints

extended periods of time

e More sensitive measures than traditional clinical scales in

movement disorders

e Mobility as a measure of quality of life
e Sleep studies in the home settings for

e Actigraphy in Oncology®®

e Actigraphy as a measure sleep in a
home settings®*~°¢

e Gait and tremor in Parkinson’s
disease®’%®

Medication adherence monitoring
and intervention

e Improved adherence

e Informed decisions about dose adjustments
e Increased efficiency in postmarket data collection

e Adherence surveys

e Drug intake reminder apps

e Objective data on drug
intake - smart cap bottles

Patient enrollment and retention
in clinical trials
e Increased patient outreach

e Fewer obstacles to enroll in clinical trials
e Reduced burdens for patients to participate

e Remote enroliment and consent apps
e Reminder apps about study procedures
and clinical trial progress

intervention by medical personnel and caregivers.15 Medication
reminder apps, enhanced by alert personalization and available to
both patients and caregivers, were found to improve medication
adherence.'® Additionally, a number of digital technologies were
developed to collect objective adherence data with smart-cap bot-
tle and blister pack technologies. However, the effectiveness of
these technologies in improving patient adherence has yet to be
confirmed in well-powered, controlled studies."”

Cell phone apps and web-based interfaces are increasingly used
for remote patient enrollment, patient consent, and retention in
clinical trials, making the process more convenient and enabling
better outreach to remote patients. Clinical trial patient retention
may be enhanced by delivering app-mediated reminders, provid-
ing information about upcoming visits and operational updates
about clinical trial conduct, encouraging compliance, facilitating
communication with medical personnel, and making the logistics
of participation easier.

The totality and combination of applications can provide a
basis for telemedicine and enable partially or completely remote
clinical trials, bringing drug development to difficult-to-reach
populations. Time and cost could be reduced by decreasing the
number of clinic visits and potentially by avoiding use of other
expensive medical devices such as telemetry. Time, convenience,
and cost savings are big potential benefits of wearable devices,
although currently development and adoption costs are militating
against such savings. Nonetheless, data delivered by wearable
technologies have the potential to improve detection of treat-
ment effects and demonstrate how these effects relate to underly-
ing disease characteristics, improving our understanding of the
treatment-response relationship and enhancing personalized
medicine.

CHALLENGES

The promising potential of wearable devices has attracted enor-
mous attention, including the start of c:xperiments,18 and a num-
ber of deals between biopharmaceutical, contract research
(CRO), and device have been
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announced.’”?° Nevertheless, the major impact expected from
digital technologies on biopharmaceutical R&D has not yet
materialized.”' The reasons behind the lack of major transforma-
tion include scientific, regulatory, ethical, legal, data management,
infrastructure, analysis, and security challenges.

Scientific

Many devices, particularly consumer-grade, are marketed with
promises to improve health and wellness with no scientific evi-
dence behind this claim.’ Properly designed, well-powered studies
with a clear statement of a medical problem are required, rather
than technology choice-seeking applications.”> Moreover, drug
development and device engineering are historically separate sci-
entific fields. On the one hand, biopharmaceutical R&D scien-
tists are generally not familiar with devices, which creates a
barrier for adoption of wearable technologies in drug develop-
ment clinical trials. On the other hand, device engineers are not
conversant with the drug development process and regulatory
requirements for drug approvals. The solution would be to bring
device engineers into drug development to educate biopharma-
ceutical R&D and enable adoption of device technologies.

Regulatory

In the US, the drug and device marketing approval paths are sep-
arate and the oversight is done by different divisions of the FDA.
The majority of wearable devices are classified as Class II devices
cleared as 510(k), which requires establishing technical perfor-
mance in comparison to a predicate (i.c., legally marketed) device
that uses a similar engineering solution. The requirement doesn’t
include establishing an association with a clinical outcome such
as a disease condition. This requirement exists only for 510(k) de
novo devices when there is no predicate device available. There-
fore, a device under consideration needs to be tested in a specific
population relevant to the device label claims in order to establish
an association with a disease condition. If such a 510(k)-cleared
device is intended to support an efficacy claim on a drug label, a
link between the device readout and an efficacy parameter of
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Figure 1 The timeline for market release of technologies enabling wearable device use in healthcare.

interest needs to be established in the context of drug develop-
ment. It also has to be supplemented by the device analytical per-
formance data indicating that the device is appropriate for an
intended use. Additionally, the field is plagued by a lack of shared
understanding of methodologies and terminology. A similar issue
was successfully overcome in the field of laboratory biomarkers
with the widely accepted concept of “fit-for-purpose validation”
and well-developed and shared tcrminology.B_25 The same
approach can be adopted by the wearable device field and several
precompetitive initiatives have made significant progress towards
achieving this goal.26’27

Data infrastructure, processing, analysis, and interpretation
The infrastructure challenges are multifaceted. Drug develop-
ment clinical teams are not familiar with the massive amounts of
24/7 data to be processed and integrated with the rest of study
data. The sensor data structure is very different compared to tra-
ditional data collected at predefined timepoints by clinical sites
and consists of multiple layers: raw unfiltered data, raw filtered
data to eliminate invalid data in accordance with the scoring
algorithms, data consisting of the secondary derivatives, and data
derived from the secondary derivatives for interpretation. The
outstanding questions include: who is the data originator, what
constitutes source data, which datasets are required to maintain
an audit trail, and what should be reported as a final result. These
are the topics of debate by the industry and the regulators, but
the recommendations that would help to harmonize the field
have not been established. Moreover, the processing and analysis
of massive data, as well as result visualization and interpretation,
presents a formidable challenge. Machine-learning methods
enabling automated data processing and an improved signal rec-
ognition were demonstrated to be useful in solving this issue.!!
Additionally, there are no well-developed standards that would
help to organize, annotate, and standardize the data and provide
data mapping tools to electronic data capture (EDC) databases.
The lack of mobile technology data standards is exacerbated by
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the fact that wearable devices sometimes report variables perti-
nent to the same phenomenon (e.g, mobility) but use different
terminology, and data processing algorithms are not disclosed.
The solution should include industry-wide standards for data and
terminology, processing principles for similar sets of data, and
transparency requirements around data processing algorithms.

Ethical and legal

This category of challenges includes data ownership and sharing,
consent requirements, privacy, security, and substantial geograph-
ical differences in approaches to addressing these challenges. US
and European legislation seems headed in different directions
concerning scope, consent, data sharing, and processing.”® In the
US, consumer-grade and medical devices are regulated differently.
The data obtained via medical devices are covered by HIPAA
and require patient consent for data collection and sharing. On
the other hand, the data obtained by consumer-grade devices,
although it may contain legitimate health information such as
disease condition, lifestyle, biometric, mobility, and behavioral
patterns, can be shared in a deidentified, aggregate manner with-
out explicit stipulation concerning who will have access to the
data. In the EU, new General Data Protection Regulation
(GDPR) regulations do not draw distinctions pertaining to a
device type and cover all data generated by wearable devices or
apps in the medical context.”” Additionally, the EU requires
clearly defined purposes for data use, consent for data reuse and
sharing, and allows patients to withdraw their consent at any
time.

Data security

In the practical consideration of privacy, security, and compli-
ance, it can be helpful to separate compliance from privacy and
security, as compliance tends to be retrospective in nature, but
ensuring privacy and security must be proactive and forward-
looking.30 Much has been written about general and advanced

privacy and security with respect to medical data and devices.*"*
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Table 3 New families of privacy and security controls

Control family

Key example controls

Access Control

Account Management, Access Enforcement, Information Flow Enforcement

Awareness & Training

Audit & Accountability

General Awareness Training, Role-based Training

Audit Event Management, Audit Review Analysis & Reporting

Assessment, Authorization & Monitoring

Configuration Management

Annual Assessments, Assessment Guidelines, Independent Assessment

Baseline Configuration, Configuration Change Control

Contingency Planning

Contingency Plan, Contingency Training, Contingency Plan Testing

Identification and Authentication

User Management, Device Management, Management of Unique Identifiers

Individual Participation

Individual Consent, Redress, Access, Privacy Notices and ACT Statements

Incident Response

Incident Response Policies & Procedures, Training, Testing, Handling, Monitoring

Maintenance

Controlled Maintenance, Maintenance Tools, Personnel, Local & Non-local

Media Protection

Media Access, Media Marking, Storage & Transport, Sanitization and Use

Privacy Authorization

Authority to Collect, Purpose and Sharing

Physical and Environmental Protection

Physical Access Authorization & Control, Monitoring

Planning

Security & Privacy Plans, Updates, Rules of Behavior, Impact Assessments

Program Management

Program Plan, Roles, Resources, Inventory, Architecture and Performance

Personnel Security

Personnel Screening, Risk Designation, Transfer and Termination

Risk Assessment

Security Categorization, Assessment and Vulnerability Scanning

System and Services Acquisition

Resource Allocation, Systems Lifecycle, Acquisition and Documentation

System and Communications Protection

Application Partitioning, Security Function Isolation, Boundary Protection

System and Information Integrity

Flaw Remediation, Malicious Code Protection, Monitoring, Alerts & Advisories

Fortunately, guidance recently released by the US National Insti-
tute of Standards and Technology (NIST) details new families of
privacy and security controls that can be used as the basis of
design and audit, as shown in Table 3.3 Focusing specifically on
wearable sensors and devices, the guidance deems it essential that
all personally identifiable information (PII) and all personal
health information (PHI) must be protected, and that the devices
themselves be protected from any form of outside interference,
whether accidental or malicious. The predominant generic issues
include: the device security of any mobile devices, tablets, and cell
phones that are used to collect, store, or transmit information;
the potential complications of commingling study sponsor-
collected PHI on the personally owned device of a research study
participant; secure data transmission and receipt; secure account
management; data encryption; data blinding; and data backup
and device fidelity. It is essential to understand that these con-
cepts are generic by necessity. Specific solutions will always be
required depending on the exact device model, the specific device
operating system, the intended method of network connectivity,
the intended data capture and processing strategy, and many
other variables that will be study-specific. Using several potential
methods of network connectivity as examples, Figure 2 illustrates
just some of the most common and potential cyber threat vectors
that exist for the three primary types of device connection: Blue-
tooth, WiFi, and cellular as described by the NIST. The take-

home message here is simply that cyber security is increasingly
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complex, but also well understood and manageable. Success
requires a thorough benefit-risk assessment by experts just like
any other medical intervention.

SPECIAL CONSIDERATIONS FOR CLINICAL TRIALS

The application of wearable devices to clinical trials and drug
development is in a similar state to that of biomarkers in the carly
2000s. At that time, considerable confusion abounded regarding
the appropriate use and validation of biomarkers. Tremendous
efforts were applied to biomarker activities resulting in refined
approaches, particularly the definition and framework for analyti-
cal validation, clinical validation, and qualiﬁcation.24’25’34 Con-
siderations for the use of wearable devices in a clinical trial
should include primarily scientific aspects with a patient-centric
approach in mind (Figure 3). However, operational aspects, such
as patient and site personnel training, device acceptability to
patients and patient compliance, data reporting, and transfer and
management are critical for obtaining valid and interpretable
data. In addition, there is a critical role for validation, both ana-
lytical and clinical, in the utility of wearable devices (Figure 3).

Scientific considerations

The scientific approach should start with a health condition or
an aspect of health important to patients that has not been
addressed to a satisfactory level by current standards of disease
management care. Once it is defined, a scientific hypothesis
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Figure 2 Most common and potential cyber threat vectors.

Scientific considerations and validation Operational

Health aspect/Condition/Need Statement Consumer or medical device

Hypothesis /Scope/Need Statement Acceptability to study subjects and site personnel

Select technology Analytical validation Data process and collection logistics

Clinical study design* Clinical validation Data type and collection frequency

Analysis plan

Data interpretation

Conclusion about technology fit-for-purpose

* Appropriate for COU and intended study population

Figure 3 Scientific, validation, and operational considerations for wearable device implementation in clinical trials.
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should be formulated to define the scope of an experiment to be
conducted. For example, current assessment of morning stiffness
and sleep in rheumatoid arthritis (RA) patients is based on self-
reports. The standard tools of data collection include patient self-
reports during the doctor’s office visits based on memory recalls
and patient diaries. Having objective data reflective of these
health parameters can be very informative for patient care man-
agement including management of adverse events, medications,
and dose adjustments. Once the scope is defined, the next step
would entail finding a suitable technology to capture the data of
interest. In the case of RA, study results indicate that wrist-worn
actigraphy devices can differentiate RA patients from healthy
controls and can provide useful information about mobility in
the context of drug treatment.>>>® The hypothesis should be
tested as one of the objectives in a clinical study. The hierarchical
order of an objective of interest, e.g, primary, secondary, or
exploratory, will depend on the strength of evidence supporting
the hypothesis. The testing can be achieved in an observational
or an interventional study. An observational study would be
appropriate when no data or limited data about the link between
a discase/health aspect and device-derived readouts exist. An
interventional study is more appropriate if the goal is to establish
a process for wearable data collection in the context of drug treat-
ment and to support efficacy claims or guide treatment decisions.
Additionally, a device under consideration should be appropriate
for a given study population.

The general validation framework includes a need statement,
context of use (COU), analytical validation, clinical validation,
and qualification, if necessary for a regulatory purpose (Figure 3).
A need statement is a concise and coherent description of the
knowledge gap or drug development need (e.g., improved safety
monitoring) and interfaces with the scientific aspect of the wear-
able. The COU, which also interfaces with the scientific aspects
of a wearable, is a concise description of how a wearable is
intended to be used in drug development. With a particular
COU, analytical validation establishes if the device performance
characteristics are acceptable. Analytical validation or technical
performance established for purposes of 510(k) clearance would
entail establishing device performance parameters under condi-
tions as close as possible to real-life use. This goal can be achieved
by comparing device performance to a traditional tool for collect-
ing the data if available,?” or another device with well-established
performance.” Some of the analytical validation parameters may
be already established during device calibration done by the
device manufacturer and may include important information
such as conformity to a gold standard and sensor precision under
various testing conditions, but may require an independent vali-
dation in the COU. Understanding performance characteristics
is necessary for deciding if a device can measure what is needed in
a particular COU. If a medical device is under consideration,
device performance is established for the purposes of device clear-
ance. However, it may not be appropriate in an intended study
population or COU. For instance, if a device has been tested in
normal healthy volunteers but is intended for future use in a par-
ticular disease, both the hardware and the software performance
need to be established in the context of disease to render the
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device use as “fit-for-purpose.” The lack of testing in the intended
study population may result in inappropriate data processing and
even loss of the data.®® Also, with a particular COU, clinical vali-
dation establishes that the wearable device acceptably identifies,
measures, or predicts the concept of interest. Clinical validation
includes establishing an association with a specific disease condi-
tion to make sure that the data are interpretable and provide use-
ful information for patient care management.37’39 Both analytical
and clinical validation can be done in dedicated device evaluation
studies or can be incorporated as one of the endpoints in drug
development clinical trials. In the first scenario, multiple devices
may be evaluated with appropriate controls embedded in the
study, e.g, drugs modulating blood pressure for blood pressure
monitoring devices. The disadvantage of this study type is the
lack of assessment of device impact on other study procedures
routinely performed in drug development, such as frequent blood
draws for pharmacokinetics (PK) or imaging procedures. In the
second scenario, adding devices to drug development clinical
studies as exploratory endpoints provides an opportunity to
establish tolerability and acceptability of the device by the study
participants and sites in the context of other study procedures.
These considerations are a starting place, but require input from
stakeholders and a further discussion between the biopharmaceu-
tical industry, device manufacturers, and regulators. It is conceiv-
able that qualification will ultimately be necessary for wearables,
similar to surrogate endpoints. Based on a formal regulatory pro-
cess, it is a conclusion within the stated COU that a drug devel-
opment tool can be relied upon to have a specific interpretation
and application in medical product development and regulatory
review. We are not aware of any instances of wearable use requir-
ing this level of scrutiny.

Device choice and logistical considerations

Both consumer and medical-grade devices can be considered for
drug development clinical trials. Medical-grade devices require
less work prior to inclusion in clinical trials, as their performance
may be established for the purpose of a clearance or approval pro-
cess and the information is available on the device label. That
said, consideration of the intended COU is necessary prior to
application. However, consumer-grade devices may not yet have
established performance, and device analytical and clinical valida-
tion studies are needed to ascertain that a device of interest is fit-
for-purpose. The raw and derivative data availability from the
device should be considered carefully, as often only secondary
derivatives and summary data are available; this may provide an
incomplete audit trail. Device acceptability by study subjects is
critical to successful implementation. Device technical character-
istics such as size, convenience to wear, battery life, and impact
on daily life activities should be considered carefully. These charac-
teristics may require patients’ input prior to study initiation to
ensure successful adoption of a technology. If technology accep-
tance by users is not known before the study start, a small pilot
study may be warranted to obtain these data, as acceptance will
have a major impact on patients” compliance. We found that hav-
ing hands-on experience by clinical scientists directly involved in
clinical study design and conduct is highly beneficial. It accelerates
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device implementation by clinical teams and allows scientists to
rule out early devices that are unlikely to be easily accepted by
study participants and may not provide interpretable data. Devices
are usually administered by clinical site personnel, trained to pass
information to the subjects and be available to help if study sub-
jects are experiencing difficulties. In addition to subject and site
personnel training, the data process flow should be mapped before
the study start to evaluate the impact of data flow on study partici-
pants and other clinical trial procedures. Examples include requir-
ing a cell phone for data synchronization, specific phone models
compatible with apps, translations if needed, frequency of data syn-
chronization, and specific computer models for device docking,
Compliance of study subjects contributing data should be moni-
tored. Interventions such as reminders to the subjects should be
implemented to improve compliance if it falls below a certain
threshold.

Decisions need to be made up front about the timing of data
processing into secondary derivatives and data review. If data
need to be reviewed in near real-time, the data processing, analy-
sis, and visualization need to be established and tested before the
study start. Follow-up procedures, if warranted, need to be deter-
mined as a part of a clinical study protocol. Retrospective data
processing and analysis are more suitable for exploratory end-
points, as they provide more room for experimentation with raw
data processing and visualization options, and can be done in an
iterative manner. Data use should be clearly defined in the study
protocol and it should be stipulated whether such use has any
impact on patient care or any other study procedures. In addi-
tion, decisions would have to be made on how to handle subjects
who may have an allergic or any other adverse reaction to the
components of wearable devices. Depending on the intended use
of the data, subjects with known adverse reactions to the compo-
nents of a device may be excluded from the study or allowed to
participate in other study procedures; this is appropriate if con-
sent to the wearable device portion of the study is optional and
the lack of participation does not have a major impact on overall
study data integrity.

Considerations for including devices in the clinical studies are
multidimensional (Figure 3). R&D and healthcare organizations
have a number of hurdles to overcome to make wearable technol-
ogy implementation a routine procedure. Further development of
analytical and clinical validation methodologies and the wide
adoption of devices according to the fit-for-purpose principle will
remain critical for future success.

WHAT THERAPEUTIC AREAS ARE MOST APPROPRIATE
AND WHY?

In theory, wearables can be used broadly across therapeutic areas
for deep phenotyping, detection and interpretation of adverse
events, assessment of quality of life, and measurement of efficacy.
Wearable and digital approaches could provide signal detection
for conditions such as depression by measuring increases in sleep
or decrease in activity, signs associated with depression. For exam-
ple, wearables were recently suggested to be helpful in the detec-
tion of early signs of Lyme disease.” Any therapeutic intervention
that may impact quality of life could benefit from measurement
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of movement or in some cases where a patient diary is required.
One example is a collaboration between PatientsLikeMe and Bio-
gen to better characterize multiple sclerosis patients,4o where
activity and mobility are clearly tied to quality of life. Some thera-
peutic areas may not require use of a wearable, but rather simple
mobile phone applications such as Apple’s ResearchKit.

Since many wearable devices can readily measure heart rate as
well as blood pressure, the cardiovascular therapeutic area is a
major focus for use of wearable devices. Cardiac monitoring in
both healthy individuals and specific disease populations allows
monitoring for cardiac events 24/7 and enables better-informed
care. Cardiovascular disease areas in which wearable devices have
been or could be used include congestive heart failure, hyperten-
sion, and dysrhythmias. For example, The Zio Patch (iRhythm
Technologies, San Francisco, CA) is a single-lead electrocardio-
graphic, continuously recording ambulatory adhesive patch,
recently approved by the FDA. In a recent study, the device’s 14-
day monitoring of beat-to-beat cardiac rthythm had a 57% greater
diagnostic yield than the standard 24-h Holter monitoring.*!

Neuroscience uses of wearable devices are manifold, including
the monitoring of sleep, cognition, and movement disorders.
Wearable devices commonly measure selected sleep parameters
and activity. To assess patients for obstructive sleep apnea outside
the laboratory setting, use of medical devices has been steadily
increasing.42 IBM Watson Health and the American Sleep
Apnea Association have launched the SleepHealth app to con-
duct a study identifying connections between sleep habits and
health outcomes. This app will record movement and heart rate
during sleep and track connection between sleep quality and day-
time activities, alertness, productivity, general health, and medical
conditions. It will amass the largest collection of sleep data to
date. Parkinson’s disease is another area that has shown promis-
ing results and insight via wearables and machine-learning techni-
ques. The sensors in wearable devices can be paired with mobile
phone apps to measure symptoms such as tremor, balance, gait,
memory, and some vocal characteristics.

There are examples of wearable use in respiratory diseases,
immunology, and rheumatology. For example, GlaxoSmithKline
(GSK Philadelphia, PA) (in collaboration with Medidata and
POSSIBLE Mobile) are starting an RA trial called PARADES.*
It is expected to evaluate 300 patients through a mobile applica-
tion that tracks common RA symptoms such as joint pain and
fatigue, and gathers these data through a mix of surveys and
sensor-enabled tests (e.g., recording motion through wrist exer-
cises). This trial is gathering data on the everyday lives of people
with RA to gain insight and learn more about the condition.
WristOx2 by Nonin Medical (Plymouth, MN) is a pulse oxime-
ter that monitors and measures heart rate and blood oxygen lev-
els, and is targeted towards people who have asthma and are at
risk of chronic pulmonary obstruction disease. In 2014, Novartis
(Hanover, NJ) launched an observational trial with Qualcomm
Life (San Diego, CA) collecting biometric data from chronic
lung disease patients in their homes using smartphones connected
to Qualcomm’s cloud-based 2net Platform."”

Another therapeutic area addressed by wearable devices is met-
abolic disorders, including diabetes and obesity. A recent
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systematic review of mHealth (Mobile Health)-related studies on
diabetes and obesity treatment and management found that over
half of the reported positive effects of interventions based on pri-
mary outcomes.** Accurate glucose monitoring is something cur-
rently in development, as it is not readily available in
smartwatches, but several companies are developing prototypes.
For example, Dexcom (San Diego, CA) have developed a contin-
uous glucose monitoring application that uses a dermal implant
with a probe capable of monitoring blood glucose every 5 min,
eliminating the need for finger sticks. The Freestyle Libre Flash
Glucose Monitoring System by Abbott (Abbott Park, IL) is a
wearable skin sensor that has received regulatory approval.
Recently, a pilot study of a patient-centered, smartphone-based,
diabetes care system found that a 12-weck application of the sys-
tem to patients with inadequately controlled type 2 diabetes
resulted in a significant HbAlc reduction.**

PROGRESS IN CLINICAL TRIALS TO DATE

Recent reviews of wearable monitoring systems have shown that
the key implementation challenges are patient and provider
engagement, connectivity and device communication, and clinical
validation.®
importance of rigorous clinical investigation in a stepwise manner

Per ecarlier discussion, we have emphasized the

where devices are tested in successively less controlled circumstan-
ces prior to full investigation in patients’ homes. Several wearable
devices (ViSi Mobile and HealthPatch) designed for continuous
vital signs monitoring were studied in a general hospital ward
and compared with vital signs measurements by nurses.”” The
study showed generally promising results, including patient and
clinician experiences, but the number and types of artifacts/errors
demonstrated the need for significant improvement before equiv-
alence with traditionally used measures can be achieved.

We conducted similar experiments in interventional clinical
studies. Our goal was to evaluate 510(k)-cleared wearable devices
in the context of drug development clinical trials and ascertain
whether devices of interest are fit-for-purpose for vital sign and
cardiac rhythm monitoring; this was done in normal healthy vol-
unteers for the purposes of deep phenotyping and expanded
safety monitoring. Our experimental design included establishing
both analytical and clinical validation by comparing device per-
formance with conventional measures done at the sites, and test-
ing devices in experiments with certain clinical positive controls
such as an increased heart rate after certain drug administration.
Additionally, we queried important operational parameters such
as acceptability by the study subjects and site personnel, and we
collected data on subjects’ compliance and gained institutional
experience with logistics of implementation of wearable technolo-
gies. Our data indicate that the technologies are acceptable to the
study subjects; however, compliance may decrease when subjects
use the devices at home. The feedback from the site personnel
indicated high rates of adoption and eagerness of use with a clear
need for dedicated technical training and hands-on experience
before the launch. Analytical validation experiments demon-
strated variable concordance with traditional measures, depend-
ing on the variable of interest. Higher concordance was observed
with the data collected by another device vs. data collected
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manually. Consistent with the findings reported by other
groups,3 737 these devices have a propensity to generate a number
of artifacts that should be reduced before further broad imple-
mentation of technology for safety monitoring. Additionally, we
found that a combination of vital sign monitoring with actigra-
phy readouts, such as mobility counts, facilitates interpretation of
vital sign values not collected at the resting state. Overall, our
results demonstrated feasibility of collection of vital sign data
using wearable devices; however, implementation of such devices
for safety monitoring should proceed with caution and should
include mandatory verification that a technology of interest is fit-
for-purpose.

Looking at ours and others™ studies, we see a common theme
of great progress and promise but also of technologies that are
not quite ready for prime time. Looking at other sensor/device
domains, we see similar themes. For example, in a recent in-clinic
validation study of a cuffless device for measuring blood pressure,
the device demonstrated less than a S-mmHg variance from con-
ventional measurement in 46% of the study population, but 23%
of the originally recruited subjects had to be excluded upfront
due to device calibration error.®®

As previously discussed, there is a sharp difference in measure-
ment accuracy and data/device fidelity between clinical and
consumer-grade motion detecting devices but we are hopeful that
this gap will eventually disappear. Within the clinical setting,
motion detection sensors are being successfully used in increas-
ingly complex observation and analysis scenarios. In one recent
motion measurement study of early Parkinson’s disease patients,
timed “Up and Go” tasks were measured with far greater than
90% sensitivity, but this level of clinical-grade motion measure-
ment required the wearing of special suits that had 17 sensors per
body segment.*®

CONCLUSION

Wearable technologies are promising and have the potential to
fundamentally change healthcare and drug development by
changing the means of collecting, processing, and visualizing
health data. Potential applications are diverse, have utility in mul-
tiple therapeutic areas, and are likely to evolve rapidly. The ulti-
mate goal should be a better understanding of disease variability,
responses to treatment along with a reduction of healthcare costs,
and increasing efficiency in conducting clinical trials. Addition-
ally, adopting new ways of remote data collection can bring new
treatments and care management to all patients in need. Chal-
lenges presented by adoption of wearable technologies are not
insignificant. The scientific community would benefit from fre-
quent information exchange to share the results and learning
experiences; this would facilitate the development and adoption
of best practices for technology implementation, data collection,
analysis, and interpretation. Currently, the field is full of enthusi-
asm, but more data are needed from rigorously designed studies
to displace the hype and adopt scientific methodologies to gener-
ate and test scientific hypotheses. Further dialog between the bio-
pharmaceutical industry and device manufacturers to develop
methodological approaches and shared understanding of the
experiments is required to fulfill the requirements of analytical
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and clinical validation. This conversation would constitute a
major step forward facilitating the adoption of wearable technol-
ogies in clinical trials.

Definitions

Analytical validation. Establishing that the performance character-
istics of a test, tool, or instrument are acceptable in terms of its
sensitivity, specificity, accuracy, precision, and other relevant per-
formance characteristics using a specified technical protocol
(which may include specimen collection, handling and storage
procedures). This is validation of the test’s, tool’s, or instrument’s
technical performance, but is not validation of the item’s
usefulness.”*

Clinical validation. Establishing that the test, tool, or instrument
acceptably identifies, measures, or predicts the concept of
interest.”*

Consumer devices are devices marketed directly to individuals.
An example would be a Fitbit wrist-worn device or an iPhone.
The individuals are responsible for managing their devices,
including data backup and the decisions around software
upgrades. Some of these devices fall under the FDA definition of
general wellness products and are considered low-risk devices.”
There is no requirement to establish device performance before
the release to the market.

Context of use (COU). A statement that fully and clearly describes
the way the medical product development tool is to be used and
the medical product development-related purpose of the use.”!

Medical devices are defined by the FDA as is “an instrument,
apparatus, implement, machine, contrivance, implant, in vitro
reagent, or other similar or related article, including a component
part, or accessory which is . . . intended for use in the diagnosis of
disease or other conditions, or in the cure, mitigation, treatment,
or prevention of disease, in man or other animals.”*

Medical devices have to be approved/cleared by the FDA
before they can be released to the market. The approval/clearance
path depends on the intended use of the device and also upon
indications for use. Devices are classified into Class I, II, and III
devices based on the risk the device poses to the patient and/or
the user.*” Depending on the device classification, a Premarket
Approval (PMA) or 510(k) clearance is required before release to
the market.>® The FDA stipulates 510(k) as: “a premarket sub-
mission made to FDA to demonstrate that the device to be mar-
keted is at least as safe and effective, that is, substantially
equivalent, to a legally marketed device. Submitters must compare
their device to one or more similar legally marketed devices and
make and support their substantial equivalency claims.”>' Medi-
cal devices are also a subject to HIPAA security and privacy rules.

Medical need/necessity. The AMA defines medical necessity as:
“Health care services or products that a prudent physician would
provide to a patient for the purpose of preventing, diagnosing or
treating an illness, injury, disease or its symptoms in a manner
that is: (a) in accordance with generally accepted standards of
medical practice; (b) clinically appropriate in terms of type, fre-
quency, extent, site, and duration; and (c) not primarily for the
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economic benefit of the health plans and purchasers or for the
convenience of the patient, treating physician, or other health
care provicler.”52

Wearable technologies are sensors and/or software applica-
tions on smartphones and tablets that can collect health-related

data remotely.
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Data Science Approaches
for Effective Use of Mobile
Device-Based Collection of
Real-World Data

Larsson Ombergl’*, Elias Chaibub Neto"* and Lara M. Mangravitel’*

The use of mobile health for monitoring disease outside of the clinic
has opened new opportunities for drug testing and monitoring. In
particular, these tools are providing new experimental designs
for collection of real-world data. These technologies and
queries, although promising, require the application of analytical
methods that can accommodate the uncontrolled, unmonitored,
individualized, and, often, near continuous data streams.
Here, we discuss opportunities and ramifications on analytical

considerations.

Mobile health, that is, the evaluation of
health outside of the clinic using wearables
and smartphones, and, more broadly, the
collection of real-world evidence,’ provide
opportunities to advance multiple goals
for monitoring drug response, including
the monitoring of efficacy through digital
biomarkers that can be used as primary end
points for drug efficacy, monitoring of pa-
tient-reported outcomes and/or quality of
life measures, and of toxicities and/or re-
sponse to long-term exposures. Although
digital end points are of interest to regula-
tory agencies such as the US Food and Drug
Administration (FDA) and the European
Medicines Agency (EMA) and are starting
to be integrated as primary end points into
clinical trials,” adoption is slow. In part,
this is due to difficulties in quantifying the

accuracy of measures when they are col-
lected in an unmonitored manner and in
an uncontrolled setting. Indeed, the ability
to develop robust measures that are reliably
accurate requires both an expanded vali-
dation plan designed to pressure-test the
measure across a range of conditions and
a good understanding of the impact that
variations in daily living can have on data
collection. Because interpretation of mo-
bile health data involves the processing and
analysis of high dimensional, longitudinal
sensor data collected in continuous or near
continuous data streams, it requires the use
of statistical approaches that account for
repeat measures as well as extensive use of
signal processing and/or machine-learn-
ing techniques. These approaches provide
opportunity for sensitive, individualized

monitoring of drug responses. Here, we
provide a short introduction to the impor-
tance of appropriate usage of analytic and
machine-learning techniques for the inter-
pretation of mobile health data (see also
refs. 3-5). This includes a description of
the types of experiments and data that can
be collected using mobile health and some
examples from the literature that high-
light important analytical considerations.
Although these observations are relevant to
any device that is collecting sensor data in a
continuous or near continuous manner, we
exemplify these issues using our own expe-
rience with the development and analysis
of smartphone-based measures.

FROM SENSORS TO MACHINE
LEARNING AND SOME
CONSEQUENCES

Modern smartphones have opened a
wealth of possibilities to extend electronic
health monitoring for two reasons: (i)
The always connected nature and com-
putational power of smartphones allows
for rapid data collection and (ii) the large
number of embedded sensors allows for
multimodal data collection.® A typical
phone has sensors that can measure ac-
celeration, rotation rates, magnetic fields,
sound levels, record audio and video, and
record time and touch through the screen,
among other capabilities. Sensor-based
data collection performed in the context
of protocols, or tasks designed to capture
disease relevant behavior, can be used to
generate hundreds of phenotypic measure-
ments, including those that mimic evalua-
tions typically performed in the clinic (e.g.,
sit to stand test for mobility or blood pres-
sure measurement). They can also be used
to passively collect measurements during
daily activities (c.g., mobility analysis per-
formed while an individual is walking). In
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cither case, high dimensional data streams
are generated that require extensive pro-
cessing and analysis to be converted into
phenotypic measures. For gait analysis, in-
ertial measuring units embedded in wear-
ables and phones collect time series data
consisting of 100 Hz recordings on 6 axes
(three from the accelerometer and three
from the gyroscope). Data such as these can
be analyzed in three ways. First, features
with established clinical relevance (e.g.,
gait speed) can be extracted through signal
processing. For this approach, algorithms
are manually evaluated and tuned to maxi-
mally approximate the desired phenotypic
measure. Although this first approach pro-
vides measures with clear clinical interpre-
tation, it can limit use of the full spectrum
of information provided in the collected
data. To address this, one could opt to
use traditional machine learning in con-
junction with signal processing to select a
subset of promising features from a larger
set of exploratory features generated by sig-
nal processing. This data-driven approach
might be better able to distinguish disease
state across heterogencous populations,
as it works by optimizing on the outcome
of interest. In the case of gait, this second
approach is suited to identifying a broader
set of gait disturbances in addition to gait
speed. Finally, machine-learning methods
based on deep-learning models have also
been used to generate features in an auto-
matic and data-driven way, bypassing the
need for signal processing.

Although machine-learning approaches
provide the opportunity to develop more
comprehensive digital measures, the use of
machine learning must be done appropri-
ately in order to avoid subtle errors. Because
they are data driven, machine-learning ap-
proaches will leverage any source of varia-
tion in a dataset, including variability due
to biology, technical artifacts, and even
random noise (especially in small datasets).
Identification of biologically relevant mea-
sures requires disciplined analysis. This is
typically addressed by using two datasets—
training data is used to train models and
select potential features, whereas a sepa-
rate validation dataset, assumed to contain
similar biological but different technical
variation, is used to evaluate the predic-
tive performance of the trained model and
confirm the biological relevance of the new

2

features (e.g., by comparing then to existing
clinically validated outcomes or severity
measures). Because two datasets are not
always available in mobile health studies, a
single dataset is often split to support both
training and validation functions. This can
be problematic for small datasets. There
are many papers reporting positive valida-
tion results of digital measures. Many of
these results are developed using machine
learning in small sample size studies, which
can promote exaggerated results that will
not replicate in other datasets. This is best
addressed by reporting the uncertainty in
measure performance. As an example, a
study reporting diagnostic accuracy using
the area under the receiver operating curve
should be expected to report error bars as a
means to help readers understand the un-
certainty in the reported performance. In
addition, the choice of performance met-
ric is dependent on the nature of the data.
Reporting on the incorrect metric (e.g.,
area under the receiver operating curve in
extremely imbalanced datasets) can lead to
inflated interpretation of accuracy.7

APPLICATION AND CONSEQUENCES
OF LONGITUDINAL SAMPLING

A major benefit of mobile health is the
opportunity to tailor health monitoring
to cach individual. This is of particular
benefit for conditions and treatments that
present in a highly heterogeneous manner
across individuals or change dynamically
over time. Because mobile health provides
longitudinal data collection with frequent
sampling, it can be used to capture in-
dividualized changes over time by using
personalized models or n-of-1 analysis.”
Analysis of frequently sampled longitudi-
nal data requires an analytical approach
that is distinct from those used for sparsely
sampled data. Although repeated measures
collected from an individual are autocor-
related, a common mistake observed in the
literature is to assume that these repeated
measures are independent. If not taken
into account, autocorrelation can lead to
an inaccurate estimate of the number of
false-positive discoveries in an analysis.
Notably, this can result in cither an un-
derestimate or an overestimate depending
on whether the autocorrelation is positive
or rlegative.3’4 Furthermore, the incor-
rect use of the repeated measurements in

population level analysis, such as classifica-
tion studies can lead to identity confound-
ing artifacts, where the classifier is mostly
distinguishing differences across individ-
uals instead of differences across condi-
tions or disease states. A recent literature
review of mobile health classification stud-
ies demonstrated that 47% had artificially
inflated the performance of their measures
through failure to account for the iden-
tity of individual data points.8 Our own
quantification of this effect across three
studies showed that identity confounding
can be many times larger than the effect of
the condition that was being studied” As
with the analytical issues described above,
proper interpretation of analyses using
mobile health studies for classification re-
quires reporting of how repeat measures

were handled.

POSTMARKET MONITORING, OPEN
ENROLLMENT, AND THE EFFECTS OF
CONFOUNDERS

Fully remote mobile health studies can
support low cost enrollment of large
swaths of the population as compared to
in-clinic studies. Many studies relying
solely on mobile health measures have en-
rolled in the tens of thousands from across
distributed geographic regions, providing
the opportunity for broad sampling across
diverse populations in the real-world set-
ting. This approach can be a good option
for postmarket monitoring studies, in-
cluding to evaluate real-world drug effi-
cacy and toxicity as well as market fit. It
can also be used to prescreen for enrollees
into clinical trials. In these contexts, data
are often collected using open enrollment
techniques. Because these can lead to bi-
ased sampling of the population, they must
be carefully evaluated and interpreted. For
example, we recently recruited 17,000 in-
dividuals into a Parkinson’s disease study
using an open enrollment approach. The
control population tended to be signifi-
cantly younger than the Parkinson’s dis-
casc population (average age 38 vs. 61).
Because age was correlated with disease
status, machine-learning methods could
trivially distinguish between cases and
controls by selecting features related to age
rather than those related to disease state.
With careful consideration these issues
can be both assessed and accounted for.'°
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In this case, we did so by rebalancing the
populations according to clinical covari-
ates and by measuring performance of the
classifier both before and after correction

. 10
fOI‘ known covariates.

CONCLUSIONS

The use of mobile health to collect fre-
quent measures in a real-world setting
provides a promising tool to aid in drug
development and monitoring. Appropriate
use and interpretation of these approaches,
which also provide great opportunity to
monitor lived experience, require careful
attention to analytical techniques. Much
of the success of mHealth will be depen-
dent on comprehensive validation of devel-
oped measure and objective benchmarking
of analytical techniques used in their inter-
pretation. With appropriate application,
these approaches stand to greatly advance
our ability to objectively assess the impact
of treatments on individuals’ lives.
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ARTICLE

Evaluation of Wearable Digital Devices in a Phase |
Clinical Trial

Elena S. Izmailova'*, lan L. McLean', Gaurav Bhatia®, Greg Hather', Matthew Cantor?, David Merberg', Eric D. Perakslis’,
Christopher Benko? and John A. Wagner'

We assessed the performance of two US Food and Drug Administration (FDA) 510(k)-cleared wearable digital devices and the
operational feasibility of deploying them to augment data collection in a 10-day residential phase I clinical trial. The Phillips
Actiwatch Spectrum Pro (Actiwatch) was used to assess mobility and sleep, and the Vitalconnect HealthPatch MD
(HealthPatch) was used for monitoring heart rate (HR), respiratory rate (RR), and surface skin temperature (ST). We measured
data collection rates, compared device readouts with anticipated readings and conventional in-clinic measures, investigated
data limitations, and assessed user acceptability. Six of nine study participants consented; completeness of data collection
was adequate (> 90% for four of six subjects). A good correlation was observed between the HealthPatch device derived and
in-clinic measures for HR (Pearson r=0.71; P=2.2e-16) but this was poor for RR (r=0.08; P=0.44) and ST (r=0.14;
P =0.14). Manual review of electrocardiogram strips recorded during reported episodes of tachycardia > 180 beats/min
showed that these were artefacts. The HealthPatch was judged to be not fit-for-purpose because of artefacts and the need
for time-consuming manual review. The Actiwatch device was suitable for monitoring mobility, collecting derived sleep data,
and facilitating the interpretation of vital sign data. These results suggest the need for fit-for-purpose evaluation of wearable
devices prior to their deployment in drug development studies.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Wearable sensors have the potential to collect health-
related data remotely, thus enabling acquisition of dense
physiological study subject profiles, allowing data collec-
tion on an outpatient basis, and thereby reducing the num-
ber of clinical study hospital or clinical pharmacology unit
(CPU) visits.

WHAT QUESTION DID THIS STUDY ADDRESS?

We evaluated the performance of two FDA 510(k)-cleared
devices, HealthPatch MD by Vitalconnect and Actiwatch
Spectrum Pro by Phillips, for continuous physiological data
collection, compared device readouts with conventional anal-
ogous measures and published data, and assessed opera-
tional feasibility in a residential phase | clinical trial.

Despite the widespread adoption of consumer digital tech-
nologies and their increasing use in healthcare settings, they
have yet to find widespread application in industry-sponsored
drug development. Some progress has been made, including
pilot studies for remotely run clinical trials,1‘3 novel techno-
logical solutions to improve medication adherence,4 and mul-
tiple modalities of using digital sensors to create new data
streams to improve the collection of health-related data.’

WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
The Actiwatch device was suitable for monitoring mo-
bility, collecting derived sleep data, and providing meta-
data for interpreting vital sign data. The HealthPatch device
was not determined to be “fit-for-purpose” because of the
artefacts and the need of extensive, time-consuming man-
ual data review.

HOW MIGHT THIS CHANGE CLINICAL PHARMACOL-
OGY OR TRANSLATIONAL SCIENCE?

Our study results indicate the need for evaluation of
wearable digital device according to fit-for-purpose princi-
ple in the context of clinical investigations.

Despite these efforts, published reports of study results re-
main limited. Moreover, the results of some studies indicate
that digital innovation in health care is more complicated than
anticipated® and that some technologies do not perform as
the researchers had planned.” In addition, published results
indicate that there is a need for extensive manual review of
data and for the investigation of potential device-derived data
artefacts, activities that can be time consuming.8
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In early-stage drug development clinical trials, vital sign
data, such as heart rate (HR) and respiratory rate (RR), are
typically collected manually by clinical personnel or by using
electronic devices that record these data at discrete sin-
gle time points. This is generally done at predefined times
before, during, and after administration of the study drug,
while a subject is a resident at a clinical pharmacology unit
(CPU) or returns for follow-up visits. Additional assessments
of vital sign data are performed in response to suspected
safety or tolerability issues or if the study drug or a challenge
agent is expected to have pharmacological effects on vital
signs. High-density vital sign data recorded continuously
using wearable digital sensors have the potential (i) to pro-
vide more information on study subjects’ physiological pro-
files and greater sensitivity for detecting changes in these
parameters, (i) to allow periods of data collection to be done
in the outpatient/home setting rather than as inpatients in
the residential CPU setting, and (iii) as an aid in interpreta-
tion of adverse events, with an overall view to reducing the
time of residential observation during phase | studies and
the number of follow-up clinic visits needed.

Wearable digital devices may also have utility for evaluat-
ing the impact of a novel medicine on disease activity or out-
comes. In many therapeutic indications, the impact of a drug
on activities of daily living, including physical activity levels
and sleep patterns, is captured routinely as an indication of
the potentially clinically relevant benefit of therapy or poten-
tial negative side effects. These assessments usually rely
on the subject’s ability to subsequently recall these events
for self-completed questionnaires. This type of data can be
subjective, vague, and prone to confounding and bias,? as-
pects that may be improved by continuous real-time collec-
tion of activity-related data by digital devices to objectively
monitor activities of daily living.

The selection and deployment of appropriate wearable
digital devices in the context of drug development pres-
ents challenges® that are similar to those encountered
with the introduction of novel laboratory biomarker tests
in the early 2000s. To address these challenges, the “fit-
for-purpose” concept was developed by the American
Association of Pharmaceutical Scientists (AAPS) Biomarker
Workshop'® and advanced further by the US Food and
Drug Administration (FDA)-National Institutes of Health
(NIH) Biomarkers Endpoints and other Tools (BEST) working
group.11 Using this framework, a potential biomarker should
be evaluated for a predefined purpose in the context that
it will be used. We applied this approach to evaluate two
wearable digital devices that have 510(k) clearance from
the FDA: the Phillips Actiwatch Spectrum Pro (Actiwatch)
and the Vitalconnect HealthPatch MD (HealthPatch). We in-
corporated the testing of these devices as an exploratory
component in a 10-day residential phase | study recruiting
normal healthy volunteers.

The goal of this substudy was to evaluate whether the
HealthPatch and Actiwatch devices were fit-for-purpose
to enhance vital sign data collection and to capture
physical activity in the context of an industry-sponsored
early-phase drug development study. Aspects examined
included (i) a comparison with the traditional conventional
measures performed at the clinical site, (ii) assessment of

Clinical and Translational Science

a diurnal variation of physiological parameters that were
expected to conform to expected temporal patterns, and
(iii) understanding data limitations and technical issues.
We also assessed the operational aspects of device use,
including acceptability for the study subjects and the site
personnel.

METHODS

The clinical study was conducted at a US-based single-
site residential CPU for a 10-day period. All subjects
were healthy volunteers recruited from the CPU’s panel;
they had no clinically significant acute or chronic medical
disorders, were taking no concomitant medications, and
had no exposure to other investigational agents in the
30 days preceding the study. The devices were deployed
during the CPU confinement period only. Informed con-
sent was obtained separately for the device component
of the study, which was optional for any subject consent-
ing to participate in the core part of the study. The study
conduct was reviewed and approved by the institutional
review board.

For the design of the study and authoring of the study
protocol, the vital signs, activity, and sleep data produced
by wearable devices were treated as “exploratory,” used
for device evaluation purpose only, and not linked to pri-
mary or secondary study endpoints, which included phar-
macokinetic and safety assessments. The data were not
available to CPU or sponsor staff during the conduct of
the study and were not intended to guide clinical care or
other decision making.

The Actiwatch'® was worn on the wrist using a standard
wristwatch-style strap and captured data on motion using
an accelerometer, which were used to derive information on
activity level and sleep. Activity level is summarized using
activity counts, a dimensionless measure of motion that
removes the effects of gravity, transportation, and other
acceleration not indicative of activity. The HealthPatch'®
was applied to the anterior surface of the left upper pre-
cordium using an adhesive strip and captured biometric
data: HR, RR, skin temperature (ST), and step count. Both
devices were intended to be worn throughout the entire
10-day period of confinement in the CPU. At the end of the
study, the site personnel and the study participants were
asked to complete a satisfaction questionnaire.

Device data collection

The data collected by the Actiwatch were retrieved by
periodically connecting it to a laptop computer running
study-specific software, which downloaded the epoch level
data from the device to the computer before transfer to
the Philips database (Figure S1). The HealthPatch device
recorded a single-lead anterior chest wall echocardio-
gram (ECQG) voltage every 8 ms, and from the resulting R-R
interval an estimate of HR was calculated approximately
every 4 seconds, averaging 15 HR estimates within a min-
ute. The data collected by the HealthPatch were streamed
from the HealthPatch to a companion iPhone application
(Healthwatch, version 2.5.4) on a dedicated iPhone 5 via
Bluetooth technology (Figure S1).
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Device data processing

HealthPatch data were first subjected to a quality control
step during which invalid readings were filtered using the
manufacturer’s proprietary software.

To facilitate estimation of data completeness, gap thresh-
olds were defined. This threshold (T) was set to 5 and 30 sec-
onds for HealthPatch and Actiwatch, respectively. Then, for
each device-subject data stream, data were sorted in time-
stamp order, and the intervals between valid recordings were
calculated. If an interval was greater than the gap threshold,
it was considered a gap (i.e., missing data). Total noncov-
ered time was calculated by summing the length of all gaps.
Percent completeness was defined as 100% x (1-(device
noncovered time)/total study time).

We calculated compliance separately for each individual
and each device using the millisecond coverage technique.
This technique is designed to account for the slight variabil-
ity in the rate at which measurements are taken by measur-
ing the percentage of on-study time that is within T (defined
above) seconds of a valid measurement. Compliance was
estimated as the proportion (%) of on-study milliseconds
within T seconds of a valid measurement.

Summary statistics

Computation of summary statistics across subjects and
time points allowed us to explore the reasonableness
of the data. We computed the arithmetic mean, SD, and
minimum and maximum for all data sources and individ-
uals. In addition, we computed a measurement timeline,
averaged across individuals for the full study. This allowed
us to explore any diurnal patterns in the data. All statistical
analysis was done using the R software package version
3.3.2 with software libraries “plyr” (https://cran.r-project.
org/web/packages/plyr/index.html) for data processing
and “Ime4” (https://cran.r-project.org/web/packages/Ime4/
index.html) for fitting of linear mixed models.

Assessment of diurnal variation

The degree to which measurements varied as a function
of time of day was analyzed by calculating the minute-
by-minute averages of HR, RR, and ST measurements
and plotting these as a function of time of day. For each
measurement, we calculated the minute of the day when
the measurement was made. All measurements for the
same minute were combined; for example, to calculate
the “average HR” for 8:01 am, all HR measurements taken
between 8:01 am and 8:02 am were examined for all study
days and for all subjects. Measurements were also grouped
into “daytime” and “nighttime” periods. For this analysis,
daytime was defined as between 8:00 am and 9:00 pm and
nighttime as between 12:00 am and 6:00 am. The periods
between 6:00 am and 8:00 amv and between 9:00 pm and
12:00 am were anticipated to be “grey areas” with consider-
able variability within and between the subjects as to awake
or asleep status during these periods.

Comparison between conventional in-clinic and
wearable device measures

We compared the HR, RR, and ST measurements reported
bythe HealthPatchtothetime-matched clinic measurements
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of HR, RR, and core body temperature (BT), respectively.
In-clinic HR was collected using the Dinamap device. The
study site’s electronic source data system automatically
captured the procedure timestamp at the time of collection.
BT was collected using an electronic oral thermometer
again linked to the Dinamap unit. In-clinic RR was collected
manually by the site staff by observing the subjects’ chest
wall movements and counting respiration cycles over a
defined period and entered immediately into the site’s
system, together with the time of data entry. We mapped
the corresponding data from the wearable devices to the in-
clinic data and then assessed the degree of concordance
between the mapped data points at matched time points.
The degree of concordance between in-clinic and wearable
device data was determined using three separate strategies:
correlation, regression, and Bland-Altman analyses. First,
we calculated the Pearson correlation coefficient between
the in-clinic and mapped wearable measurements. For
regression, we performed ordinary least squares regression
with the in-clinic measurement as the independent variable
and the wearable measurement as the dependent variable.

For the Bland-Altman analyses,'* we produced Bland-
Altman Mean (BAM) and Bland-Altman Difference (BAD) val-
ues. For each in-clinic measurement, BAM was the average
of the in-clinic and mapped wearable measurements, and
BAD was the difference between the in-clinic and mapped
wearable measurement. Bland-Altman plots were generated
consisting of a scatterplot of BAM (x-axis) against BAD
(y-axis). The points were color-coded by individual to help
visualize any individual-specific bias. Computations of mean
bias and 95% limits of agreement were also performed. The
mean bias was simply the mean of BAD values. The 95%
limits of agreement were calculated as 1.96 times the SD of
BAD values.

Comparison between HealthPatch and Actiwatch
actigraphy data

We investigated the extent of correlation between the
HealthPatch step count and Actiwatch activity units. We
divided each subject’s time in the clinic into 1-hour intervals,
beginning and ending on the hour. We then summed total
activity units reported for each hour and calculated steps
by subtracting step count at the start of the hour from step
count at the end. Based on the epoch time (~1 second for
HealthPatch and 30 seconds for Actiwatch), we calculated
the number of measurements comprising complete data
for 1 hour. We excluded any interval that was < 90% com-
plete in either measurement and determined the Pearson
correlation coefficient between activity units/hour and
steps/hour.

RESULTS

Subject demographics

Six of the nine subjects enrolled in the core clinical study
consented to participate in the exploratory wearable digital
device evaluation component. Reasons given for noncon-
sent were the following: a history of prior severe cutaneous
hypersensitivity to adhesives (one subject) and the percep-
tion that an honorarium payment should be offered by the
sponsor for additional study procedures. The demographic
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profile of the participants was as follows: five men and one
woman; age range 18-55 years inclusive; three white sub-
jects, two African-American subjects, one multiracial sub-
ject, and one smoker.

Completeness of data collection

For the HealthPatch, data completeness rates among the
six subjects ranged from 83.6-99.2% (mean 93.1 + 7.4%;
Table S1 and Figure S2). For the Actiwatch, complete-
ness rates ranged from 62.6-98.6% (mean 88.9 + 15%);
the low rate (62.6%) occurred because the subject
removed the device for the last 3 days of the study for
unspecified reasons. Periods of loss of valid data for the
HealthPatch device were attributed to poor skin contact
and subjects removing the devices, again for unspecified
reasons. Additional loss of valid Actiwatch data occurred
due to device calibration issues and subjects remov-
ing devices without reporting this to the site personnel
(Figure S2).

Comparison of in-clinic and wearable device
measures

Comparison of the paired HR data showed a strong cor-
relation between in-clinic and wearable measurements
(Pearson’s r=0.71, P=2.2e-16; Figure 1), confirmed
by regression analysis (3 = 0.81). Bland-Altman analysis

(Figure 1) showed that, on average, in-clinic measurements
were 0.91 bpm lower than their wearable counterparts.
We estimated the 95% limits of agreement at 7.2 bpm,
corresponding to 11% of the mean HR. Overall, the HR
wearable-device data correlated well with the traditional in-
clinic counterpart.

Recordings for RR derived from the HealthPatch seemed
to be substantially different from the corresponding in-clinic
measures. There was no significant relationship between the
in-clinic and wearable device measurements (Figure 1) by
either correlation (Pearson’s r=0.08, P = 0.44) or regres-
sion analysis (3 = 0.14). Bland-Altman analysis corroborated
these findings, with 95% limits of agreement of 6.0 breaths/
min corresponding to 35% of the mean RR, indicating that
the RR reported by the HealthPatch were statistically inde-
pendent of the RR measured in-clinic.

There was no significant relationship between the ST
as reported by the HealthPatch and in-clinic oral BT by
either correlation (Pearson’s r = 0.14, P = 0.16) or regres-
sion analyses (p = 0.31). Bland-Altman analysis indicated
that ST and oral temperature had different distributions
(Figure 1).

Actigraphic mobility and sleep data
The actigraphy data indicated much lower movement ac-
tivity during the nighttime period, as expected. Table 1

(a) (b) ()
8
- r=0.7 - o N r=008 . © r=014 = "
R Z N . oo
g4 £ ol . .
-8 £ g . . ' e o - LR s .
] 2 - H / 5 3 4
£ T oo | % . o S © . U .
€ g [ 3 H .« T o - 1. I TR
7 © = B % Jo= e £ w© CORRRS NC T
g o o L S T e 587 S
Q o __,_g,-_’;/f P < ——— . .
= o ] B : = - 3
x & 2« 8- H w2 _] . .
4 S ¥ -t . o 8 : "
3 8 Ll . 3 e &
. [ s ©
S A PR = dq ¥ T
o ° - : - -
5 v o
e84 % <] i -
® e = g . & " '
T T T T ® =T T T T T T T T T
50 55 60 65 12 14 16 18 20 355 36.0 36.5 37.0
In Clinic HR (beats/minute) In Clinic Respiratory Rate (breaths/minute) In Clinic Core Temp (deg C)
(d) (e) ()
=5 0
. £ < .
— > . @ - o
2 S A - = = o =
2 o+ - B N L 2T <% o
£ AR £ e .. g - .-
- WAL A = o -
2 g a® - ) . c 9 .
Q o b © - ¥ e
& = a P . o .- . .
— = o -,
x o 3 o .« 2t e
) 2 °o € By
5 §q 2 - s
g £ L g - . aiie il
¥ Q - [ - -
£ 8 5 . ® S .
5" £ . 8 .
& o
5 g " £ o
= o g . S
5 . s °
T T T T T T = T T T T - T T T T
50 55 60 65 70 75 12 14 16 18 34.0 345 35.0 35.5

(MobileHR + ClinicHR)/2 (beats/minute)

(MobileRespRate + ClinicRespRate)/2 (breaths/minute)

(MobileSkinTemp + ClinicCoreTemp)/2 (deg C)

Subject 1%
= 58001_0003 = 580010011 & 5B001_001%
5800170007 = 5800170012 = 58001°0019

= 58001_0003
580010007

Subject 105
= 58001_0011 e 58001_001%
5800170012 = 580010018

Subject 105
* 580010003 = 5B001_0011 58001 _001%
5800170007 = 5500170012 » 58001 0018

Figure 1 The comparison of in-clinic and wearable measurements for heart rate (HR), respiratory rate (RR), and skin temperature
(ST) by correlation, regression (a—c), and Bland-Altman (d—f) analyses. The solid lines in a, b, and ¢ are the line y = x, which would be
expected if concordance were perfect; the dotted line is the actual regression line. In ¢ there is no solid line because ST is significantly
lower than core temperature. The Bland-Altman analysis results are presented in d, e, and f. The black dotted line is the line y =0
indicating no mean difference between the two measures. The red dotted line is the mean difference line based on the actual data. f
ST there is no black dotted line because ST is significantly lower than core temperature. a and d show the analyses for HR, b and e
shows RR, ¢ and f shows ST. Points are color-coded with a unique color for each subject.

Clinical and Translational Science

96



Wearable devices in a clinical trial

Izmailova et al.

Table 1 Summary statistics for activity measurements and total sleep time derived from the Actiwatch data

Daytime activity,

Nighttime activity,

counts/minute counts/minute TST, minutes TST, minutes
Subject ID min-max min-max min-max mean = SD
58001_0003 0-1132 0-801 196-501 367.9 + 89
58001_0007 0-1453 0-514 190.5-536 376.5 + 126.7
58001_0011 0-1499 0-584 306-471.5 367.5+51.4
58001_0012 0-1063 0-908 118.5-383.5 268.6 +90.3
58001_0015 0-1697 0-998 313-498.5 409.8 + 59.5
58001_0018 0-1697 0-1063 242-439 362.6 + 68.7
OVERALL 0-1697 0-1063 118.5-536 358.8 + 91.1
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TST, total sleep time.

Range by endpoints for measurements of daytime activity, nighttime activity, and TST.
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Figure 2 The aggregate diurnal patterns for heart rate (a), respiratory rate (b), skin temperature (c), and activity counts (d).

shows a summary of the data range (minimum and max-
imum) recorded by the Actiwatch. Analysis of total sleep
time (Table 1) suggested that the subjects’ mean sleep
time was of 358 + 91.1 minutes, or ~6 hours per night,
with substantial variation between subjects.

Additionally, we compared actigraphy data derived from
both HealthPatch (chest worn) and Actiwatch (wrist worn)
devices by examining correlation of corresponding device
outputs: step counts and activity counts. The comparison
of these activity measures indicated that the readouts from
these devices were broadly in agreement (Figure S3). The
degree of correlation varied among study subjects (Table
S2). However, we consistently observed some low values
reported from Actiwatch devices corresponding to 0 val-
ues reported by the HealthPatch device (Figure S3) in all
subjects.
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Diurnal patterns

HR, RR, ST, and movement activity all demonstrated signif-
icant diurnal variation. HR, RR, and activity displayed very
similar temporal patterns: lowest at night, highest in the af-
ternoon, and an early evening nadir (Figure 2), as expected.
The ST showed a different pattern; we observed the highest
ST at night followed by a sharp drop in the morning.

Vital sign data

Most HR values reported by the HealthPatch were within
or close to the normal range for healthy adults at rest,
~50-100 beats/min (bpm). Similarly, most reported RR
recordings were within the expected physiological range
(Figure 3). Most measurements for ST were within the
range of previously reported for healthy adult normal ST
(833-35°C; Figure 3) but were significantly different from
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the body core temperature as measured with the oral ther-
mometer at the same time point.

Investigation of reported abnormal HR and RR values

To aid interpretation of HR and RR values that were out-
side of the expected resting range we compared the
temporal change patterns of HR and RR as reported by
the HealthPatch with activity level and wake-sleep status
derived from the Actiwatch. Elevated readings were sep-
arated into two categories: (i) modestly elevated values
that might be readily ascribed to changes in body posi-
tion, physical activity, and/or study procedures, and (ii)
significantly elevated values — those that would require
further attention as they could indicate potential drug-
related safety signals should they occur in a phase | set-
ting and be temporally related to exposure to the study
drug or to a challenge agent. Readouts for the same pe-
riod were examined graphically (Figure 4), revealing that
most episodes of elevated HR and RR occurred at times
of increased physical activity. We found that comparing
time-matched data by direct visual comparison of HR and
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RR data on the one hand and activity counts and wake-
sleep status on the other was informative for interpreting
moderately abnormal readings. However, this visual re-
view process was time-consuming.

There were several episodes when the HR was elevated
above 150 bpm or even 180 bpm, which exceeds reported
“normal” HR ranges for a comparable healthy volunteer
study population.'® This finding was unexpected given that
the study recruited healthy volunteer subjects, that the study
subjects were confined to the CPU for the duration of the
wearable device evaluation, that no cardiac-related adverse
events were expected based on the properties of the in-
vestigational compound or were detected during the study
by conventional means, and that, in compliance with the
study protocol, the subjects were restricted from strenuous
physical exercise. Manual reviews of the ECG waveforms
were done for periods during which HR values were below
50 bpm or above 180 bpm. This indicated that all device-
reported values below the normal range were consistent
with the reported in-clinic HR values (Figure 5a), consistent
with sinus bradycardia occurring in healthy individuals.
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However, examination of single-lead ECG strips corre-
sponding to reported HR values above 180 bpm revealed
artefacts of data recording and data processing (Figure 5, ¢
and d) rather than true episodes of tachycardia. This additional
investigation of these reported periods of out-of-range HR was
resource-intensive, requiring manual visual review by a physi-
cian of each ECG tracing corresponding to these periods.

The number of time intervals containing values outside of
normal range that would require follow-up was determined
by calculating the number epochs with HR values above
150 bpm and above 180 bpm (Table 2). The number of
such epochs was highly variable between subjects, with the
highest number for subject 58001_0018. We also calculated
the number and total duration of gaps in data collection in
order to estimate the overall amount of vital sign data not
being collected, thus providing an estimate of the likelihood
of missing a safety signal if the device had been used as
the primary method for collecting vital sign data. Table S3
shows the number of time intervals and a total duration of
such intervals, with the highest number occurring in subject
58001_0018. We found significant gaps in the completeness
of vital sign data collection, with between 0.6 and 35.4 hours
of data missing over the course of the 10-day study period.

The reported minimum ST values of 0°C were likely due to
poor patch adherence or other artefact, despite the appar-
ently valid skin impedance measures.

Study subject and site personnel feedback

At the end of the study, both the study participants and the
study coordinators were asked to complete a brief satis-
faction questionnaire to assess their comfort level with the
device technology used and their willingness to participate
in similar study procedures in the future. The majority of the
subjects indicated a high level of acceptability for the de-
vices and a willingness to participate in future studies that
assessed wearable digital device technologies.

Overall, study coordinators at the CPU reported high lev-
els of satisfaction on the training and technical support they
receive. However, in free-form feedback the study coordina-
tors did highlight a desire to gain additional “hands-on” ex-
perience with devices and their associated software in order
to increase their comfort level.

DISCUSSION

This study assessed the feasibility of using 510(k)-cleared
wearable digital devices for collecting physiological and

Table 2 Quantification of number and percent of epochs with HR
values above 150 and 180 bpm

Number (%) of epochs Number (%) of epochs

Subject with HR > 150 bpm with HR > 180 bpm
58001_0003 29 (0.02) 13 (0.01)
58001_0007 18 (0.01) 5(0.00)
58001_0011 9 (0.00) 6 (0.00)
58001_0012 67 (0.04) 6 (0.00)
58001_0015 99 (0.06) 33(0.02)
58001_0018 258 (0.16) 77 (0.05)

bpm, beats/min; HR, heart rate.

Clinical and Translational Science

activity data in the context of a residential drug develop-
ment clinical study together with the performance and fit-
for-purpose validation of these devices. The HealthPatch
and Actiwatch devices used did not interfere with the other
study procedures, such as dosing, safety, and pharma-
cokinetic sample collection and were well received by the
study subjects and the site personnel. Activity counts and
sleep duration data derived from the Actiwatch device had
face validity, followed expected diurnal patterns, and were
consistent with previously published results.'® The average
total sleep time of 6 hours is perhaps shorter than a typical
night’s sleep for a healthy adult; this may be a consequence
of the unfamiliar environment of the CPU. The observed di-
urnal patterns in HR, RR, ST, and activity were consistent
with the previous reports.'”'® Our experience of periods of
missing vital sign data is consistent with previously pub-
lished results.®

There were significant limitations with the HR data pro-
duced by the HealthPatch device because of the volume of
artefacts produced that require a follow-up and a manual
review. Although the HR recordings showed good correla-
tion with traditional in-clinic measures, there were many re-
ported episodes of tachycardia due to voltage artefacts that
required manual visual review by a physician to resolve.

Differences between RRs as determined by the device
and by manual in-clinic measures may in fact reflect the dif-
ferences between manual and device-mediated methods,
which have been described by other groups.19 Differences
between surface ST and body core temperature are ex-
pected.?’ ST is typically lower and more variable than BT202
and is affected by the site of measurement, clothing, envi-
ronmental temperature, and even emotional state. However,
we expected some degree of relationship between these
two variables. In general, we observed much smaller varia-
tion in core temperature than ST, as expected, which further
underscores the distinction between the two parameters.

The comparison of activity data generated by HealthPatch
and Actiwatch devices revealed that the measurements
were broadly in agreement although not perfectly cor-
related. Less than perfect correlation was expected be-
cause the devices are located on different parts of the body
(trunk vs. wrist); in addition, different activity readouts (step
counts vs. activity counts) impacted the types of physical
activities detected (i.e., walking vs. moving the upper body
only). Given that the Actiwatch readout provided data for
a wider variety of physical activities, the activity counts
derived from Actiwatch were used for vital sign data in-
terpretation. These differences illustrate the need for data
standardization for similar device readouts (e.g., variables
associated with actigraphy).

The extent to which each device was evaluated was driven
by the intended use of the data. We applied more rigor for the
HealthPatch data analysis because of its potential to detect
a safety signal. The data derived from the Actiwatch device
played a secondary role and were largely used to interpret
the vital sign values outside of the normal range.

The device evaluation portion of this study has several
limitations. In the broad context of drug development, the
phase | study in which these devices were evaluated was of
low complexity in terms of device implementation logistics,
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data analysis, and interpretation. The study subjects were
inpatients and were monitored by the CPU personnel for the
entire duration of the study, which facilitated data interpre-
tation and helped to qualify certain findings as artefacts. In
addition, the small size of the study (N = 6) allowed the many
reports of out-of-range vital signs (e.g., potential tachycar-
dia episodes) to be reviewed manually. This may prove to
be too resource-intensive in a larger study. Our findings
demonstrated significant challenges with continued device
use, data collection, processing, and, most importantly, data
interpretation. We anticipate that the impact of these issues
would be even higher with a study involving more subjects,
if additional procedures were included (e.g., imaging or in-
vasive sampling) or if the device component of the study
was done remotely with study subjects wearing the devices
at home. We also observed missing data, an effect that is
likely to be amplified in study subjects with medical con-
ditions who are seen in usual practice. Adherence was an
issue in this study of relatively low complexity, although it
was comparable with other similar reports?; it is likely to be
a limiting factor in subjects with disease conditions as well.
In addition, our ability to review information was somewhat
restricted, as the device manufacturer uses proprietary soft-
ware algorithms for initial data processing.

Further limitations on the use of wearable devices in
drug-development studies are that with the model of the
device evaluated in this study and the available analysis soft-
ware packages: (i) the derivative data were not available in
“real time” during the study, which would delay the detec-
tion of acute safety signals and would not enable the inves-
tigator or sponsor to make real-time clinical decisions on the
management of safety issues, and (ji) the single-lead ECG
information that is reported is limited to HR, and, in partic-
ular, does not provide interpretation of potential rhythm ab-
normalities or of important electrocardiographic intervals,
such as the QTc time. However, for arrhythmia detection, a
single-lead ECG device has the advantages of ease of use
and convenience (compared with conventional Holter mon-
itoringzz) and in this context of use, might be fit-for-purpose
with appropriate software development. The use of a chest
wall patch device to detect atrial fibrillation in a pragmatic
population-based study of over 2,000 subjects was recently
reported.?® In addition, our study demonstrated the criti-
cal need for access to the source data in order to evaluate
study results, to confirm reports of abnormal activity, and to
understand the data limitations. Source data and algorithm
transparency remain an issue with both consumer grade
and some medical grade devices in the context of clinical
investigations.

Our findings indicate the need for careful evaluation of
wearable digital devices according to the fit-for-purpose
principle before the device-derived data can be used to
support primary or secondary study endpoints, irrespec-
tive of the regulatory clearance. Regulatory evaluation of
device performance under the auspices of the FDA 510(k)
clearance program conveys a level of reassurance regarding
the technical performance of a device. However, receipt of
510(k) clearance should not be taken to imply that the de-
vice is fit-for-purpose for an industry-sponsored drug devel-
opment study. We did not clinically validate the HealthPatch
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as fit-for-purpose for augmented physiological data collec-
tion because of artefacts, including false-positive HR signals
and missing data. This issue of false-positive signals is not
inherent to any specific device. Several groups have previ-
ously reported a false-positive rate from ECG monitors in the
intensive care unit setting as high as 75-93%.2* Our finding
of poor correlation between device-reported and manual
in-clinic measurements of RR is also consistent with results
reported previously.19 Nonetheless, the issue of specificity
of safety monitoring limits the potential utility digital devices
for drug development. We believe that a device similar to the
HealthPatch device could be of utility for monitoring study
subjects if the issues of false-positive results and miss-
ing data are addressed to an acceptable extent. The data
derived from such a device can be used in a manner similar
to an “early warning score” system?® to generate signals to
be investigated further and facilitate building an investiga-
tional drug safety profile early during clinical development.

There are many promising uses of wearable devices in clin-
ical trials as well as several challenges. Potential applications
drive toward an enhanced understanding of disease variability,
treatment response, safety assessment, innovation in clinical
trial design and conduct, as well as increasing efficiency and
decreasing costs in clinical trials. Although the promises are
clear, the challenges are not insignificant and include scien-
tific, regulatory, ethical, legal, data management, infrastruc-
ture, analysis, and security challenges.’ The current study
demonstrates practical examples of scientific/regulatory, data
management, infrastructure, and analysis issues, as described
above. We did not encounter significant obstacles with ethical,
legal, or security issues, but the importance of these may have
been diminished by the pilot nature of this substudy.

In summary, comparison between specific wearable
digital devices and in-clinic measures established a strong
correlation for HR but poor correlation between in-clinic
and wearable measurements of RR and of ST using the
HealthPatch. We concluded that the HealthPatch was not
fit-for-purpose for HR monitoring because of the artefacts
it produced and the amount of time required for data
processing and review. The number of artefacts would need
to be greatly reduced before a wider of implementation of
this device in clinical trials. The Actiwatch device was used
as a supporting application to interpret the vital sign data
and was suitable for the intended purpose of monitoring
movement, aiding interpretation of abnormal vital sign
data, and collecting certain sleep parameters. For wearable
devices to gain wider applicability in drug development,
we need to develop and establish acceptance for common
issues, including medical need, device choice, context of
use, fit-for-purpose validation, and predefined operational
requirements, as well as data collection, processing,
and interpretation. Careful consideration must be given
to clinical validation and context of use to assure that
device measurements are fit-for-purpose. Clinical Trial
Transformation Initiative made substantial progress in
addressing these issues by developing recommendations
for implementation of mobile technologies in human
experimen’ra’rion.26 However, there is a great need to
supplement these recommendations with the results
derived from clinical studies. The current study illustrates
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the critical role for evaluation, both analytical and clinical,
in the applicability of wearable devices.

Supporting Information. Supplementary information accompa-
nies this paper on the Clinical and Translational Science website (www.
cts-journal.com).
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and Actiwatch (b) devices.
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HealthPatch (step counts, x-axis) and Actiwatch (activity counts, y-axis)
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Developing and adopting safe and effective digital biomarkers

to improve patient outcomes

Andrea Coravos(®'?, Sean Khozin® and Kenneth D. Mandl'*

Biomarkers are physiologic, pathologic, or anatomic characteristics that are objectively measured and evaluated as an indicator of
normal biologic processes, pathologic processes, or biological responses to therapeutic interventions. Recent advances in the
development of mobile digitally connected technologies have led to the emergence of a new class of biomarkers measured across
multiple layers of hardware and software. Quantified in ones and zeros, these “digital” biomarkers can support continuous
measurements outside the physical confines of the clinical environment. The modular software-hardware combination of these
products has created new opportunities for patient care and biomedical research, enabling remote monitoring and decentralized
clinical trial designs. However, a systematic approach to assessing the quality and utility of digital biomarkers to ensure an
appropriate balance between their safety and effectiveness is needed. This paper outlines key considerations for the development
and evaluation of digital biomarkers, examining their role in clinical research and routine patient care.

npj Digital Medicine (2019)2:14 ; https://doi.org/10.1038/s41746-019-0090-4

INTRODUCTION

Biomarkers are characteristics (such as a physiologic, pathologic,
or anatomic characteristic or measurement) that are objectively
measured and evaluated as an indicator of normal biologic
processes, pathologic processes, or biological responses to a
therapeutic intervention.' Building on this standard definition, we
describe an emerging class of biomarker, the “digital biomarker”,
which has important implications for both clinical trials and clinical
care. “Digital” refers to the method of collection as using sensors
and computational tools, generally across multiple layers of
hardware and software. The measurements are often made
outside the physical confines of the clinical environment using
home-based connected products? including wearable, implanta-
ble, and ingestible devices and sensors. Digital biomarkers span a
broad range of diagnostic and prognostic measurements (Table 1).
We discuss development and evaluation of the digital biomarkers,
outlining opportunities and challenges associated with their use in
clinical research and routine care. As remote monitoring of digital
biomarkers becomes increasingly prevalent, we discuss the
challenges to patient privacy and patient autonomy.

Just as clinicians must evaluate a drug’s safety and effectiveness
by critically appraising clinical trials, they will increasingly need to
know how to evaluate, select, and “prescribe” digital health tools
and biomarkers. Some biomarkers are immediately familiar to
patients or physicians as they are digitized versions of well-
established metrics—for example, glucometer readings trans-
mitted by Bluetooth, or the timed six-minute walk test measured
with the smartphone’s built-in gyroscope and accelerometer.
Others, such as the smartphone-derived tapping test for
Parkinson’s disease severity, are novel and evolving? Digital
biomarkers are an essential component in autoregulated closed
loop systems. For example, in an “artificial pancreas” model, a

continuous glucose sensor linked to an insulin pump can
automatically dose insulin in patients with diabetes.*

THE ANATOMY AND EVALUATION OF DIGITAL BIOMARKERS
Measurements

An input layer such as a camera, microphone, or sensor captures a
digital biomarker signal. For example, photoplethysmographs
measure blood volume changes in the microvasculature using an
optical sensor placed on the skin surface. A signal processing layer,
typically an algorithm, converts the input signal into actionable
metrics (e.g., oxygen saturation and/or heart rate), or digital
biomarkers. Although measuring blood volume changes using
photoplethysmography is widely accepted in medical practice, the
interplay among hardware, sensors, and algorithms can make the
evaluation of emerging digital biomarkers difficult. There are several
challenges in deciding not only whether a digital biomarker is valid,
but equally important, whether it is “fit-for-purpose”, meaning that
the product has an explicit context of use, meets appropriate
requirements for accuracy and precision, and is accompanied by the
metadata needed for analysis and interpretation.”

Verification

Analytical verification uses engineering bench tests to ensure that
the product is measuring and storing values accurately by
confirming the tool’s accuracy, precision, and reliability. Con-
fidence in the performance of digital biomarkers is an important
consideration for researchers, clinicians, and patients. For example,
the verification step ensures that the translation from raw data,
e.g., that a heart rate sensor measuring electrical potential in
millivolts, faithfully converts that signal into an accurate heart rate,
expressed in beats per unit of time.

'Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA, USA; “Harvard-MIT Center for Regulatory Science, Boston, MA, USA; *Food and Drug
Administration, Silver Spring, MD, USA and “Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA

Correspondence: Kenneth D. Mandl (kenneth_mandl@harvard.edu)

Received: 23 November 2018 Accepted: 15 February 2019
Published online: 11 March 2019

Scripps Research Translational Institute

103

NP| nature partner
pJ journals


http://orcid.org/0000-0001-5379-3540
http://orcid.org/0000-0001-5379-3540
http://orcid.org/0000-0001-5379-3540
http://orcid.org/0000-0001-5379-3540
http://orcid.org/0000-0001-5379-3540
https://doi.org/10.1038/s41746-019-0090-4
https://doi.org/10.1038/s41746-019-0119-8
mailto:kenneth_mandl@harvard.edu
www.nature.com/npjdigitalmed

npj

A. Coravos et al.

Table 1. Digital biomarker examples

medical condition.

condition of interest.

environmental agent.

environmental agent.

Category?® Definition® Example® Corresponding Digital Biomarker Examples

Susceptibility/Risk A biomarker that indicates the Breast Cancer genes 1 and 2 (BRCA1/2)  [*] Detect cognitive changes in healthy

Biomarker potential for developing a disease or mutations may be used as a subjects at risk of developing Alzheimer's
medical condition in an individual susceptibility/risk biomarker to identify  disease using a video game platform.'®
who does not currently have individuals with a predisposition to [*¥] Classify adults at high risk of late-onset
clinically apparent disease or the develop breast cancer. Alzheimer's disease using computerized

feedback.”®
Diagnostic A biomarker used to detect or Repeated blood pressure readings [*] Diagnose ADHD in children using eye
Biomarker confirm the presence of a disease or obtained outside the clinical setting in vergence metrics.?'
.con.d.ltlon of interest or to identify adt.!Its 18 years and older may b.e used as [*] Detect arrhythmias using convolutional
|qd|V|duaIs with a subtype of the a .dlagnostlg biomarker to identify those o\ ral networks and a wearable single-lead
disease. with essential hypertension. heart monitor.22
[*] Detect depression and Parkinson’s
disease using vocal biomarkers.?®
[*] Diagnose asthma and respiratory
infections using smartphone-recorded
cough sounds.?*
Monitoring A biomarker measured serially for Prostate-specific antigen (PSA) may be [**] Monitor signs of Parkinson's disease
Biomarker assessing the status of a disease or  used as a monitoring biomarker when using smartphone-based measurements.?
medical condition or for evidenge of assgssing c}isease status or burden in [*] Quantify Parkinson’s disease severity
exposure to (or effect of) a medical patients with prostate cancer. using smartphones and machine learning.?

product or an environmental agent.

Prognostic A biomarker used to identify the Increasing prostate-specific antigen (PSA) Stratify mental health conditions and
Biomarker likelihood of a clinical event, disease may be used as a prognostic biomarker predict remission using passively collected
recurrence, or progression in patients when evaluating patients with prostate  smartphone data.®

who have the disease or medical cancer during follow-up, to assess the Detect post-acute care deterioration in

Predictive A biomarker used to identify
Biomarker individuals who are more likely than (HLA)-B*5701 genotype may be used as a children with autism, using an EEG
similar individuals without the
biomarker to experience a favorable immunodeficiency virus (HIV) patients
or unfavorable effect from exposure before abacavir treatment, to identify
to a medical product or an

Pharmaco-dynamic/ A biomarker used to show that a Blood pressure may be used as a Measure cognitive performance with the
Response biological response has occurred in  pharmacodynamic/response biomarker ~ Cambridge Neuropsychological Test
Biomarker an individual who has been exposed when evaluating patients with Automated Battery (CANTAB) to test the

to a medical product or an

cognitive testing.'®

[*] Reduce key risk metrics for anterior
cruciate ligament injury during jump
landings using inertial sensor-based

[**] Track time and location of short-acting
beta-agonist inhaler use using an attached
wireless sensor.?®

[*] Predicting sleep/wake patterns from a 3-
axis home-based accelerometer using deep
learning.?”

[*] Detection of nocturnal scratching
movements in patients with atopic
dermatitis using accelerometers and
recurrent neural networks.?®

likelihood of cancer progression. patients at home, applying machine

learning to multi-sensor digital ambulatory
monitoring.>®

Human leukocyte antigen allele Predict autism risk in the siblings of

predictive biomarker to evaluate human biomarker.'

Detect asymptomatic atrial fibrillation (AF)
as a stroke risk factor, remotely through a

patients at risk for severe skin reactions. .nected device 3

hypertension, to assess response to an  effects of erythropoietin.®
antihypertensive agent or sodium

R Measure blood pressure using a digital
restriction.

sphygmomanometer to assess response to
antihypertensive therapy.>*

[*] Digital biomarker under development

3Selected from the FDA-NIH “Biomarkers, EndpointS, and other Tools” (BEST) classification for traditional biomarkers

[**] Digital biomarker in use (in a clinical trial or an FDA cleared/approved digital health product, or a digital health app in use not requiring approval)

Validation different groups. Validation addresses whether the measurement
As with diagnostics, the performance of digital biomarker is applicable in the target population and context of use,® which
algorithms may vary across different patient populations, produ- would render digital biomarker “fit for purpose”. For example, a

cing different rates of false-positive or false-negative outputs in tool measuring sleep and waking periods perform against
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Modularity of software and sensor products to detect atrial
fibrillation through connected technologies

. Software built and maintained by listed manufacturer

. Software built and maintained by third party

Operating System
(08)

Sensor Data
Collection (“Raw”

Algorithm Signal
Data Processing

Algorithm to Inform,
Diagnose, and/or

User Interface &
User Experience

Data)

Intervene/Treat

AliveCor

Apple OS, Apple Watch

Fitbit

G

Xiaomi
Smartphone OS
0 e

AliveCor KardiaBand for Apple Watch
AliveCor App & Afib algorithm

Xiaomi Heart Rate Sensor & Data Processing

API open to
Developers

Fig. 1 Digital biomarker products. Five products, all detecting a similar digital endpoint, are constructed with differing, modular approaches.
In the first column are five products to detect atrial fibrillation: AliveCor, CardioGram, Apple Watch plus ECG App, Fitbit, and Xiaomi. Across the
top, are major software modules comprising the product, from the operating system on the left to the user interface on the right. Some
modaules are created by the product manufacturer and others by a third party. If the listed organization manufacturers the component, the
module is represented in green. If instead it is created by a different party, the color is gray. These differently composed products require
different strategies for verification, validation, and likely also regulatory clearance. Figures are reused with permission from the copyright

owners, and the Apple watch image is Courtesy of Apple Inc

polysomnography may perform differently in a patient population
with insomnia versus sleep apnea versus healthy volunteers.

Modularity

Digital biomarker products can be composed of multiple
individual software and hardware components. When the
components are interoperable, they can be mixed and matched
as modular components to assemble a diverse array of offerings.
For example, the US Food and Drug Administration (FDA) recently
approved the Dexcom integrated continuous glucose monitoring
system as the first type of continuous glucose monitoring system
that can be used in a modular fashion with other compatible
medical devices and electronic interfaces, including automated
insulin dosing systems and diabetes management devices.’

Software and hardware manufacturers have started to specialize
in modular pieces of a connected product’s data flow tool chain
(Fig. 1).

Regulation of modular components

The FDA regulatory process can often address particular, modular,
components along a digital biomarker's measurement apparatus.
The FDA is piloting a program that would “pre-certify” companies
and their policies® in order to offer a streamlined path to market
for their product-level approvals and modifications.

Historically, most of the software-products have been categor-
ized as software in a medical device (SiMD), which operates the
device and sensors (e.g., firmware). More recently, digital
biomarker components are categorized as software as a medical
device (SaMD) solutions. SaMDs can perform a medical function

Scripps Research Translational Institute

without being part of a hardware medical device (e.g., machine-
learning based tools in mobile apps®) have novel properties and
potential for wider adoption. Definitions distinguishing SaMD
from SiMD are evolving. The FDA recently cleared two SaMDs
compatible with the Apple Watch for detection of atrial fibrillation.
The first is an “over the counter” electrocardiogram app for display
of atrial fibrillation’ and the second can notify the user of an
irregular rhythm.'® The hardware, the Apple Watch, serves as a
component supporting digital biomarker measurement. The
Apple Watch over the counter EKG app and irregular rhythm
notifications are FDA cleared as SaMDs.

While modularity enables mixing and matching across a variety
of components, it can also be a source of potential error. For
example, performance changes to an operating system may affect
the speed of computation'' and, for example, corrupt measure-
ment of a Parkinson’s tapping test, which uses a smartphone to
calculate a digital biomarker based on timed reaction.

POTENTIAL BENEFITS AND RISKS OF DIGITAL BIOMARKERS

As new modalities are incorporated into connected devices,
mobile apps, and software products for patients at home, a natural
area of growth in biomarker collection is remote collection of
patient-generated measurements. As digital biomarkers are
increasingly used as endpoints in clinical trials, we anticipate that
clinicians will have a growing number of validated means of
gathering clinical insights on patients remotely. However,
incorporation of these tools in clinical research is dependent on
accelerating the development of new study designs such as those
employed in decentralized clinical trials, where many of the trial
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participant touchpoints occur at home.'? Furthermore, verification
and validation of digital biomarkers require a uniquely collabora-
tive approach, with engineering, data science, health information
technology, and clinical research functions tightly coordinated as
integrated multidisciplinary units.

New digital biomarkers are directly targeting clinical manage-
ment. The Empatica Embrace Watch, for example, is a “smartband”
wrist-device that measures sympathetic nervous impulses at the
skin and infers parasympathetic activity from heart rate variation.
Its algorithm detects seizures and its associated app suite can alert
care providers. There are many examples of digital biomarkers in
use or actively under development today, as well as computa-
tional metrics with potential for development into digital
biomarkers (Table 1). We expect that as digital biomarkers
become increasingly used in clinical trials, patient and physician
adoption will increase in care and self-management. Digital tools
also allow deep collection of data on individual trial participants as
well as patients in clinical settings, thereby providing an
opportunity for “N of 1” clinical investigations, the cornerstone
of evidence generation for personalization of care.

As new platforms for connected technologies emerge, “compo-
site” biomarkers simultaneously incorporating multi-sourced
physiologic parameters (e.g., blood pressure, heart rate, and
oxygen saturation) and patient-reported information can have
higher diagnostic and prognostic value. With more data, an
algorithm’s accuracy improves. For example, incorporation of the
user's height, weight, age, and gender increases step count
accuracy, because a 25-year-old’s gait is not equivalent to that of
an 80-year-old. Availability of contextual information will enable
more personalized algorithms (e.g., a step count algorithm
designed for a population with late-stage Parkinson’s), and also
can combine data sources to create novel measures for conditions
that have historically struggled to have meaningful endpoints
(e.g., brain and nervous system disorders).

Ensuring privacy and autonomy is paramount as digital
biomarkers are incorporated into care and self-management,
and incentive programs encouraging wellness and treatment plan
adherence. While healthcare delivery organizations using digital
biomarkers are of course Health Insurance Portability and
Accountability Act (HIPAA) covered entities, when citizens engage
directly with the technologies or technology companies, HIPAA
does not apply.'® Social media and targeted advertising platforms
typically employ end-user-license agreements and terms of
service to outline data-sharing rights and privacy policies.
However, like informed consent, health data rights should cover
a continuum of activities over time. Therefore, data use agree-
ments for digital biomarker development should contain clear
statements on conditions for data usage especially for tools that
collect near-continuous data, like movement, voice, and other
sensitive biometric states.

Connected software products may pose cybersecurity chal-
lenges exposing trial participants and patients to privacy breaches
or even safety risks. Just as HIPAA and the Common Rule are
written to protect a patient’s medical record data and biospeci-
mens, nascent efforts are building protections for digital “speci-
mens”. New frameworks are emerging around the security,’
ethics,’® and informed consent challenges,'® of digital phenotyp-
ing technologies.'® One approach—a promising one for tracking
security vulnerabilities and issues of performance, transparency,
and accuracy—would require software manufacturers to provide,
in premarket submission to the FDA, a “Software Bill of Materials”
which is analogous to the ingredient list for a medication.'”

A challenge to the evaluation of algorithms is that many are
proprietary, patented or are trade secrets. For example, the
AliveCor, Cardiogram, and Apple atrial detection algorithms and
training data sets, for example, are not published. Instead, these
companies offer a textual description of what the code does. The
Empatica epilepsy monitor, for example, does not readily output
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raw signal, but instead, only the processed output interpreted by
its proprietary algorithm. Hence the impact on a population of a
digital biomarker-driven clinical management plan may not
always be transparent to patients and clinicians. Testing
characteristics, including selected thresholds for action, sensitivity,
and specificity should be made transparent to the healthcare
professional, regulators, and trial participant and patient users of
digital biomarkers.

CONCLUSION

In recent years, digital biomarker development has begun
integration into translational and clinical research. An increasing
number of industry and academic investigators are at the leading
edge of a new wave of innovations.

To accrue maximum benefit to the patient, a safe and
effective digital biomarker ecosystem requires transparency of
the algorithms, interoperable components with open interfaces
to accelerate the development of new multicomponent systems,
high integrity measurement systems. The time is now to give
forethought to strong incentive structures to promote the safe
and effective use of digital biomarkers. Generally, the verifica-
tion and validation of a digital biomarker should be not
construed as a one-time process, but rather, a learning digital
health system should continuously collect data and handle
modifications and updates overtime. Industry, researchers,
regulators, clinicians, and patients have a joint responsibility to
design such a learning system that can improve digital
biomarker products, empower patients, and improve health
and healthcare delivery for everyone
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Indicators of retention in remote digital health studies: a
cross-study evaluation of 100,000 participants
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Digital technologies such as smartphones are transforming the way scientists conduct biomedical research. Several remotely
conducted studies have recruited thousands of participants over a span of a few months allowing researchers to collect real-world
data at scale and at a fraction of the cost of traditional research. Unfortunately, remote studies have been hampered by substantial
participant attrition, calling into question the representativeness of the collected data including generalizability of outcomes. We
report the findings regarding recruitment and retention from eight remote digital health studies conducted between 2014-2019
that provided individual-level study-app usage data from more than 100,000 participants completing nearly 3.5 million remote
health evaluations over cumulative participation of 850,000 days. Median participant retention across eight studies varied widely
from 2-26 days (median across all studies = 5.5 days). Survival analysis revealed several factors significantly associated with
increase in participant retention time, including (i) referral by a clinician to the study (increase of 40 days in median retention time);
(ii) compensation for participation (increase of 22 days, 1 study); (iii) having the clinical condition of interest in the study (increase of
7 days compared with controls); and (iv) older age (increase of 4 days). Additionally, four distinct patterns of daily app usage
behavior were identified by unsupervised clustering, which were also associated with participant demographics. Most studies were
not able to recruit a sample that was representative of the race/ethnicity or geographical diversity of the US. Together these
findings can help inform recruitment and retention strategies to enable equitable participation of populations in future digital

health research.

npj Digital Medicine (2020)3:21 ; https://doi.org/10.1038/s41746-020-0224-8

INTRODUCTION

Traditional in-person clinical trials serve as the cornerstone of
modern healthcare advancement. While a pivotal source of
evidence generation for advancing clinical knowledge, in-person
trials are also costly and time-consuming, typically running for at
least 3-5 years from conception to completion, at a cost of
millions of dollars per study. These timelines have often meant
that promising treatments take years to get to dissemination and
uptake, which can create unnecessary delays in advancing clinical
practice. Additionally, clinical research suffers from several other
challenges' including (1) recruiting sufficiently large and diverse
cohorts quickly, and (2) tracking day-to-day fluctuations in disease
severity that often go undetected in study-related intermittent
protocolized in-clinic evaluations>* Scientists have recently
turned to digital technology®® to address these challenges,
hoping to collect real-world evidence’ from large and diverse
populations to track long-term health outcomes and variations in
disease trajectories at a fraction of the cost of traditional research.®

The global penetration® and high-frequency usage of smart-
phones (up to 4 h daily'®"") offer researchers a potentially cost-
effective means to recruit a large number of participants into
health research across the US (and the world)."*'® In the last 5
years, investigators have conducted several large-scale studies'*
22 that deployed interventions?*?* and operationally conduct
clinical trials®™” using mobile technologies. These studies are
able to recruit at-scale because participants can be identified and
consented®® to participate in the study without ever having

stepped foot in a research lab, with significantly lower costs than
conventional clinical trials.?*** Mobile technologies also allow
investigators an opportunity to collect data in real-time based on
people’s daily lived experiences of the disease, that is, real-world
data.” Rather than retrospectively asking people to recall their
health over the past week or month, researchers using mobile
technologies can assess participants frequently including outside
clinic and at important points in time without having to rely on
recall that is known to have bias.*® While these recent studies
show the utility of mobile technology, challenges in participant
diversity and long-term participant retention still remain a
significant problem.°

Digital studies continue to suffer from participant retention
problems that also plagued internet-based studies®'>? in the early
2000s.3*73> However, our understanding of factors impacting
retention in remote research remains to be limited. High levels of
user attrition combined with variations in long-term app usage
may result in the creation of a study cohort that does not
represent the characteristics of the initially recruited study
population with regards to demographics and disease status. This
has called into question the reliability and utility of the collected
data from these studies® Of note, the representativeness of
remote study cohort (e.g., demographics, geographical diversity,
etc) may vary based on the study design and inclusion criteria.
Many large-scale digital health studies enroll participants from a
general population, where anyone eligible with or without target
disease of interest can self-select to join the study. Such strategies
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may be prone to selection and ascertainment biases.>® Similarly,
cohorts in studies targeting a population with a specific clinical
condition of interest may need to be evaluated in the context of
the clinical and demographic characteristics of the underlying
population with that disease. Evaluation of participant recruitment
and retention from large-scale remotely collected data could help
detect confounding characteristics that may be present and which
have been shown to severely impact the generalizability of the
resulting statistical inference.>®*’ Participant retention may also
be partially dependent on the engagement strategies used in
remote research. While most studies assume participants will
remain in a study for altruistic reasons,®® other studies provide
compensation for participant time,*® or leverage partnerships with
local community organizations, clinical registries, and clinicians to
encourage participation.?®** Although monetary incentives are
known to increase participation in research,*® we know little about
the relative impact of demographics and different recruitment and
engagement strategies on participant retention, especially in
remote health research.

The purpose of this study is to document the drivers of
retention and long-term study mobile application usage in remote
research. To investigate these questions, we have compiled user-
engagement data from eight digital health studies that enrolled
more than 100,000 participants from throughout the US between
2014-2019. These studies assessed different disease areas
including asthma, endometriosis, heart disease, depression, sleep
health, and neurological diseases. While some studies enrolled
participants from the general population (i.e., with and without
disease of interest) others targeted a specific subpopulation with
the clinical condition of interest. For analysis, we have combined
individual participant data across these studies. Analysis of the
pooled data considers overall summaries of demographic or
operational characteristics while accounting for study heteroge-
neity in retentions (see Methods for further details on individual
studies and analytical approach). The remote assessments in these
studies consisted of a combination of longitudinal subjective
surveys and objective sensor-based tasks including passive data®’
collection. The diversity of the collected data allows for a broad
investigation of different participant characteristics and engage-
ment strategies that may be associated with higher retention in
the collected real-world data.

RESULTS

Participant characteristics

The combined user-activity data from eight digital health studies
resulted in a pool of 109,914 participants who together completed
~3.5 million tasks on more than 850,000 days (Table 1). The
demographics of participants across studies (Table 2) varied
widely in part due to study-specific eligibility criteria, which may

impact the underlying characteristics of the recruited population.
Except for three studies (Brighten, Phendo, and Start) that aimed
to recruit people with a specific clinical condition of interest, the
rest of the five studies enrolled people from the general
population with and without the target disease of interest. The
majority of participants were between 17-39 years (Median
percent of subject age across studies 17-39 = 65.2%, Range =
37.4-91.5%) with those 60 years and older being the least
represented (Median age percent greater than 60 = 6%, Range =
0-23.3%). The study samples also had a larger proportion of
Females (Median =56.9%, Range =18-100%). A majority of
recruited participants were Non-Hispanic Whites (Median =
75.3%, Range = 60.1-81.3%) followed by Hispanic/Latinos (Med-
ian = 8.21%, Range =4.79-14.29%) and African-American/Blacks
(Median = 3.45%, Range = 2-10.9%). The race/ethnic and geogra-
phical diversity of the present sample showed a marked difference
from the general population of the US. Minority groups were
under-represented in the present sample with Hispanic/Latinos
and African-America/Black showing a substantial difference of
—8.1% and —9.2% respectively compared to the 2010 US census
data s (Table 2, Fig. 1b). Similarly, the median proportion of
recruited participants per state also showed notable differences
from the state’s population proportion of the US (Fig. 1a).

Participant retention

As is the nature of these studies, participants were required to
complete all health assessments and other study-related tasks
(e.g., treatments) through a mobile application (app) throughout
the length of the study. The median time participants engaged in
the study in the first 12 weeks was 5.5 days of which in-app tasks
were performed on 2 days (Table 2). Higher proportions of active
tasks were completed by participants during the evening (4-8 PM)
and night (8-12 Midnight) hours (Fig. 2a). Across the studies, the
median retention time varied significantly (P < 1e-16) between 2
and 12 days with the Brighten study being an outlier with higher
median retention of 26 days (Fig. 2b). A notable increase in
median retention time was seen for sub-cohorts that continue to
engage with the study apps after day one and beyond (Fig. 2c).
For example, the median retention increased by 25 days for the
sub-cohort that was engaged for the first 8 days. The participant
retention also showed a significant association with participant
characteristics. While older participants (60 years and above) were
the smallest proportion of the sample, they remained in the study
for a significantly longer duration (Median=7 days, P < 1e-16)
compared to the majority younger sample (17-49 years) (Fig. 2d).
Participants declared gender showed no significant difference in
retention (P=0.3). People with clinical conditions of interest to
the study (e.g., heart disease, depression, multiple sclerosis)
remained in the studies for a significantly longer time (Median =
13 days, P < 1e-16) compared to participants that were recruited

Table 1. Summary of user-engagement data compiled from eight digital health studies.
Study Disease focus/study type Study period Number of Total participant days Active tasks
participants completed
Start Antidepressant Efficacy—Observational Aug, 2015-Feb, 2018 42,704 280,489 1,219,656
MyHeartCounts Cardiovascular Health-Observational ~ Mar, 2015-Oct, 2015 26,902 165,455 305,821
SleepHealth Sleep Apnea-Observational Jul, 2015-Jun, 2019 12,914 99,696 401,628
mPower Parkinson’s—-Observational Mar, 2015-Jun, 2019 12,236 104,797 568,685
Phendo Endometriosis—-Observational Dec, 2016-Jul, 2019 7,802 81,938 735,778
Asthma Asthma-Observational Mar, 2015-Dec, 2016 5,875 77,815 175,699
Brighten Depression-Randomized Control Trial Jul, 2014-Aug, 2015 876 34,987 45,951
ElevateMS Multiple Sclerosis—Observational Aug, 2017-Jul, 2019 605 11,211 31,568
109,914 856,388 3,484,786
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Table 2. Summary of select participant demographics and study-app usage across the eight digital health studies.
Asthma Brighten ElevateMS mPower MyHeartCounts Phendo SleepHealth Start Overall
(median)
Age group
N 2512 875 569 6810 1555 7484 12392 42690
18-29 (%) 43.31 50.06 10.9 315 25.08 55.38 32.79 55.72 38
30-39 (%) 27.83 25.14 26.54 18.37 32.67 36.09 28.72 2414 27.2
40-49 (%) 14.41 14.74 28.47 13.19 16.27 8.23 20.77 12.38 14.6
50-59 (%) 9.08 6.97 22.14 13.61 12.09 0.25 1 5.26 10
60 + (%) 537 3.09 11.95 23.33 13.89 0.04 6.72 251 6
Sex
N 2509 875 329 6916 6976 7532 12558 42704
Female (%) 39.58 77.83 74.16 28.93 18.94 100 29.14 7586 56.9
Race
N 3274 875 334 6884 4703 7530 5311 —
Non-Hispanic White (%) 68.69  60.11 80.84 75.32 77.95 8129 7413 — 753
Hispanic/Latinos (%) 13.29 14.29 4.79 8.21 6.97 5.67 12.82 — 8.21
African-American/Black (%) 495 10.86 6.89 2.05 3.1 2.71 3.45 — 3.45
Asian (%) 4.98 8.23 2.99 8.4 7.72 2.79 5.87 — 5.9
Hawaiian or other Pacific Islander (%)  0.89 0.57 0 0.28 0.32 0 0.23 — 0.3
AIAN (%) 0.43 0.46 0 0.65 0.53 0.74 0.28 — 0.5
Other (%) 6.78 5.49 4.49 5.1 34 6.8 3.22 5.1
Duration in Study (Median + IQR) 12+38 26+82 745 4+21 9+19 4+25 2+8 2+16 5.5
Days active tasks performed (Median+ 4+12 14+58 2+8 2+4 4+7 2+6 2+4 +4 2
IQR)
a b
Non-Hispanic White 4 * e
Hispanic/Latinos q e o
2
:g African-American/Black 4 te+ e
&=
i
8 Asian Lgl
@©
04 —— Z
AIANS 02 04 06 08
Percentage
o
20
IS 4 Hawaiian/Pacific Islander 4 &~ ® 2010 Census
2 ® Recruited population
o o 0 20 40 60 80
Percent
Fig. 1 Geographical and race/ethnic diversity of the recruited participants. a Map of US showing the proportion (median across the

studies) of recruited participants relative to state’s population proportion of the US and b Race/Ethnicity proportion of recruited participants
compared to 2010 census data. The median value across the studies is shown by the black point with error bars indicating the

interquartile range.

as non-disease controls(Median=6 days) (Fig. 2e). Median
retention time also showed a marked and significant increase of
40 days (P<1e-16) for participants that were referred by a
clinician to join one of the two studies (mPower and ElevateMS)
(Median = 44 days) compared to participants who self-selected to
join the same study (Median =4 days) (Fig. 2f). See Supplemen-
tary Tables 1-6 for a further breakdown of survival analysis results.
Sensitivity analysis by including participants with missing age
showed no impact on the association of age with participant
retention. However, participants with missing demographics
showed variation in retention compared to participants who
shared their demographics (Supplementary Fig. 1). This could be

Scripps Research Translational Institute
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related to different time points at which demographic related
questions were administered in individual studies.

Participant daily engagement patterns

The subgroup of participants who remain engaged with study
apps for a minimum of 7 days, showed four distinct longitudinal
engagement patterns (Fig. 3b) with the dedicated users in cluster
C1, high utilizers(C2), moderate users(C3) and sporadic users(C4).
The participants who did not participate for at least 7 days were
placed in a separate group (abandoners, C5%) (See Supplementary
Fig. 2 and Methods for cluster size determination and exclusion
criteria details). The engagement and demographic characteristics
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Fig. 2 Factors impacting participant retention in digital health studies. a Proportion of active tasks (N=3.3 million) completed by
participants based on their local time of day. The centerline of the boxplot shows the median value across the studies and upper and lower
whisker corresponding to outlier point (1.5 times the interquartile range). b Kaplan Meir survival curve showing significant differences (P < 1e-
16) in user retention across the apps. Brighten App where monetary incentives were given to participants showed the longest retention time
(Median = 26 days, 95% Cl = 17-33) followed by Asthma(Median = 12 days, 95% Cl = 11-13), MyHeartCounts(Median = 9 days, 95% Cl = 9-9),
ElevateMS(Median = 7 days, 95% Cl = 5-10), mPower(Median = 5 days, 95% Cl = 4-5), Phendo(Median = 4 days, 95% Cl = 3-4), Start(Median =
2 days, 95% Cl = 2-2) and SleepHealth(Median = 2 days, 95% Cl = 2-2), c Lift curve showing the change in median survival time (with 95% ClI
indicated by error bars) based on the minimum number of days(1-32) a subset of participants continued to use the study apps, Kaplan-Meier
survival curve showing significant differences in user retention across d Age group, with 60 years and older using the apps for longest duration
(Median = 7days, 95% Cl = 6-8, P < 1e-16) followed by 50-59 years (Median = 4 days, 95% Cl =4-5) and 17-49 years (Median = 2-3 days, 95%
Cl = 2-3). e Disease status; participants reporting having a disease stayed active longer(Nso = 13days, 95% Cl = 13-14) compared to people
without disease(Nso = 6 days, 95% Cl = 5-6) and finally f Clinical referral; Two studies (mPower and ElevateMS), had a subpopulation, that were
referred to the study by clinicians and showed significantly (P < 1e-16) longer app usage period(Median = 44 days, 95% Cl = 27-58) compared
to self-referred participants with disease (Nso = 4 days, 95% Cl = 4-4). For all survival curves the shaded region shows the 95% confidence limits
based on the survival model fit.

across these five groups (C1-5%) varied significantly. Cluster 1 and engagement (Fig. 4d) (See Supplementary Table 8 for further
2 showed the highest daily app usage (Median app usage in the details).

first 84 days =96.4% and 63.1%, respectively) but also had the

smallest overall proportion of participants (Median = 9.5%) with

the exception of Brighten where 23.7% of study participants were DISCUSS.ION )

in the dedicated users cluster C1. While daily app usage declined ~ Our findings are based on one of the largest and most diverse
significantly for both moderate and sporadic clusters (C3-214%  €ngagement dataset compiled to date. We identified two major
and C4-22.6%), the median number of days between app usage challenges with remote data collection: (1) more than half of the
was significantly higher for participants in the sporadic C4 cluster ~ Participants discontinued participation within the first week of a
(Median = 5 days) compared to cluster C3 (Median = 2 days). The study and the rates at which people discontinued was drastically
majority of participants (median 54.6%) across the apps were different based on age, disease status, clinical referral, and use of
linked to the abandoner group (C5*) with the median app usage monetary incentives, and (2) most studies were not able to recruit

of just 1 day (Fig. 4a, b). Furthermore, distinct demographic a samplg that. was representative of the Race/ethnicity et
characteristics emerged across these five groups. Higher engage- geographical diversity of the US. Although these findings raise

ment clusters (C1-2) showed significant differences (P — 1.38e-12) questions about the reliability and validity of data collected in this

in oroportion of adults 60 e%rs and above (Media; r.an o manner, they also shed light on potential solutions to overcome

15 f 1;)20/ across studies) ycompared to lower engage?ne;t biases in populations using a combination of different recruitment
Pl .£7/0

. . . and engagement strategies.
clusters C3-5*(Median range =5.1-11.7% across studies) (Fig. One gsc?lution could gbe the use of a flexible randomized
4c). Minority groups such as Hispanic/Latinos, Asians, and African-

. - withdrawal design.*? Temporal retention analysis (Fig. 2c) shows
American/Black, on the other hand, were represented in higher 4ot 5 ryn-in period could be introduced in the research design,
proportions in the clusters (C3-5%)(P =4.12e-10) with the least

wherein participants who are not active in the study app in the
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Fig. 3 Daily participant engagement patterns in digital health studies. a Schematic representation of an individual’s in-app activity for the
first 84 days. The participant app usage time is determined based on the number of days between the first and last day they perform an active
task(indicated by the green box) in the app. Days active in the study is the total number of days a participant performs at least one active task
(indicated by the number of green boxes). b Heatmaps showing participants in-app activity across the apps for the first 12 weeks (84 days),
grouped into four broad clusters using unsupervised k-means clustering. The optimum number of clusters was determined by minimizing the
within-cluster variation across different cluster sizes between 1-10. Seven out of eight studies indicated four clusters to be an optimum
number using the elbow method. The heatmaps are arranged by the highest (C1) to the lowest user-engagement cluster (C4).

first week or two of the study can be excluded after enrollment
but before the start of the actual randomized study. The resulting
smaller but more engaged cohort will help increase the statistical
power of the study but does not fix the potential for non-
representative participant bias.*?

Another solution is to rely on monetary incentives to enhance
engagement. Although only one study paid participants, the
significant increase in retention and the largest proportion of
frequent app users indicate the utility of the fair-share compensa-
tion model"**** in remote research. Such “pay-for-participation”
model could be utilized by studies that require long-term and
frequent remote participation. Researchers conducting case-
control studies should also plan to further enrich and engage
the population without the disease. Studies run the risk of not
collecting sufficient data from controls to perform case-control
analysis with participants without disease seen to be dropping out
significantly early. Similarly, more efforts**™® are needed to retain
the younger population that although demonstrates large
enrollment, also features a majority that drops out on day one.

Distinct patterns in daily app usage behavior, also shown
previously,* further strengthen the evidence of unequal technol-
ogy utilization in remote research. The majority of the participants
found in the abandoners group (C5%) who dropped out of the
study on day 1, may also reflect initial patterns in willingness to
participate in research, in a way that cannot be captured by
recruitment in traditional research. Put another way, although
there is significant dropout in remote trials, these early dropouts
may be able to yield very useful information about differences in

Scripps Research Translational Institute

people who are willing to participate in research and those who
are not willing to participate. For decades clinical research has
been criticized for its potential bias because people who
participate in research may be very different from people who
do not participate in research.>*>? Although researchers will not
have longitudinal data from those who discontinue participation
early, the information collected during onboarding can be used to
assess potential biases in the final sample and may inform future
targeted retention strategies.

Only 1 in 10 participants were in the high app use clusters (C1-
2), and these clusters tended to be largely Non-Hispanic whites
and older adults. Minority and younger populations, on the other
hand, were represented more in the clusters with the lowest daily
app usage (Fig. 4d). The largest impact on participant retention
(>10 times) in the present sample was associated with clinician
referral for participating in a remote study. This referral can be
very light touch in nature, for example in the ElevateMS study, it
consisted solely of clinicians handing patients a flyer with
information about the study during a regular clinic visit. This
finding is understandable, given recent research®® showing that
the majority of Americans trust medical doctors.

For most studies, the recruited sample was also inadequately
diverse highlighting a persistent digital divide®* and continued
challenges in the recruitment of racial and ethnic underserved
communities.”® Additionally, the underrepresentation of States in
the southern, rural and midwest regions indicates that areas of the
US that often bear a disproportionate burden of disease®® are
under-represented in digital research.*®™>® This recruitment bias
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Fig. 4 Comparison of characteristics across participant engagement clusters. a Proportion of participants in each cluster across the study
apps, b Participants total app usage duration(between 1-84 days) and the number of days participants completed tasks in the study apps,
c Significant differences [F(4,163) =18.5, P = 1.4e-12] in the age groups of participants across five clusters and d Significant differences
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participants in each cluster. The centerline of the boxplots shows the median value across the studies for each cluster and upper and lower
whisker corresponds to the outlier point that is at least 1.5 times the interquartile range.

could impact future studies that aim to collect data for health
conditions that are more prevalent among certain demographic®®
and associated with geographic groups.°® Recent research®' has
also shown that participants’ willingness to join remote research
studies and share data are tied to their trust in the scientific team
conducting the study including the institutional affiliations of
researchers. Using different recruitment strategies*®™*® including
targeted online ads in regions known to have a larger proportion
of the minority groups, partnerships with local community
organizations, clinics and universities may help improve the
penetration of remote research and improve diversity in the
recruited sample. The ongoing “All of Us” research program that
includes remote digital data collection has shown the feasibility of
using a multifaceted approach to recruit a diverse sample with a
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majority of the cohort coming from communities under-
represented in biomedical research.®® Additionally, simple techni-
ques, such as stratified recruitment that is customized based on
the continual monitoring of the enrolling cohort demographics,
can help enrich for a target population.

Finally, communication in digital health research may benefit
from adopting the diffusion of innovations approach®** that has
been applied successfully in healthcare settings to change
behavior including the adoption of new technologies.®>%”
Research study enrollments, advertisements including in-app
communication and return of information to participants,®® could
be tailored to fit three distinct personality types (trendsetters,
majority, and laggards). While trendsetters will adopt innovations
early, they are a minority (15%) compared to the majority (greater

Scripps Research Translational Institute



than two-thirds of the population) who will adopt a new behavior
after hearing about its real-benefits, utility and believe it is the
status quo. On the other hand, laggards (15%) are highly resistant
to change and hard to reach online and as a result, will require
more targeted and local outreach efforts.

These results should also be viewed within the context of
limitations related to integrating diverse user-engagement data
across digital health studies that targeted different disease areas
with varying underlying disease characteristics and severity. While
we did adjust for potential study level heterogeneity, we were not
able to account for within-study differences such as variations in
participants’ disease severity and any other study-specific
temporal changes. For example, the user experience and burden
could have changed or improved over time based on changes in
the study protocol or other technical fixes in the app. The
variations in participant recruitment were not fully documented
across studies so not be analyzed and accounted for fully except
for clinical referrals in two of the studies. Furthermore, the
comparison of participant race/ethnicity and geographical diver-
sity to a general US population was meant to assess the
representativeness of the study that is aimed at recruiting from
a general population and not necessarily targeted towards a
specific clinical condition of interest. Researchers should also
prioritize to collect demographic data such as age, gender, race/
ethnicity, participant state during onboarding which help
characterize user attrition in future studies. While sensitivity
analysis showed the main findings from user retention analysis do
not change by including participants with missing data, however,
missing demographic characteristics remains a significant chal-
lenge for digital health (See Supplementary Table 7). Finally,
obtaining raw user-level engagement data from digital health
studies that is well annotated and computable remains a
significant challenge. The present findings are based on eight
select US-based digital health studies and thus may not be
generalizable broadly. We do, however, hope that this work will
help motivate digital health researchers to share user-level
engagement data to help guide a larger systematic analysis of
participant behavior in digital health studies.

Despite these limitations, the present investigation to the best
of our knowledge is the largest cross-study analysis of participant
retention in remote digital health studies using individual-level
data. While the technology has enabled researchers to reach and
recruit participants for conducting large-scale health research in
short periods of time, more needs to be done to ensure equitable
access and long-term utilization by participants across different
populations. The low retention in “fully remote, app-based” health
research may also need to be seen in the broad context of the
mobile app industry where similar user attrition is reported.®®
Attrition in remote research may also be impacted by study
burden®® as frequent remote assessments can compete with
users’ everyday priorities and perceived value proposition for
completing a study task that may not be linked to an immediate
monetary incentive. Using co-design techniques’® for developing
study apps involving researchers and participants could help
guide the development of most parsimonious research protocols
that fit into the daily lives of people and are still sufficiently
comprehensive for researchers.

In the present diverse sample of user-activity data, several
cohort characteristics, such as age, disease status, clinical referral,
monetary benefits, etc, have emerged as key drivers for higher
retention. These characteristics may also guide the development
of new data-driven engagement strategies”"’? such as tailored
just-in-time interventions’® targeting sub-populations that are
most likely to dropout early from remote research. Left unchecked
the ongoing bias in participant recruitment combined with
inequitable long-term participation in large-scale “digital cohorts”
can severely impact the generalizability***” and undermine the
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promise of digital health in collecting representational real-
world data.

METHODS
Data acquisition

The user-engagement data were compiled by combining data from four
studies that published annotated, accessible, and computable user-level
data'®'®7*7> under qualified researcher program’® as well as new data
from four other digital health studies(SleepHealth,”” Start,”® Phendo,”® and
ElevateMS®°) that were contributed by collaborators. These eight studies
aimed at assessing different diseases ranging from Parkinson’s(mPower),
asthma(Asthma health), heart condition(MyHeartCounts), sleep health
(SleepHealth), multiple sclerosis(ElevarteMS), endometriosis(Phendo) to
depression(Brighten and Start). Except for three studies (Brighten, Phendo,
and Start) that aimed to recruit people with a specific clinical condition, the
other five studies enrolled people from the general population. Anyone
with and without the target disease that met the other study eligibility
criteria could join. The studies recruited participants from throughout the
US between 2014-2019 using a combination of different approaches
including placing ads on social media, publicizing or launching the study at
a large gathering, partnerships with patient advocacy groups, clinics, and
through word of mouth. In all studies, participants were enrolled fully
remotely either through a study website or directly through the study app
and provided electronic consent®' to participating in the study. Ethical
oversight of the eight remote health studies included in the analysis was
conducted by the respective institution’s Institutional Review Board/Ethics
Boards: Brighten (University of California, San Francisco), SleepHealth
(University of California, San Diego), Phendo(Columbia University), Start
(GoodRx), mPower (Sage Bionetworks), elevateMS(Sage Bionetworks),
Asthma(Mt. Sinai), MyHeartCounts(Stanford University). The present
retention analysis study used existing de-identified data only and qualifies
for exemption status per OHRP guidelines.®

The studies were launched at different time points during the 2014-2019
period, including three studies mPower, MyHeartCounts, and Asthma being
launched with the public release of ResearchKit framework®® released by
Apple in March 2015. The studies were also active for different time periods
including significant differences in the minimum time participants were
expected to participate in the studies remotely. While Brighten and
ElevateMS had a fixed 12-week participation period, other studies allowed
participants to remain active for as long as they desired. Given this variation
in the expected participation period across the studies, we selected the
minimum common time period of the first 12 weeks (84 days) of each
participant’s activity in each study for retention analysis. Finally, with the
exception of Brighten study which was a randomized interventional clinical
trial and enrolled depressed cohort offering them monetary incentives for
participation, the rest of the seven studies were observational and did not
offer any direct incentives for participation. The studies also collected
different real-world data ranging from frequent subjective assessments,
objective sensor-based tasks to continual passive data*' collection.

Data harmonization

User-activity data across all the apps were harmonized to allow for inter-
app comparison of user-engagement metrics. All in-app surveys and
sensor-based tasks (e.g., Finger tapping on the screen) were classified as
“active tasks” data type. The data gathered without explicit user action
such as daily step count (Apple’s health kit API®*), daily local weather
patterns were classified as “passive” data type and were not used for
assessing active user-engagement. The frequency at which the active tasks
were administered in the study apps were aligned based on the
information available in the corresponding study publication or obtained
directly from the data contributing team in case the data were not publicly
available. Furthermore, there were significant differences in the baseline
demographics that were collected by each app. A minimal subset of four
demographic characteristics (age, gender, race, state) was used for
participant recruitment and retention analysis. A subset of five studies
(mPower, ElevateMS, SleepHealth, Asthma, MyHeartCounts) had enrolled
participants with and without disease status and were used to asses
retention differences between people with (case) and without (control)
disease. Two studies (mPower and ElevateMS) had a subset of participants
that were referred to use the same study app by their care providers. For
this smaller but unique subgroup, we compared the retention differences
between clinically referred participants to self-referred participants.
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Statistical analysis

We used three key metrics to assess participant retention and long-term
engagement. (1) Duration in the study: the total duration, a study
participant remained active in the study i.e.,, the number of days between
the first and last active task completed by the participant, during the first
84 days of each participant’s time in the study. (2) Days active in the study:
the number of days a participant performed any active task in the app
within the first 84 days. (3) User-activity streak: a binary-encoded vector
representing the 84 days of potential app participation for each participant
(Fig. 3a) where the position of the vector indicates the participant’s day in
the study and is set to 1 (green box) if at least one active task is performed
on that day or else is O(white). User-activity streak metric was used to
assess sub-populations that show similar longitudinal engagement
patterns over a 3 month period.

Participant retention analysis (survival analysis®®) was conducted using
the total duration of time in the study as the outcome metric to compare
the retention differences across studies, sex, age group, disease status, and
clinical referral for study-app usage. The duration of each participant in the
study was assessed based on “active task” completion i.e. tasks that
require active user input (e.g., a survey or a sensor-based active task). With
the underlying user-level engagement data available across selected eight
studies, we used an individualized pooled data analysis(IPDA) approach®
to compare participant retention. IPDA has shown to yield more reliable
inference compared to pooling estimates from published studies.®® Log-
rank test®” was used to compare significant differences in participant
retention between different comparator groups of interest. In order to
adjust for potential study level heterogeneity, we used a stratified version
of the log-rank test. Kaplan-Meier®® plots were used to summarize the
effect of the main variable of interest by pooling the data across studies
where applicable. Two approaches were used to evaluate participant
retention using survival analysis. (1) No censoring (most conservative)—if
the last active task completed by participant fell within the pre-specified
study period of the first 84 days, we considered it to be a true event i.e.,,
participant leaving the study (considered “dead” for survival analysis). (2)
Right-censoring®®—to assess the sensitivity of our findings using approach
1, we relaxed the determination of true event (participant leaving the
study) in the first 12 weeks to be based on the first 20 weeks of app activity
(additional 8 weeks). For example, if a participant completes last task in an
app on day 40(within the first 84 days) and then additionally completes
more active task/s between week 13-20 he/she was still considered alive
(no event) during the first 84 days (12 weeks) of the study and therefore
“right-censored” for survival analysis. Given that age and gender had a
varying degree of missingness across studies; additional analysis compar-
ing the retention differences between the two sub-groups that provided
the demographics and that opted out was done to assess the sensitivity of
missing data on main findings.

Unsupervised k-means clustering method was used to investigate the
longitudinal participant engagement behavior within each study using the
user-activity streak metric (described above). The number of optimum
clusters (between 1-10) in each study was determined using the elbow
method® that aims to minimize the within-cluster variation. Enrichment of
demographic characteristics in each cluster was assessed using a one-way
analysis of variance. Since the goal of this unsupervised clustering of user-
activity streaks was to investigate the patterns in longitudinal participant
engagement; we filtered out individuals who remained in the study for less
than 7 days from clustering analysis. However, for post hoc comparisons of
demographics across the clusters, the initially left-out participants were put
in a separate group (C5*. The state-wise proportions of recruited
participants in each app were compared to the 2018 US state population
estimates using the data obtained from the US census bureau.”® To
eliminate potential bias related to marketing and advertising of the launch
of Apple’s Research kit platform on March 09, 2015, participants who
joined and left the mPower, MyHeartCounts, Asthma studies within the
first week of Research Kit launch (N = 14,573) were taken out from the user
retention analysis. We initially considered using Cox proportional hazards
model®' to test for the significance of variable of interest on user retention
within each study accounting for other study-specific covariates. However,
because the assumption of proportional hazards (tested using scaled
Schoenfeld residuals) was not supported for some studies, these analyses
were not further pursued. All statistical analyses were performed using R.>?

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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DATA AVAILABILITY

Aggregated data for all studies are included as part of tables in the main manuscript
or supplementary tables. Additionally, individual-level user-engagement data for all
studies are available under controlled access through the Synapse (https://doi.org/
10.7303/syn20715364).

CODE AVAILABILITY

The complete code used for the analysis is available through a GitHub code repository
(https://github.com/Sage-Bionetworks/digitalHealth_RetentionAnalysis_PublicRelease).
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Conducting research in a humanitarian setting requires quantifiable quality measures to ensure ethical study conduct.
Digital health technologies are proven to improve research study quality and efficacy via automated data collection,
improvement of data reliability, fidelity and resilience and by improved data provenance and traceability. Additionally,
digital health methodologies can improve patient identity, patient privacy, study transparency, data sharing, competent
informed consent, and the confidentiality and security of humanitarian operations. It can seem counterintuitive to
press forward aggressively with digital technologies at a time of heightened population vulnerability and cyber security
concerns, but new approaches are essential to meet the rapidly increasing demands of humanitarian research. In this
paper we present the case for the digital modernization of humanitarian research in conflict and other humanitarian
settings as a vehicle for improved research quality and ethics.
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Background

While there is justifiable concern, dialogue and debate
on the necessity of research in conflict and humanitarian
settings, research is being conducted and likely will con-
tinue to be conducted in these settings. Governments,
non-governmental organizations (NGOs) and the inter-
national community must understand the benefit-risk
ratios and efficacy of interventions, and the resulting
health, social and economic outcomes following such in-
terventions. Concurrently, it must be clear that the
rights, confidentiality and identity of all research subjects
are protected and that all possible harms were mini-
mized [1]. Researchers are consistently studying and
reviewing these and other ethical obligations, and there
has been substantial progress in developing methods
and practices to ensure ethical research conduct in hu-
manitarian settings [2, 3]. Despite this progress, ques-
tions remain. Is all ‘interesting’ research necessary? Does
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the production of high quality evidence hinder the abil-
ity to provide the most effective interventions possible
to the most vulnerable populations [4]? These questions
are difficult and necessary, as consideration of research
must always include definitions and measures of benefit-
risk ratios and proper ethical oversight before, during,
and after humanitarian interventions. This writing pro-
poses that modern digital technologies can improve the
ethics and benefits while reducing the risks of research
conduct in humanitarian settings.

In recent reviews on health and humanitarian crisis,
two of the primary recommendations were the “ethical
imperative” of collecting better data and the need for
better information systems [5, 6]. Better data is: gener-
ated by valid experimental designs; timely; statistically
rigorous; properly protected; useful for local authorities;
obtained only through proper (truly) informed consent;
and capable of providing an evidence base to support
the resulting conclusions and recommendations of a
given study. Better information systems are: inter-
national standards-based; available but secure; quickly
available when crises occur; interconnected; cost-
effective; and operationally accessible and useful to local

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
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authorities. Ideally, better systems can also be an import-
ant component in strengthening local health systems as
was shown during the recent Ebola epidemic in West
Africa [7]. Despite the incessant marketing hype, digital
health technologies are designed to improve data quality
and security, systems availability and systems flexibility.
In addition, digital systems have great potential in pa-
tient/subject identity tracking and identity protection,
improved communications, data confidentiality, data re-
dundancy, data protection and local workforce develop-
ment [8].

Overview of the utility of eHealth and mHealth in
humanitarian research settings

The recent Ebola crisis in West Africa highlighted the
limitations of paper systems for patient care, research
and logistical support during an infectious disease out-
break. While common and readily available, paper is fra-
gile, easily damaged by weather, greatly limited by the
skills/literacy of the user, often difficult to read or repro-
duce. Most of all, paper itself can be a transmission
vector during infectious disease epidemics [9]. Digital
technologies, on the other hand, continue to improve
and to be proven effective, even in low resource settings
when properly engineered and implemented. Success is
far from automatic. Essential elements for successful
digital technology implementation include proper meth-
odologies, qualified personnel, strong use case and
scenario selection, realistic expectations and high-touch
stakeholder management [10]. Unless these elements are
fully understood and effectively executed, digital
technology implementation can result in costly mistakes.
The fact that massive amounts of resources continue to
pour into digital technologies should provide optimism
that these solutions are in close reach and will continue
to improve.

One important challenge of conducting research in
conflict and humanitarian settings is that it is resource-
intensive and could divert attention from patient care
[11]. In some cases, this resource burden can be offset
by automation. When data is captured electronically,
some tasks are automated, and others can be expedited.
Conduct of surveys provide the most common example.
Paper surveys can be time consuming, illegible, poorly
understood by the worker administering the survey, eas-
ily damaged by weather or transport and easily stolen or
destroyed by hostile actors. The author witnessed this
first-hand when deploying a community surveillance
mobile app in Kono Sierra Leone during the recent
Ebola epidemic. Not only was the app found to be
quickly superior to paper for data collection, data qual-
ity, data protection and accuracy, the program has
proven to be useful for healthcare systems strengthening
as there are now more than 100 community health
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workers using the system [12]. In addition to disease epi-
demic information, clinical knowledge inside conflict
settings has also been successful collected through elec-
tronic surveys. One recent study polled healthcare pro-
viders within Syria to test awareness of tele-mental
health (TMH). The study showed that initial awareness
of TMH was low but that the polled physicians were in-
terested, willing to try and thought that such interven-
tions could be effective [13]. Indeed, these tools can
actually reach massive numbers of users and bring great
utility in a short period of time. This was the case with a
Meédecins Sans Frontiéres’ Clinical Guidance mobile ap-
plication which was downloaded in 150 countries and
resulted in 250,000 screen views in the first 6 months
[14]. These are just a few examples, but the literature
and the technology press are blooming with new exam-
ples monthly, and best practices are rapidly emerging.

The arguments against the use of digital health tools
for the purpose of expanding the reach and minimizing
the resource burden of research is that the technology
will be too foreign, too complex and too difficult for suc-
cessful utilization within some settings. While these con-
cerns are valid and important, the landscape is evolving
very quickly. Digital transformation appears to be accel-
erating in low resource areas and conflict zones. One
fascinating example is the rapid adoption of cashless
currency in challenging settings such as Somaliland. In-
deed, even in a country with very high illiteracy rates, it
is both simplicity and enhanced functionality that are
helping cashless currency flourish [15]. Clearly, the fa-
miliarity of cellular phones and tablets is on the rise in
low and middle-income countries (LMIC), and this
trend will help offset the concern that these technologies
appear too foreign.

The potential complexity and difficulty of using digital
health technologies must be managed and mitigated
carefully by experienced personnel. Digital projects fail
primarily due to project management and social issues,
regardless of country income level [16]. The most com-
mon reasons for failure include avoidance of root cause
challenges, unclear or under-articulated goals, lack of
proper methodology, lack of understanding of true cus-
tomer needs, inadequately qualified leadership and staff,
poor technology selection, poor communication and
poor change management. While information technol-
ogy (IT) project management is beyond the scope of this
writing, Table 1 shows common technology delivery
project pitfalls and offers practical guidance [17-22].

Ethical issues of Health Research to be addressed

The basic principles behind ethical human subject
research are well articulated and include respect for per-
sons (and their choices), beneficence (the research must
do good), non-maleficence (the research does not harm)
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Table 1 Best Practices and Common Mistakes in Digital Healthcare
Implementation

Challenges in eHealth
& mHealth Delivery

Best Practices & Specific
Methodologies

Poor or limited user
involvement & engagement

User-centered design, user co-design,
participatory design methodologies

Unclear goals, expectations
& scope creep

Develop & use a clear requirements
& expectations matrix

Poor sponsor participation
& active leadership

Document specific sponsor role
requirements & the corresponding
relationships to other roles

Poor technology selection Use an established technology

selection framework

Lack of necessary technology
skill sets

Understand the necessary roles
& recruit, train or contract

Understand & select from 6 most
common technology delivery
methodologies

Poor project management
& lack of formal methodology

and justice (all persons are treated fairly and equally)
[23]. These principles are elaborated on within the Inter-
national Ethical Guidelines for Health-Related Research
Involving Humans published by the Council for Inter-
national Organizations of Medical Sciences (CIOMS) in
collaboration with the World Health Organization
(WHO) [24]. Despite these guidelines, the application of
ethical frameworks to digital health is still new.

It is not always clear how to best apply specific ethical
guidelines to new technologies. Technology can be un-
familiar, scary and intimidating. Common concerns in-
clude training, accuracy, reliability, privacy, security,
inequality and protection of relationships [25]. Despite
CIOMS guidance, further subtleties that must be exam-
ined are the differences in the collection and use of ag-
gregate population data versus individual patient data.
One emergent example is the debate around the use of
aggregate phone call detail record data from mobile
phone systems within low and middle-income countries
(LMIC) [26]. When aggregate data is being made avail-
able for research via third parties, how is consent han-
dled? Is the research really in the best interest of the
consumers about whom the data was collected? One of
the primary requirements of research, of course, is trust
between the various actors. However, in fragile states
and during conflict, this trust is often missing which can
greatly inhibit participation [27]. When considered thor-
oughly, these concerns are not new, unique or limited to
conflict and humanitarian settings. In fact, these con-
cerns are the same as are being actively debated and
managed in most healthcare systems, but additional pro-
tections must be enabled for the most vulnerable people.

Some argue that the only answer to the collective chal-
lenges of dire unmet humanitarian need and significant
ethical hurdles is the forward press of innovation. In-
deed, Médecins Sans Frontieres considers innovation an
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essential element of humanitarian response and has pub-
lished a framework for humanitarian innovation that
considers harms, benefits, local participation, longer-
term consequences and specific delivery methodologies
[28]. Similarly, it has recently been suggested that, with
proper education and outreach, mHealth and telehealth
offer a relatively low-resource platform for the Sustain-
able Development Goal (SDG) 3 in conflict-affected pop-
ulations [29]. There has also been excellent recent work
done to assess and describe responsible data approaches
for humanitarian settings. Specifics include risk assess-
ment, data value chain, legal foundations, and account-
ability and best practices [30].

Using the growing body of positive evidence of digital
capabilities, an association can be constructed between
specific CIOMS guidelines and the best practices of digital
technologies as shown in Table 2. Each digital capability
enhancement opportunity will be discussed in detail.

Technologies for improved ethical informed consent
Properly documented informed consent is an essential
basis of ethical human subject research. All studies are
ethically and legally bound to ensure that any and all po-
tential research participants fully understand all aspects
of the process they are being asked to undertake. This
requires that potential research subjects receive, com-
prehend and make decisions on information that can be
completely beyond experience or understanding. Com-
mon challenges include basic literacy, health literacy, the
proper local context, cultural competency, proper docu-
mentation and the challenge of successfully communi-
cating complex research and clinical protocols [31, 32].
These challenges are not limited to humanitarian or
low-resource settings, as the entire world struggles to
ensure that the informed consent process truly satisfies
its ethical purpose and study documentation purposes
[33, 34]. Fortunately, progress is being made, and tech-
nology is playing a greater role. For example, digital in-
formed consent tools can include multi-media videos,
stories, pop-up definitions and quizzes, all of which have

Table 2 Association of Specific CIOMS Guidelines and Digital
Technology Improvement Opportunities

International Ethical Guideline
(CIOMS)

Informed Consent
(Guidelines 9,10,16)

Digital Enhancement Opportunities

Better comprehension via multi-media,
improved privacy, traceability (including
ability for withdrawal) & confidentiality

Collection Storage & Use of
Data (Guidelines 11&12)

Improved Data Quality, Fidelity,
Provenance, Data Reliability

Privacy and Confidentiality
(Guidelines 3,4,11,12,20,22)

Digital Identity. Data Resilience,
Data Redundancy

Data Transparency &
Sharing (Guideline 8,12,22)

Increased Data and Study Transparency
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been shown to improve patient comprehension and re-
tention [35]. But are the same principles and tools being
used to improve the informed consent process in the in-
dustrialized world suitable to humanitarian use? Early
evidence is positive, but challenges remain. Multiple
studies of informed consent across multiple medical dis-
cipline and in various developing nations show that the
use of audio and visual multimedia demonstrate quanti-
fiable improvements in understanding and retention
[36]. The challenges reported include fear of data and
privacy concerns and hesitance by potential research
subjects to sign off on the consent forms.

With respect to data and privacy concerns, one of the
risks is that more data can be collected than a subject
understands. For example, apps could passively capture
the GPS coordinates of the exact location of the consent,
and this data could be used by other parties if the de-
vices were not adequately protected and controlled [37].
This may be difficult, or impossible, to effectively com-
municate. With respect to the specific concern regarding
signatures, a recent study in northern Ethiopia found
that subjects were afraid to sign consent forms due to
lack of trust of investigators and the concern that signa-
tures could be related to legal accountability [38].
Clearly, there are important patient sensitivities and con-
cerns regarding privacy, the potential misuse of personal
information and fear of unintended consequences. This
is where digitized personal identity may help greatly.

Next-generation digital identity and identity/
privacy protection

The United Nations Sustainable Goal 16.9 calls for legal
identity for all citizens including birth registration by 2030
[39]. This goal is aspirational and complex as no truly
ideal global identification strategy exists. The complica-
tions of an unprecedented refugee crisis, unstable states
and exploding identity theft and misuse in the industrial-
ized world make this a global problem for all peoples, not
just those in developing nations. The particular challenges
to uniform global identity solutions include the lack of
consistent state-issued identification (ID), political in-
stability, corruption and fear of persecution and stigma.
Indeed, even in the most developed nations, there is a
growing trend of individuals that are choosing to live off-
the-grid [40]. For many peoples, feeling safe has a great
deal to do with feeling anonymous.

But what aspects of life need to be associated with
identity? In the US, past and present identity schemes
involve personal information that are based around es-
tablishing uniqueness. Date of birth, place of birth, social
security number and other personally-identifiable-
information (PII) such as home address form the basis
of modern identity and, truly, most of this information
has likely already been stolen. Estimates vary but the
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data breaches are now affecting 100 s of millions of citi-
zens per year worldwide. From the healthcare perspec-
tive, in the US, personal health information (PHI) is
further protected by the Health Insurance Portability
and Accountability Act (HIPAA), although here, too,
cyberattacks are all too common as this data is consid-
ered highly valuable [41, 42]. Many now question this
strategy identifying people with personal information
and then de-identifying those same people as research
subjects by stripping a subset of the personal data. Must
unique identification be based on some of the most per-
sonal and private attributes of life? Probably not, as
newer technologies and smarter identity schemes are
rapidly evolving.

Digital identity is likely the best path forward given
the complexities and the financial, health and security is-
sues around global identity [43]. Ideal solutions must be
truly unique (at least nationally), portable, resilient, inex-
pensive and standards-based to allow interoperability
with national systems. For populations at risk or threat,
the additional capability to support those living on-the-
grid and off-the-grid will be essential. This can be less
tricky than it seems. When unique identity schemes do
not depend on associated personally-identifiable data,
the risk to individuals is greatly decreased. One recent
article suggested that there ‘should be an outcry to elim-
inate the brandishing of birthdates to identify patients in
medical encounters’ [44].

Fortunately, in the case of biometric ID, the source of
uniqueness is not marketable information such as PII or
PHI; it is simply biological traits, such as fingerprint or
retinal scan, which need not be associated with any per-
sonal information to be fully unique [45]. In many ways,
this strategy is essentially proactive de-identification ac-
cording to HIPAA guidelines as long as none of the 18
types of identifiers are ever associated with the ID [46].
These technologies are rapidly evolving. In fact, in 2016,
new national electronic ID (eID) programs, most includ-
ing biometrics, were announced in Algeria, Cameroon,
Jordan, Italy, Senegal and Thailand, and pilots were
launched in many other nations [47].

Also driving progress are federal government guide-
lines such as the US NIST SP 800-63 Digital Identity
Guidelines. These guidelines provide comprehensive
guidance on digital identity, enrollment, identity proof-
ing, authentication and lifecycle management [48].
While not yet mandated, it is expected that these guide-
lines and equivalents from other nations will set the bar
for quality and responsibility of national ID systems and
must be carefully considered.

Admittedly, this is a great deal of technology and com-
plexity to comprehend, and many humanitarian missions
and settings lack the required technological sophistica-
tion to do so. This is where digital identity services can
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bring excellent value. Digital identity services provide
identity solutions ‘as a service’ and are now being used
by many sectors worldwide. The growth of this industry
is so explosive that the greatest challenge can be select-
ing the optimal solution for a given purpose. Here again,
there are excellent international guidance documents
available to inform and guide [49].

Improving data reliability, fidelity and resilience
For data to be reliable it must be accurate, precise and
available. Each of these can be aided by digital tools. For
example, digital surveys greatly improve data accuracy
and fidelity by enforcing data types such as numerical
fields, date fields etc. that ensure proper answers.
Multiple choice questions ensure specificity, precision,
legibility and suitability of answers. Data availability can
be improved by local data caching on devices as well as
downloading copies of data via wireless networks
(Wi-Fi) or to other devices via peer-to-peer data transfer.
Data redundancy is also the best protection against data
loss in any setting.

Data resilience is the ability to recover from loss or inci-
dent, and this is where digital methods greatly improve
upon most paper systems. Paper can get wet or lost, or
simply be illegible by the time of intended use. Digital de-
vices offer instantaneous redundancy, even where there is
no cellular or Wi-Fi capability, and can store and share
copies while offline. Paper also becomes onerous to store
and archive. Large missions can quickly compile stacks,
boxes and rooms of poorly annotated and filed data
making re-use and long-term utility difficult.

Improving data provenance

Another essential element of well-conducted ethical re-
search is proper data provenance. Data provenance is
the ability to describe the history and origins of data, a
critical element of data reproducibility. The ability of
digital systems to create metadata that can be used to
establish and ensure data origin, chain of custody and
reproducibility is a significant improvement over trad-
itional paper procedures. These improvements can be
further enhanced by many pre-existing ontologies that
enable the use of data standards and the ability to auto-
mate data integrity checking [50, 51]. Lastly, while much
of the data provenance and provenance metadata litera-
ture is focused upon highly technical and advanced
cloud computing environments, it is essential to under-
stand that the concepts are fully amenable to much
lower tech environments. Solid experimental data prov-
enance can be established using techniques such as basic
labeling and tracking, using proper version control and
backups, smart use of data identifiers and even hybrid
digital and paper processes [52].
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Data quality, data protection and research cyber
security

The author has previously provided guidance for re-
search study cyber security and privacy protection so
will not dive deeply into these technicalities in this
writing [53]. The most important aspects to consider in
humanitarian settings are the specificity of the environ-
ment, prioritization of data and systems, access and
identity management, proper device patching and man-
agement, comprehensive daily data backups, good phys-
ical security and regular testing of all procedures and
technology controls [54].

Fundamental to all security and privacy strategies is an
understanding that all data is not of equal risk and im-
portance. In the wrong hands, a clinical case report form
that identifies a subject solely based on a unique patient
ID, carries much less risk to the patient and/or provider
than does the spreadsheet or database that associates
personal information with those unique patient IDs.

Data is not of equal risk and this is the basis behind
HIPAA, GDPR and other privacy laws. These regulations
must be seen as an opportunity to make research more
efficient, portable and transparent. Decide what is im-
portant and protect what is important. Worry much less
about everything else.

In considering data privacy and utility, electronic data
can be more useful and secure overall. Consider the case
of collecting and managing informed consent forms dur-
ing any large medical intervention or study. If paper
forms and wet signatures are used, what are the odds
that a subject could be found and competently re-
identified in a crowd fifteen minutes later? Chain of cus-
tody of data, including the ability to attach results and
documents to particular subjects, is fundamental to en-
suring study quality. Now consider the same scenario
where an electronic case report form app and a digital
biometric identity were used; instant and highly reliable
re-contact would be possible and credible as needed.

One last important topic on cyber security is a specific
caution around the Android operating system. The
Android operating system is far more ‘open’ than the
analogous iOS operating system used by Apple. This has
truly enabled rapid and worldwide utility of mobile ap-
plications. Most open-source software systems run
Android and most reasonably priced phones and tablets
run Android. Because Apple controls the entire iOS eco-
system, Apple devices tend to be more secure. They
should be, given the $1000 price of the new iPhone!
Practicality and economics will cause most of the work
to remain on Android, and this is okay, as long as users
are vigilant. Technology strategies that rely on Android
OS, especially those that handle sensitive information,
must be carefully managed. Android devices can indeed
be as secure as iOS devices if managed correctly [55].
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Pitfalls of digital data management in research
settings

In addition to the previous cautions on education and
training, project management, proper sponsorship and
staff involvement, there are specific cautions that must
be understood when implementing digital data collection
technologies. First there are the logistical requirements
of managing devices, managing users and protecting
against theft and misuse. Next are the operational and
technical requirements of ensuring that devices can be
properly charged, cleaned and kept in good working
order. In highly challenging physical environments that
may be wet, dry or dusty, proper protective casings and
an adequate store of spare devices is required. Lastly, it
is undeniable that these technologies and the corre-
sponding preparation and management add financial
cost to any research study, but the return on these
investments can be extraordinary.

Data and study transparency

It has been argued that the attainable minimal quality
standard in epidemiology is reproducibility, and that
availability of data sets, software, detailed protocols and
statistical approaches enables the types of critical evalu-
ation that ensure study quality and transparency [56].
Maximum transparency is considered an essential elem-
ent of ethical research as it ensures people are treated
properly and that the research itself was conducted with
the best interests of the most vulnerable in mind [57].
For industry sponsored clinical trials, transparency via
access to data, protocols and results is expected and
mandated, although performance varies greatly [58].
While there is clearly much room for improvement in
the way that industry shares clinical trial data, the fact is
that industry does systematically share data, and there
are no truly comparable sharing efforts within academia
or the humanitarian sector. Commitment to open shar-
ing of study data would truly raise all boats with respect
to the perceptions and concerns regarding the ethics of
conducting research in humanitarian settings, and tech-
nology can only help.

Data that has been systematically collected, properly
managed and evaluated using rigorous statistical
methods can be readily examined and evaluated by edi-
tors, reviewers and other researchers. Studies that lack
well-controlled source data have inadequate chain of
custody and lack procedural rigor account for a great
proportion of irreproducible research. In contrast, sim-
ple checklists have been shown to improve methodo-
logical information such as randomization, sample-size
calculation and blinding [59]. As previously mentioned,
checklists can be readily automated via digital means
and can even be improved upon as data quality and
completeness can be managed as mandatory.
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In addition to ensuring quality, digitally shared data can
be aggregated, aligned and pooled or even co-located to
produce rich new sources of knowledge. A common driver
of these efforts is to facilitate knowledge sharing in hopes
of preventing future humanitarian crisis. One such effort
is underway to pool data from the recent Ebola outbreak
in West Africa. The issues of data ownership, control and
access all must be settled [60].

Conclusions

While digital health is imperfect and still in its adoles-
cence, the field is rapidly evolving. New digital studies
and capabilities are being reported almost daily, and
many have the ability to improve the ethical conduct of
research in humanitarian settings. By automating chain
of custody of data, by using smart metadata and by
exploiting the other inherent capabilities of digital tech-
nologies, the quality and conduct of research in humani-
tarian settings can improve. The change will not be easy,
but the rewards appear worth the risk.

The decision to conduct research in humanitarian set-
tings is incredibly complex, and a case can often be
made against intervention. However, when the decision
to intervene is made, that intervention must be thorough
and profound, as each clinical interaction happens only
once and is irreplaceable.
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Vital Signs: Digital Health Law Update | Winter 2020 — Targeted
Excerpts

Jones Day

Welcome to the first issue of "Vital Signs"—a refreshed and reframed revival of Jones Day's
Digital Health Law Update, given our long-standing commitment, experience, and leadership in
digital health. We plan to issue Vital Signs near the beginning of each quarter to cut through all
the noise and provide access to a curated resource on "must know" legal and regulatory topics
impacting digital health.

As you will see in this first issue, our team of contributors from around the globe culled through
various information across legal specialty areas (cybersecurity, health regulatory, IP, litigation,
tax, and transactional) to present complex issues in a user-friendly fashion. Hot links to underlying
legal and regulatory materials are included within each section, enabling Vital Signs to serve as
your ongoing quick reference for all the notable recent legal and regulatory materials.

In this issue, we start with "Industry Insights"—dedicated in each issue to an overarching topic of
industry interest—covering the evolving nature of how disparate industry stakeholders are
advancing their vision, collaboration, and utilization of digital health, especially in the decade
ahead. You'll also learn about: (i) U.S. federal efforts focused on streamlining FDA's digital health
approach and advancing Medicare's telehealth reimbursement, while enforcement attention and
methods evolve; (ii) U.S. states' legislative attention around telehealth and data privacy; (iii)
Europe's flurry of digital health policy covering privacy, cross-border services, device
development, and interoperability; (iv) Mexico's adoption of a novel tax on digital intermediaries
supporting telemedicine; and (v) Japan's adoption of significant modifications to its
Pharmaceuticals and Medical Devices Act.

INDUSTRY INSIGHTS
Worlds Colliding—A New Decade for Digital Health

Over the past decade, unprecedented advances in technology and know-how have resulted in an
ever-expanding and diversified "digital health” universe. From the growing use of communication
technologies to deliver clinical care, to the rise in fitness and healthy living apps, to improvements
in diagnostic medical devices, digital innovation has increasingly defined many of our health care
experiences over the past 10 years. As we enter a new decade, it is certain this trend will continue.

We expect the next 10 years, however, to encompass something more than continued vertical
growth. If the last decade was defined by innovation and forward advancement in numerous yet
siloed sectors of the health care industry, the next decade is likely to be defined by horizontal
growth—a growing overlap in disparate digital health worlds to create one, integrated digital
health ecosystem. We began to see some of this overlap at the tail end of the 2010s.

For example, traditional telehealth services are starting to incorporate medical devices (particularly
diagnostic and triaging software) as part of patient-facing platforms. Software has long been used
for administrative functions in health care settings. In the last few years, however, we began to see
new types of clinical decision support ("CDS") software being utilized for things like patient
screening, as well as for assisting providers in identifying the most appropriate treatment plan for
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a patient's disease or condition. To date, these functionalities have been relatively simplistic, but
with the rise of machine-learning algorithms and Al, it seems certain that more sophisticated
medical software will soon be upon us. We anticipate that CDS software will become a ubiquitous
and indispensable aspect of patient care in the 2020s.

Digital health is also being utilized to bring therapies to market. Sponsors of clinical trials
increasingly use digital means, such as data mining through claims and electronic health records,
to more rapidly and comprehensively identify, recruit, and engage with clinical trial participants.
The use of wearable technologies has also improved the means of collecting and transmitting
clinical data to trial investigators. Together with the more traditional means of communicating
patient reported outcomes, the use of data from wearables enhances a sponsor's ability to
demonstrate the achievement of applicable clinical trial endpoints. In addition, technological
advances are being further deployed to support the development of "decentralized" or "virtual"
clinical trial protocols, in which an increasing percentage of trial procedures are administered from
a patient's home or other remote locations.

The promise of digital health in each of these contexts is significant. These developments could
result in less expense, more expedient and more accurate outcomes, and better engagement with
subjects, patients, and consumers. But these developments, of course, also give rise to attendant
practical and legal challenges, particularly given the different rules and regulators involved. For
example, the use of sophisticated medical software and data mining gives rise to privacy and
security concerns and may require the use of special informed consents. Likewise, while clinical
trials are typically regulated at the federal level, the rise in "virtual™ clinical trial protocols may
require careful consideration of state telehealth and practice of medicine rules. While the
development of technology invariably lurches ahead of regulation, all stakeholders will need to
work together to advocate for continued evolution of the regulatory process to allow for a
responsible deployment of innovative technologies to improve patient care.

UNITED STATES DEVELOPMENTS
Federal
FDA Proposes New Guidance on Clinical Decision Support (""CDS"™) Software

In 2016, the 21st Century Cures Act ("Cures Act") explicitly excluded CDS software from FDA
regulatory authority. Due to the impressive diversity of digital products that provide some type of
clinical decision support (including many that incorporate artificial intelligence and machine
learning algorithms), industry stakeholders have since grappled with significant uncertainty about
whether certain applications might qualify as CDS software or, alternatively, fall under FDA's
regulatory authority. FDA initially issued draft guidance in 2017 to help resolve some of this
uncertainty but later withdrew that draft guidance in response to public feedback. FDA recently
issued new draft guidance in September 2019 to again address the lingering uncertainty. The
September 2019 draft guidance identifies three distinct categories of software: (i) that which meets
the Cures Act definition of "CDS software" and, therefore, falls outside of FDA regulatory
authority; (ii) that which falls under FDA's regulatory authority but over which FDA intends to
exercise "enforcement discretion” due to the lower risk of the applications; and (iii) that which
falls under FDA's regulatory authority and over which FDA intends to focus its regulatory
oversight. Industry should closely monitor FDA's oversight activities with regard to CDS software
in 2020 to gain further insight into FDA's interpretation of its regulatory reach.

127


https://www.congress.gov/114/plaws/publ255/PLAW-114publ255.pdf
https://www.fda.gov/media/109618/download

FDA Modernizes Regulations to Facilitate Utilization of Digital Technologies in Clinical
Trials

In 2019, FDA continued its initiatives focused on modernizing the clinical trial process by issuing
numerous draft and final industry guidance supporting the use of adaptive and complex
innovative trial designs, novel trial endpoints and enrichment strategies, and duly qualified
biomarkers and other drug development tools. Certain of these initiatives are pursuant to mandates
under the Cures Act and incorporate evolving technologies such as complex algorithms and digital
tools. FDA also recently articulated policies intended to provide patients with a more pronounced
voice in clinical investigation design and to permit industry to mine and utilize certain real-world
evidence in the drug development process. FDA provides additional information regarding real-
world evidence and patient engagement on its website.

Proposed CONNECT Act Transfers Telehealth Reimbursement Eligibility Decisions to
Regulators

The CONNECT for Health Act of 2019 ("CONNECT Act") was introduced into the U.S. Congress
House and Senate in October 2019. If adopted, the Connect Act could significantly expand
reimbursement for telehealth services provided to Medicare beneficiaries. Specifically, the
CONNECT Act would empower the U.S. Department of Health and Human Services ("HHS") to
waive the specific geographic, modality, provider type, and other limitations currently in effect
under 81834(m) of the Social Security Act. HHS may grant such waivers where proposed outlays:
(i) reduce spending without reducing quality; (ii) improve quality without increasing spending; or
(iii) serve health shortage areas. The CONNECT Act would also eliminate the rural geographic
limitation for tele-mental health services and tele-specialist consultations in the emergency
department, all 81834 limitations for hospice recertifications following an in-person visit, and the
originating site limitation for certain Indian Health Service and Native Hawaiian Health Care
facilities.

Federal Criminal and Civil Investigations Touch on Digital Health Industry

Two major criminal investigations by the FBI, HHS-OIG, and DOJ involved the digital health
industry in 2019: Operation "Double Helix" and the related Operation "Brace Yourself." These
investigations were unprecedented in the digital space for their size and scope. Operation Double
Helix involved $2.1 billion in alleged losses resulting from fraudulent billing of genetic tests,
orthotic braces, and pain creams. Notably, CMS issued its own press release highlighting its
involvement in this enforcement activity through the Center for Program Integrity, publicly flexing
its enforcement muscle. Operation Brace Yourself involved $1.2 billion in alleged telemedicine
fraud among companies that sell durable medical equipment ("DME") across the country. Charges
were brought against at least 24 defendants including corporate entities, health care providers, and
corporate executives, and they involved allegations of commercial/nongovernment program fraud
in addition to federal program fraud. These investigations, along with the HealthRight
investigation announced in 2018, highlight the government's continuing focus on areas of long-
standing concern (compound drugs, DME, and lab testing), but in the digital space.

Government civil enforcement activity in the digital health space appears to be on the uptick, with
a continued focus on compounding prescriptions reimbursed by TRICARE and enforcement
against electronic health record ("EHR™) companies. Diabetic Care Rx LLC, two executives, and
private equity firm Riordan, Lewis & Haden Inc. settled a qui tam lawsuit for $21.36 million
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in September 2019, following up on the DOJ's intervention decision in early 2018. In February
2019, EHR vendor Greenway Health LLC entered into a settlement for $57 million that the DOJ
independently pursued, and a few months later IBM and Caram Software entered into a settlement
for $14.8 million related to misrepresentations made during the development of Maryland's Health
Insurance exchange website and IT platform.

Proposed Stark and Anti-Kickback Regulatory Reforms Notable for Potential Broad Health
Industry Implications

In October 2019, OIG and CMS published large packages of proposed reforms to modernize the
regulations that interpret the federal Anti-Kickback Statute and the federal Stark Law, respectively.
Jones Day is in the process of publishing a series of Commentaries to summarize the more
significant proposals within the packages. Though only a narrow set of the proposed reforms
specifically impact the digital health industry, all proposed reforms impact the health care space
generally and may have implications for various digital health initiatives. See
our Commentaries on the New Exception for Dialysis-Related Telehealth Technologies, Changes
to Valuation Terms Under the Federal Stark Law, and Newly Proposed Protections for
Cybersecurity Technology Under the AKS and Stark Law.

Express Scripts Unveils Stand-Alone Digital Health Formulary

Express Scripts, one of the nation's largest pharmacy benefit managers, unveiled the industry's first
stand-alone digital health "formulary” in December 2019. The initial cohort of digital health
solutions on the formulary are designed to aid in the management of common chronic conditions,
including diabetes, hypertension, asthma, and depression. This initial cohort includes specific
"preferred” and "alternative™ vendors for each of these various chronic conditions, with solutions
that engage with patients in a variety of ways (e.g., remote monitoring of a patient's use of a drug
therapy, synching a diagnostic device to provide vital information to patients and alert them of
potential concerns, virtual personal coaching from a health or wellness professional, and virtual
support from a patient's peer). A team of physicians, pharmacists, and experts in health research
assisted Express Scripts in developing the formulary, with the goal of ensuring that each digital
health solution on the formulary is cost-effective, demonstrates therapeutic value, and meets
privacy and security standards. In an era where digital health solutions are rapidly expanding and
the global digital health market is expected to reach a valuation of more than $234 billion in 2023,
the Express Scripts digital health formulary seeks to: (i) provide patients with greater access to
validated digital health solutions for their chronic conditions; (ii) reduce the administrative burden
for plan sponsors in contracting with digital health companies; and (iii) provide a pathway for
digital health companies to get their products covered and to patients.
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GLOBAL DEVELOPMENTS
Europe
Multiple Advances for Electronic Health Records and Digital Health Interoperability

On February 6, 2019, the European Commission adopted Recommendation (EU) 2019/243
(available in English), which sets out a framework for the development of an EU electronic health
record exchange format to enable the secure, interoperable, and cross-border access to and
exchange of electronic health data. The framework includes a series of principles on access and
exchange of electronic health records and a set of common technical specifications, and it
encourages Member States to ensure secure access to electronic health record systems at the
national level.

On July 10, 2019, MedTech Europe—the European trade association representing the medical
technology industries—released a position paper welcoming the European Commission's
Recommendation and calling on European health authorities, payers, and procurers to “engage and
contribute to an interoperable data ecosystem™ (available in English). MedTech Europe also asked
for more public investment in digital health infrastructures, including electronic health record
systems, and requested the European Union to provide economic resources for this purpose.

On June 12, 2019 the eHealth Network—a network set up under Article 14 of Directive
2011/24/EU and composed of members of EU national authorities responsible for eHealth—
adopted a document providing "Guidelines on an interoperable eco-system for digital health and
investment programmes for a new/updated generation of digital infrastructure in Europe”
(available in English). The document aims to guide the European Commission, Member States,
and industry toward funding and purchasing choices that foster interoperability in digital health.

New Guidelines Issued Regarding Software as a Medical Device

On October 11, 2019, the European Commission issued guidelines regarding software under the
new EU Regulations on medical devices: "Guidance on Qualification and Classification of
Software in Regulation (EU) 2017/745-MDR and Regulation (EU) 2017/746-IVDR" (available
in English). The Guidance provides manufacturers with useful guidance on both qualification (i.e.,
when a software is considered to be a medical device) and classification (under which category the
product falls depending on the risk of harm the device poses to patients (Class I, lla, I1b, or I11)).
The Guidance contains a list of examples of software currently used in the health care industry that
qualify as medical devices. The document also clarifies the rules on classification laid down in the
new EU Regulations. Finally, the Guidance underlines the importance of gathering solid clinical
evidence in order to support devices' claims, as well as collecting post-market data for
demonstrating software's efficacy and safety over time.

New Guidance Available Regarding the Cybersecurity of Medical Devices

In December 2019, the Medical Device Coordination Group—a group composed of
representatives of all Member States and chaired by a representative of the European
Commission—adopted a new document "Guidance on Cybersecurity for medical devices"
(available in English). The document provides assistance to manufacturers regarding how to meet
the cybersecurity requirements of Annex | to the new Medical Device (available in English) and
In-Vitro Medical Device Regulations (available in English), to ensure that devices are protected
against unauthorized access.
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ENISA Issues a Status Report on Incident Response Development

In November 2019, the European Union Agency for Cybersecurity ("ENISA™) issued a report on
the status of EU Member States incident response development. The report provides an analysis
of the current operational Incident Response setup within the Directive on Security of Network
and Information Systems sectors, including the health care sector.
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Emerging Opportunities for Digital Health

Digital health technologies have emerged in recent
years, providing opportunities for engaging with con-
sumers and integrating with the health care system to
realize precision medicine, defined as “an evidence-
based approach to the care of people and patients
that uses innovative tools and data science to cus-
tomize disease prevention, detection, and treatment;
improve the effectiveness and quality of care; and
sustain health” [1]. These technologies—including
smartphone applications (apps), wearables (e.g., Fit-
bit, Apple Watch), and mobile-device-based tools—
can make health care and management of health and
wellness more efficient for patients and clinicians and
can support research. Digital health technologies offer
consumers, patients, and clinicians the opportunity to
interact with personal health data and the health care
system in a way that has not been available previously.

One such tool—the fertility app, Glow—helps users
who are trying to conceive track data such as ovula-
tion, physical symptoms, and diet and exercise [2].
The company has amassed a wealth of user-reported
data and, in a study, claimed that conception rates are
significantly higher in the population that frequently
uses the app compared to those who do not [3]. Other
health tracking apps increasingly popular among con-
sumers track user-reported food and water intake, as
well as steps walked, heart rate, and sleeping patterns
by pairing with a wearable device. From 2014 to 2016,
wearable use increased by 12 percent, reflecting use
by 21 percent of consumers surveyed across seven
countries [4]. One wearable company, Fitbit, increased
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its active user base from 16.9 million in 2015 to 23.2
million by the end of 2016 [5].

While tracking devices are popular with physically
active individuals, they can also be useful for helping
consumers with chronic diseases such as chronic heart
failure. For example, a wireless scale can be used to
track weight and a diet app to record nutritional infor-
mation—behaviors important for controlling their con-
dition. Other digital health apps have shown potential
to improve health care decision making and manage-
ment, including glucometers that can connect with
smartphones to help those with type 1 diabetes and
sensors that can attach to inhalers to help those with
asthma or chronic obstructive pulmonary disease. Ac-
cording to a 2016 survey, 76 percent of patients who
were instructed by a physician to use a wearable to
track lifestyle, fitness, or vitals complied with the doc-
tor's request [4].

In the field of genomics and precision health, digital
health apps are also making their way onto the mar-
ket. For instance, Helix launched a DNA app store in
July 2017 that acts as a “one stop shop” for interested
individuals to interact with their genomic data [6]. The
Scripps Translational Science Institute’s MyGeneRank
study is using genetic information received from users
of 23andMe, a personal genetics company [7], to as-
sess genetic risk for coronary heart disease and report-
ing it back through a mobile app [8]. Other research ef-
forts, such as the All of Us Research Program, hope to
use wearables and other home-health technologies to
gather environmental and personal health measure-
ments to correlate with patient outcomes data [9,10].

)
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Given the short amount of time that mobile health
apps have been on the market, and their growth to
date, it is not unreasonable to assume that these will
continue to be adopted and grow in popularity and use
among consumers as other technologies have done.
While there is potential for these technologies to im-
prove health, there are still many challenges that must
be addressed, including data quality, consumer access
to data, others' access to data, data use, and regula-
tory oversight. The direct-to-consumer (DTC) genom-
ics industry, which has been increasingly moving into
the clinical health space over the last 10 years, offers
insights for digital health technologies that may help
companies navigate integration within health systems.
Like digital apps, DTC genomics companies like 23an-
dMe and Helix have become increasingly common, of-
fering consumers the opportunity to gain insights into
their genetics. By providing health-related data with
potential applications in health care and encouraging
patients to take a more active approach in their health
decision making, these DTC genomics companies rep-
resent a new hybrid business model combining a tra-
ditional medical device and consumer product. As DTC
genomics has evolved, the industry has had to grapple
with many of the same issues now facing the digital
health industry. Here we review a number of these key
issues and identify recommendations for those work-
ing in the digital health space.

Key Challenges

Regulatory Uncertainty

The regulatory uncertainty surrounding laboratory de-
veloped tests (LDTs) created a challenge for DTC ge-
nomic testing companies from the outset. Although
LDTs first came under FDA authority in 1976, the
agency had for decades exercised “enforcement dis-
cretion,” meaning that the laboratories developing and
performing the tests were not required to obtain FDA
clearance or approval for marketing [20].

Many companies incorrectly assumed that DTC ge-
netic tests, which often were also LDTs, would fall un-
der this same enforcement discretion and thus were
unprepared for the regulatory challenges that followed
[13] (see Box 1).

A key lesson for app developers is the importance
of understanding the regulatory landscape, the dif-
ferences in regulatory categories (i.e., drugs, medical

devices, and diagnostics), and their place in it in order
to assess what requirements they will need to fulfill
to market their products and services. For example, it
may be important to understand and plan for what is
needed to demonstrate analytical and clinical validity
at the beginning of product development. The FDA's
2013 warning letter to 23andMe cited the company's
failure to provide sufficient information to support the
analytical and clinical validity of the test. This require-
ment was predicated on the FDA's assessment that
the 23andMe product was a medical device and thus
required to meet certain standards for that type of
regulatory category, which the FDA has subsequently
published.

Many parallels can be seen between the regulation
of DTC tests and mobile health tools, the latter re-
ferred to by the FDA in three categories: mobile plat-
forms, mobile apps, and mobile medical apps. Mobile
medical apps meet the definition of a device; mobile
platforms are handheld commercial off-the-shelf com-
puting platforms, such as smartphones and tablets;
and mobile apps are software applications that are run
on mobile platforms. Current FDA regulations explain
that the FDA uses a tiered approach to oversight [21].
The agency’s focus is on apps and devices that meet
the definition of a medical device and that present a
significant risk to patients if the apps or devices do not
work as intended. The FDA does not apply regulatory
requirements to mobile health tools that are not con-
sidered mobile medical apps. For example, a mobile
app may potentially be used as a tool to help an indi-
vidual be aware of their risk for skin cancer based on
an image provided by the end user; however, the app
would have to meet much stricter regulatory require-
ments if it were to diagnose that individual with skin
cancer and/or provide a treatment plan, rather than
give general guidance that the user should consult a
physician. Regulation of digital health products will ne-
cessitate developers being aware of appropriate regu-
latory pathways, specific regulatory requirements (or
lack thereof), and what will be needed to demonstrate
performance.

Consumers versus the Health Care System

Analytical Validity, Clinical Validity, and Clinical Utility

Central to the question of how DTC health informa-
tion should be integrated into health care are issues
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Box 1 | The Rise of Direct-to-Consumer Genomics

Companies began offering direct-to-consumer (DTC) genetic testing in or around the early 2000s, primarily
focusing on nutrigenetics. This drew the scrutiny of multiple federal agencies, leading to a 2006 US Govern-
ment Accountability Office (GAO) report that raised serious concerns about the accuracy and interpretation
of DTC genetic tests, as well as their lack of regulatory oversight [11]. In an effort to educate consumers
about the potential risks and benefits of purchasing at-home genetic tests, the Federal Trade Commission
(FTC) published a general guidance, drawing on information from the US Food and Drug Administration
(FDA) and Centers for Disease Control and Prevention. The guidance advised consumers to approach these
tests with skepticism and encouraged consumers to involve physicians when interpreting their test results
[12]. The guidance highlighted some of the potential concerns for consumers engaging with these tests,
including analytical and clinical validity and clinical utility. The points on which this guidance touched remain
at the forefront of the DTC genomics discussion.

By 2007, companies such as deCODE Genetics and 23andMe began to market more complex DTC genetic
tests to the public [13], sparking much interest among consumers and concern among regulators about the
potential benefits and harms. Companies provided health reports that linked a participant’s genotype results
to associations with disease risks, as well as physical and personality traits. In 2008, the DTC genetic testing
service from 23andMe was named Time's Invention of the Year [14]. The company 23andMe’s “$399 saliva
test that estimates your predisposition for more than 90 traits and conditions” was considered a pioneer of
retail genetic testing [14]. By late 2009, 23andMe and another company, Pathway Genomics, had increased
their offerings by adding information that was considered “actionable” for health care decision making, such
as testing for rare variants, drug response based on genetics (pharmacogenetics), and carrier screening [15].
New DTC genetic testing companies continued to join the field, despite ongoing regulatory scrutiny. With
minimal federal regulations from the Clinical Laboratory Improvement Amendments (CLIA) of 1988 already
in place [16], discussion regarding the best way to proceed quickly gained attention and continued for many
years.

At the same time, the clinical genetic testing regulatory system continued to face scrutiny. The Secretary's Ad-
visory Committee on Genetics, Health, and Society at the National Institutes of Health released an extensive
report related to clinical genetic testing in 2008 that pointed out major gaps in the current regulations and
offered solutions to many of these problems [17]. The GAO issued a second report in 2010. Several profes-
sional societies also issued statements in opposition to DTC genetic testing, maintaining that such testing
should be performed and interpreted by medical professionals. In 2010, the FDA held a public workshop on
DTC genetic testing to gather more feedback to inform developing policy. Some claimed that DTC tests did
not fall under the FDA's jurisdiction because they reported educational information, however, the FDA's posi-
tion was always that DTC tests were medical devices. In 2010, the FDA sent letters to several DTC genomics
companies informing them that their tests were medical devices that provided data on “genetic predisposi-
tions for important health conditions and medication sensitivities,” as well as pharmacogenetics results that
might influence drug treatment. The letters also indicated that these tests did not have FDA clearance or
approval. In 2013, the FDA issued a warning letter to 23andMe that prevented it from marketing any health-
related genetic reports until the FDA authorization was obtained. In the letter, the FDA stated that it had
given the company various opportunities to comply with feedback on analytical and clinical validity require-
ments for its tests and potential regulatory pathways to pursue, but the agency had received little indication
that the company was taking the necessary steps toward compliance [18].

Though these DTC companies have faced some practical hurdles in recent years, the field continues to learn
from early challenges and evolve. For example, 23andMe’s Bloom syndrome carrier test report was autho-
rized in 2015, and the FDA exempted this kind of device from premarket review moving forward. Alberto
Gutierrez, then director of the Office of In Vitro Diagnostics and Radiological Health at the FDA said, “The FDA
believes that in many circumstances it is not necessary for consumers to go through a licensed practitioner
to have direct access to their personal genetic information.” This was followed, in April 2017, by the FDA's
decision to authorize 23andMe to market DTC tests that provide information on an individual's genetic pre-
disposition to certain medical diseases or conditions, such as Parkinson’s disease and late-onset Alzheimer's
disease [19]. While 23andMe currently has the only DTC genetic test to receive FDA authorization, these
recent innovative regulatory decisions define a clear path to market for additional DTC genetic tests and are
likely to pave the way for expansion of the DTC genetic test industry.

SOURCE: Tung et al., “Accelerating precision health by applying the lessons learned from direct-to-consumer ge-
nomics to digital health technologies,” National Academy of Medicine.
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concerning the analytical validity, clinical validity, and
clinical utility of the information. Briefly, an assay is
analytically valid if it accurately and reproducibly mea-
sures what it intends to. A test is clinically valid if what
it measures is clinically meaningful [22]. Clinical utility
describes the ability of a test to lead to a clinical deci-
sion with evidence of improved outcomes, and for a
digital device that is manufactured to replace an exist-
ing device, this is usually measured by direct compari-
son to the current standard of care (e.g., a device that
attaches to a smartphone to measure blood oxygen
saturation versus a battery-operated pulse oximeter).
For genetic tests, which may assay up to millions of
endpoints, identifying the right studies to demonstrate
analytical and clinical validity has been challenging
[23], and showing clinical utility is an even higher bar
that generally requires more complex clinical studies.
Studies of health care professionals show that they
consistently have concerns about the quality, reliabil-
ity, and clinical utility of information from DTC genetic
testing [24].

Consumers, and oftentimes their clinicians, are gen-
erally not able to assess analytic validity and clinical
validity. Consumers might misunderstand clinical util-
ity for usefulness in a real-world context. Thus, a key
challenge for the DTC genomics and digital health in-
dustries will be navigating these differences in under-
standing of definitions around validity and utility.

Physicians use health information to help diagnose
disease and guide treatment, and generally require
the accuracy demonstrated by medical-grade devices,
which have strong analytical and clinical validity. For
example, mobile medical apps that require FDA ap-
proval, such as a Bluetooth-enabled glucometer, may
be viewed by physicians as valid tools. Consumers, on
the other hand, may see the apps as helpful to main-
tain or improve their health, manage a condition, or
gain insights into their personal habits. For these pur-
poses, their standards for the validity of the informa-
tion they receive may be less stringent. In addition, a
consumer may see personal utility in information that
has little clinical utility. For instance, a survey by Rock
Health found that 47 percent of consumers were will-
ing to pay $50 for a test to identify a predisposition for
Alzheimer's disease, which has no cure and for which
there are early clinical interventions only in clinical tri-
als, whereas only 28 percent were willing to pay the
same amount for a genetic test of metabolism [25].

This gap in clinical utility and consumer expectations
can create challenges when consumers bring informa-
tion from DTC devices and apps to their physicians.
Many consumer devices, including many wearables,
are not intended for clinical use and thus may have
performance thatis not validated. For example, a study
by Wang et al. found that wrist-based wearable devices
used for heart rate monitoring varied widely in terms
of accuracy compared to the standard chest strap elec-
trode-based monitors prescribed by many physicians
for their cardiac patients [26]. Similarly, while accel-
erometers such as those found in smartphones may
be useful to understand a “gestalt” view of activity and
serve as motivational tools for health behavior change
when coupled with apps, their accuracy as a clinical-
grade tool has not been well described. These distinc-
tions may not be clear to many consumers. In addition,
many providers, health systems, and electronic health
records are not adequately prepared to handle the
large amounts of data from DTC genetic testing or digi-
tal health apps. When patients bring this information
to their providers, they may expect answers or guid-
ance on how it should influence their health behaviors,
even though in many cases evidence-backed clinical
guidelines do not exist for this type of information. If,
instead, providers are not able to respond to the data
in a way that consumers expect, they may become
frustrated or disappointed, which may lessen the value
of the device or app to the consumer.

Accessibility and Reimbursement

When DTC genomics companies first appeared on
the market, the cost of some full screening tests ran
upwards of $2,000. Thus, the price point was well out
of range for the average consumer [15]. As technologi-
cal improvements were made, these tests decreased
in price, allowing more consumers into the market.
While the question of whether these technologies will
exacerbate health disparities is still being debated, the
need for people of all backgrounds to have access to
DTC genomics is important [27]. While much genetic
variation is shared among all people, there are im-
portant differences across populations, and having
greater diversity among consumers of genetic testing
will help the industry improve the services it provides
to everyone. Digital health technology may offer a sig-
nificant opportunity to reduce health disparities by
affordably increasing access to care. According to the
Pew Research Center, 77 percent of Americans own
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smartphones [28], creating a potential outlet to reach
a majority of consumers across socioeconomic and ur-
ban and rural divides.

A secondary concern in this area is whether and how
these technologies may be reimbursed by third-party
payers. While strictly DTC genetic tests have generally
stayed out of the reimbursement space, there are phy-
sician-prescribed genetic test providers that have taken
a hybrid approach by helping people seek reimburse-
ment but limiting an individual’s out-of-pocket expense
to a certain amount [29]. In addition, as McGuire et al.
discussed, in the early stages of DTC genetic testing,
reimbursement systems were not ready to handle the
challenges of DTC genomics, both in terms of covering
the time spent by health care providers reviewing DTC
genetic test results, and additional testing prompted
by the DTC reported results [30]. Engaging with payers
and health care providers may be of value for digital
health stakeholders, as it will set expectations for re-
quirements to fully realize the technology in a clinical
setting.

Recommendations and Guidelines from Professional
Societies

Early on, DTC genetic testing companies were met
with caution from professional societies and agencies,
including the American Society of Human Genetics
(ASHG). ASHG recognized the potential for increased
access to testing and greater consumer awareness,
but also recommended actions around transparency,
provider education, and test and laboratory quality if
the field wanted to move forward [31]. For their part,
several DTC companies indicated a willingness to work
with stakeholder groups to define a set of standards
that could help companies in the field self-regulate
[13]. As consumers increasingly showed interest in
these tests and the evidence base grew, some groups
updated their position statements in support of tests
that provided meaningful information to patients and
proper education to act on the results [32,33].

Because digital health is a relatively young field that
is rapidly evolving, gaps exist in guidance and recom-
mendations from professional societies, but key lead-
ers can be engaged to offer direction and encourage
innovation. Some groups have sought to help lead
the way by creating frameworks and resources for the
field, among them the Health App Decision Tree from
the Children’s Health Fund and an interactive tool cre-
ated by the FTC. The Health App Decision Tree starts

with the question “Is the app selling a product or thera-
py?” and then goes through a detailed decision-making
process of yes-or-no questions until an app developer
either gets to an inappropriate app or appropriate app
end point [34]. The questions pertain to privacy issues,
data settings, and the type of information provided in
the app, among others. Another tool created for app
developers is the FTC's Mobile Health Apps Interactive
Tool, which helps determine which federal laws ap-
ply to the app [35]. Based on 10 yes-or-no questions,
the tool provides information on the Health Insurance
Portability and Accountability Act (HIPAA), and FDA and
FTC laws that may or may not apply based on whether
the tool is considered a medical device and who the
intended user is. For those areas where HIPAA does not
apply, Dzau et al. recommend industry implementation
of a “digital Hippocratic oath” to help strengthen data
security and privacy for consumers using digital health
apps [9].

Data Privacy and Data Accessibility

Many digital health apps collect a large amount of pri-
vate data about their users, which presents issues of
data privacy and security. In the DTC genetics world,
the Genetic Information Nondiscrimination Act (GINA)
and HIPAA both provide privacy protections to patients.
Despite these important pieces of legislation, there are
still gaps—HIPAA may not apply to all players in the
DTC genetic testing or digital health space [35,36], and
GINA protects against discrimination in health insur-
ance and employment, but not life insurance. Being the
steward of users’ personal data may also have other
legal ramifications. In 2015, a man named Michael Usry
was taken into questioning for an open murder case
from 1996, based on a familial DNA search in a publicly
searchable database owned by the company Ancestry,
which provides customers with genealogical informa-
tion. When police found similarities between the DNA
found at the crime scene and Usry's father, Ancestry
was compelled by a court order to provide the name of
Usry's father [37].

In addition, as it is not always easy to understand
what data are being used by apps and devices, con-
sumers may not be aware of how their information
is being used. For example, GPS information could be
continuously collected in the background of the app
without a consumer realizing or remembering that it is
still happening. Even if this information on data collec-
tion was given to a consumer when downloading the
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app or activating it at baseline, the consumer still may
not understand what is being presented to them due
to digital literacy challenges [38,39]. Furthermore, data
collected from sensors connected to mobile devices
(e.g., wearables) could be analyzed to predict certain
health behaviors such as dental or smoking habits,
highlighting potential privacy and insurance implica-
tions [40].

Having access to their own data is also important for
consumers. A 2016 survey of consumers and physi-
cians showed that 92 percent of patients believe that
they should have full access to their health records,
while only 18 percent of physicians agree [4]. Similarly,
a study by Kaufman et al. showed that the top incen-
tives for people to get involved in a large cohort study
included receiving their own lab results, genetic results,
and medical records [41]. Government regulations are
starting to favor consumers in this regard. The US De-
partment of Health and Human Services states that an
individual has the right to access his or her lab results,
including the underlying data. This includes, for exam-
ple, the full underlying gene variant data generated by
a lab test that uses next generation sequencing [42].
Increasingly, consumers expect to control their own
data [43].

Recommendations and Opportunities

Based on the issues outlined above, we offer the fol-
lowing recommendations for groups developing digital
health apps and technologies:

1. Engage early with regulators and professional
societies about product development.

2. Identify and articulate well the intended use and
audience.

3. Proactively address issues of data privacy and
data accessibility.

Engage Early with Regulators and Professional
Societies about Product Development

As described above, there remains uncertainty around
regulation of apps and services in the digital health
space. It is thus valuable to engage with potential
regulators early and often in the product develop-
ment process to determine the appropriate regula-
tory path, particularly as it relates to generating data
to demonstrate the performance of the product. Fur-
thermore, companies may find value in aggregating
evidence to substantiate prior claims. Interestingly, in
July 2017, the FDA announced new steps to empower

consumers and advance digital health care [44]. As
part of the Medical Innovation Access Plan, the agency
created a new component focused on digital health
innovation that included a pre-certification for a soft-
ware pilot program. The pre-certification would allow
companies to submit less information than currently
required before marketing new digital health tools.
Still, digital health that goes beyond the FDA clas-
sification of a mobile medical app is considered the
“wild west” [45]. There is an absence of peer review
of apps in health care, which makes ascertaining the
quality of an app and verifying its claims challenging
for both consumers and health care providers. There
is a need for a peer review body or a set of guidelines
that clinicians and consumers can look to for guidance.
Peer review of apps may also be needed during the
peer review process of manuscripts that focus on digi-
tal health tools used in studies. Engaging with profes-
sional societies can help drive the development of con-
sensus guidelines that will make it easier to develop
products and drive the industry forward more quickly.

Identify and Articulate Well the Intended Use and
Audience

As consumers and health care providers have different
requirements and expectations for digital health prod-
ucts, developers should identify the intended use and
audience for their products. A product that is aimed at
clinicians, or is intended to produce information a con-
sumer would share with a clinician, may need to dem-
onstrate a certain level of analytical validity, clinical va-
lidity, and/or clinical utility before a clinician would find
the information valuable. A product that is intended
for a consumer’s educational or personal use, howev-
er, may not need the same level of validation. Identify-
ing who will use the product and how will help define
what types of studies need to be conducted to support
the product’s intended uses.

In addition, identifying who will use the product
can help define who should pay for the product and,
as appropriate, how it can be integrated in the health
system. A product aimed at consumers will involve
considerations of cost in terms of accessibility to many
consumers. There may be different considerations if
a developer wants to seek reimbursement from third-
party payers, so engagement with those groups dur-
ing the development of the product can provide guid-
ance. Given the already limited time and capacity of
health care providers, a new model for incorporating
data from digital health technologies into health care
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may be needed, both in terms of clinical workflow and
reimbursement models, which, again, may require a
multistakeholder approach from those involved in the
industry.

Proactively Address Issues of Data Privacy and Data
Accessibility

The privacy of their personal health information is im-
portant to many consumers, even early adopters [46].
Digital health app developers should proactively ad-
dress privacy challenges by evaluating potential privacy
issues and creating a consumer-centric privacy policy
that describes how customer data are used. Some com-
panies even publish a transparency report describing
government requests for data [47,48], which many see
as a welcome additional step.

To encourage open data-sharing policies and allow
consumers to be stewards of their own data, digital
health technology developers should build applica-
tion programming interfaces to make it easier for us-
ers to access and share their data with other services.
Developers should also consider working together to
come up with data standards that will make it easier
to share, exchange, and understand the data. Making
the data more portable will support the growth of the
industry as a whole. Giving consumers dynamic and
granular data-sharing, access, and privacy preference
tools could accelerate knowledge gain and benefits for
health. With the larger amount of personal health data
that will be stored, we also note that certain security
issues will need to be addressed. In the health care set-
ting, recent data breaches have highlighted some of the
vulnerabilities in data security, which may have serious
consequences for patients and consumers. Health care
organizations have indicated that they lack the infra-
structure and expertise to ensure necessary data pro-
tections for patients [40]. As new technologies come to
the market, it will be important for developers to build
security protections within their devices to thwart po-
tential cyberattacks aimed at disabling or manipulating
devices.

Future Potential

When the internet was in its infancy, many people be-
lieved it would serve as a tool for basic education and
research — or, in other words, be a simpler way to
communicate. User growth of more than 500 percent
between 2000 and 2012 has led to the evolution of an
incomprehensibly influential tool that has molded the

world — and will continue to do so [49]. Many people
believe that precision health has the potential to follow
a similar trajectory of growth, and if used effectively,
the field of digital health could be a catalyst for acceler-
ating its rise. Similar in complexity to the genome, the
internet and smartphones feature a majority of users
who are not familiar with how they work. As knowledge
and technology advance to widen the range of people
participating in genetic testing, an extremely large and
influential dataset could be created, providing new op-
portunities to accelerate research, drug development,
and precision health. The DTC genomics industry has
had to navigate the challenges of regulatory issues,
health care provider and consumer expectations, and
privacy issues. Digital health, by learning from some of
the lessons learned by DTC genomics, may be able to
more efficiently integrate with the health care system
and, in turn, help realize the full potential of precision
health for the larger population.
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Examining the Impact of Real-World Evidence on Medical Product Development

The Forum on Drug Discovery, Development, and Translation of the National Academies of Sciences, PROCEEDINGS OF A WORKSHOP SERIES
Engineering, and Medicine hosted a three-part workshop series in Washington, DC, Examining the
Impact of Real-World Evidence (RWE) on Medical Product Development. The series, which was spon-

sored by the Food and Drug Administration (FDA), was designed to examine how RWE development e e e
and uptake could enhance medical product development and evaluation. Workshop participants Sifeayel s
discussed the current system of evidence generation and its limitations, shared lessons learned from D (G Development

successful initiatives that have incorporated RWE, and explored under what conditions RWE may be
appropriate for informing medical product decision-making.

* Workshop 1 (September 2017) focused on how to align incentives to support collection and
use of RWE in health product review, payment, and delivery;

* Workshop 2 (March 2018) covered what types of real-world data (RWD) and RWE might be
appropriate for specific purposes;

* Workshop 3 (July 2018) examined approaches for operationalizing the collection and use of
RWE.

FDA Commissioner Scott Gottlieb spoke at workshop 1, acknowledging that while RWE may not
replace data from traditional clinical trials in many cases, FDA is working to develop policies to achieve
more appropriate adoption of RWE to support regulatory decision-making, including new indications for approved drugs. He
emphasized the importance of expanding the use of RWE in ways that could make medical product development more efficient
and cost effective.

STAKEHOLDER PERSPECTIVES ON RWE

Several workshop 1 participants, including representatives of payers, health care delivery systems, and patients, presented per-
spectives on incentives for using RWE. Michael Sherman, Harvard Pilgrim Health Care, highlighted that payers must find a balance
between access and affordability while driving innovation. He suggested that in cases for which a product approval may be based
on limited evidence, FDA could consider requiring manufacturers to enter into value-based agreements that tie reimbursement
to performance and encouraged post-marketing collaborations between payers and pharmaceutical companies.

Michael Horberg, Kaiser Permanente (KP) Mid-Atlantic Permanente Medical Group, and Daniel Ford, Johns Hopkins Health
System, described delivery system perspectives. They noted that delivery systems value medical practices that are supported by
quality, relevant evidence that demonstrates value to patients and discussed typical evidence generation processes.

Sharon Terry, Genetic Alliance, explained that patient-generated data and community-led registries can be an important
source of evidence generation because they focus on patient priorities and lived experiences. These data sources still require
rigorous validation, she said, but they should be integrated into clinical decision-making.

LESSONS LEARNED FROM RWE INITIATIVES

In workshop 1, Martin Gibson and Marie Kane, Northwest EHealth, presented on the Salford Lung Studies, which are two late-
phase randomized controlled trials (RCTs)—one for asthma and another for chronic obstructive pulmonary disease. These studies
were the first to evaluate the effectiveness of a pre-license medication in a real-world setting. Gibson and Kane described broad
stakeholder engagement as a reason for the success of the studies and the challenges of developing a suitable data platform.
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Richard Platt, Harvard Medical School, described Sentinel,
an FDA monitoring system that uses electronic health data to
support postmarketing medical product evaluation. He said
the distributed system allows external data partners to retain
private data prior to curation and can be used on its own or
linked to other data sources, such as electronic health records
(EHR) or patient-reported data.

Rachael Fleurence, National Evaluation System for Health
Technology Coordinating Center, described the use of RWD
and RWE for devices. She said that both are crucial for identify-
ing problems with devices early in their use, and reliable RWE
could shift device approval timelines and improve surveillance.
Fleurence highlighted that registries are used widely for devic-
es, and increased use of RWE could link existing registries to
other data sources through Coordinated Registries Networks.

BARRIERS TO IMPLEMENTATION

Brian Bradbury and Elliot Levy, Amgen Inc., described barriers
to RWD and RWE implementation, including a lack of: knowl-
edge and awareness about RWE methods; capacity and exper-
tise in relevant areas of research; and systems and processes
to support RWE collection and use. Ford and John Doyle,
IQVIA, identified RCT-RWE hybrid studies, such as pragmatic
trials and cluster randomized designs, as possible approaches
that combine advantages of both types of studies. Hui Cao,
Novartis, suggested that evidence hierarchies that currently
exist in medical product research could be revisited.

Marcus Wilson, HealthCore, described defragmentation
as a process to integrate data sources from distinct stakehold-
ers to provide a more complete understanding of a medical
product. The process still requires data security and protec-
tion of patient privacy and business interests, he said. Anna
McCollister-Slipp, Scripps Translational Science Institute, high-
lighted the lack of urgency around RWE adoption as problem-
atic, as well as the hesitancy to include nontraditional stake-
holders in research.

Addressing current evidence generation practices, Robert
Califf, Verily Life Sciences, said the system should move past
precision to focus on reliability. Potential steps to meet this
goal could include the creation of a learning health care sys-
tem, the use of quality by design, the use of automation, and
operating from basic principles of scientific research, he said.
Reflecting on the use of observational data networks, Patrick
Ryan, Janssen, said analyses that incorporate the entire breadth
of data on a particular set of medical products, including those
that are not statistically significant, could be used to reflect a
fuller understanding of those medical products.

Rory Collins, University of Oxford, focused on methods to
improve RCTs, rather than replacing them with observational
studies. He said RCTs are good at discovering moderate treat-
ment effects and, while costly, innovative RCT designs that
do not create data verification burdens could be useful. Janet
Woodcock, FDA, ended the session by stating that the current
evidence generation system needs improvement, and said
opportunities to test product effectiveness using RWE could
arise. She mentioned master protocols as a particular platform
of interest.

PRACTICAL APPROACHES AND APPLICATIONS

While workshop 1 explored broad issues concerning barriers
and incentives for the use of RWE, workshops 2 and 3 focused
on specific questions stakeholders might consider before in-
corporating RWD and RWE into a study design. Questions
raised at the first two workshops were incorporated into draft
“decision aids” used to prompt further discussion during
workshop 3 (to access the decision aids as well as additional
details and resources, please see the Proceedings). The “de-
cision aid” topics included: (1) when a particular real-world
data element may be fit to assess study eligibility, treatment
exposure, or outcomes; (2) some considerations for con-
trolling or restricting treatment quality in real-world trials; (3)
some considerations for obscuring intervention allocation in
trials to generate RWE; and (4) potential ways to assess and
minimize bias in observational comparisons.

WHEN CAN DECISION MAKERS RELY ON RWD?

At workshop 2, Adrian Hernandez, Duke University School of
Medicine, presented on a suite of trials that compared nov-
el oral anticoagulants (NOACs) to warfarin, all of which uti-
lized RWD and consistently showed that NOACs were non-
inferior to warfarin. He posed a question for consideration:
What questions characterize the use of a RWD source and sig-
nal reliability before a study is performed? At workshop 3, Jeff
Allen, Friends of Cancer Research, presented a pilot project that
investigated the performance of real-world endpoints among
patients with advanced non-small cell lung cancer treated
with immune checkpoint inhibitors. The project demonstrat-
ed that several real-world endpoints correlate well with overall
survival, and showed that overall survival rates assessed from
EHR and claims data were consistent with rates observed in
clinical trials.

Aylin Altan, OptumLabs, and Brande Yaist, Eli Lilly and
Company, said the usefulness of an RWD source for a particu-
lar question depends on whether it has information about the
correct population, exposures, and outcomes, and Platt, Yaist,
and Robert Temple, FDA, pointed out that it may be accept-
able for RWD to be of different quality for different purposes.
Cao said accuracy of RWD varies predictably, depending on
factors such as treatment administration methods or the out-
comes being measured.

Hernandez and Gregory Simon, KP Washington Health
Research Institute, said provider-collected RWD is affected by
the experience of the provider and the incentives they face.
Luca Foschini, Evidation Health, spoke about patient-gen-
erated health data, noting that—while it has the potential to
answer difficult research questions, facilitate broader partici-
pation in health research, and incorporate new data sources—
it is subject to different biases than data collected within the
health care system.

Other workshop participants discussed issues with the
analysis of RWD. Marc Berger, formerly of Pfizer, Grazyna
Lieberman, Genentech, and Deven McGraw, Ciitizen, ex-
plained that data sharing and transparency in data curation
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reliable RWE. Many speakers—including Altan, Berger, Foschi-
ni, Simon, and Yaist—pointed out that RWD can be affected
by systemic and random bias, and are unique from other data
sources because of their dynamic nature. Researchers can
compensate for these, they said, but should remain mindful of
potential biases when using RWD.

WHEN CAN DECISION MAKERS RELY ON
REAL-WORLD TREATMENT?

At workshop 2, Ira Katz, Department of Veterans Affairs (VA),
presented on a VA RCT that tested lithium as a treatment for
suicide prevention. Katz described key questions that emerged
through the study design process and emphasized the difficul-
ty of making the trial generalizable to patients in real-world
settings. At workshop 3, Larry Alphs, Newron Pharmaceuti-
cals, presented on two real-world mental health trials (PRIDE
and INTERCEPT) that grappled with issues around patient re-
striction to answer questions about safety and efficacy.

Horberg, Katz, Califf, and Alex London of Carnegie Mel-
lon University discussed inclusion and exclusion criteria in re-
al-world treatment settings. They argued for broadening these
criteria in real-world trials to include patients with comor-
bidities or concomitant treatments to make the results more
generalizable.

Alphs and Peter Stein, FDA, discussed a potential ap-
proach to choosing real-world trial restrictions, explaining
that researchers could consider a specific set of categories that
answer the research question while still honoring participant
safety and autonomy. W. Benjamin Nowell, Global Healthy Liv-
ing Foundation, also expressed concern about the role of pa-
tients in real-world research, emphasizing that research driven
by patients is iterative and considers patients’ needs, priorities,
and experiences. The purpose of patient-centered research, he
said, is to enable patients to make informed decisions about
their own health care.

Alphs, Katz, and Simon described the role of researchers
in real-world trials: Maintaining the trial protocol and caring
for the well-being of patients, with patient safety coming first
should the two conflict. Califf, Hernandez, and Stein discussed
the importance, and ethical obligation, of setting a standard of
care for the control arm of a study when designing real-world
trials despite variance in standards across regions and treat-
ment settings.

WHEN CAN DECISION MAKERS LEARN FROM
REAL-WORLD TREATMENT ASSIGNMENT?

At workshop 3, Orly Vardeny, University of Minnesota and
Minneapolis VA Center for Chronic Disease Outcomes Re-
search, presented on the INVESTED trial, which explored the
connection between influenza vaccine and cardiovascular
events. The research team hypothesized that a stronger im-
mune response from the high dose flu vaccine would translate
into better cardiovascular outcomes, she said; they conducted
a double-blinded RCT to prevent systematic biases inevitable
in dispensing standard versus high dose vaccines.

Jonathan Watanabe, University of California, San Diego,

and London said that blinding allows researchers to study the 144

effects of an intervention without influence from patients or
providers, but it may not always be appropriate or feasible.
Cathy Critchlow of Amgen, Nancy Dreyer of IQVIA, and James
Smith of FDA noted that the appropriateness of blinding is de-
pendent on a study’s context and uncertainties. These uncer-
tainties, said London, can be classified along two axes: ensem-
ble efficacy and utilization factors. The interaction of these two
categories can indicate the appropriateness of blinding.

Dreyer, Rob Reynolds of Pfizer, and Smith explained that
decisions on blinding can also be influenced by practical con-
siderations, such as study cost, feasibility of masking treatment
delivery, patient preferences, and data generalizability. Critch-
low, Dreyer, John Graham of GlaxoSmithKline, and Smith said
patient and provider bias can be difficult to predict, and it may
not affect all outcomes, such as quantitative lab readings or
all-cause mortality. However, it can affect subjective outcomes
or have other effects such as in ascertainment or treatment
bias, they said.

GAINING CONFIDENCE IN OBSERVATIONAL
COMPARISIONS

At workshop 2, Sebastian Schneeweiss, Harvard Medical
School, presented on the use of health care databases for reg-
ulatory decision-making. He explained that confidence in da-
tabase studies is related to the type of effect being detected,
and said such studies may be more appropriate when the out-
comes and exposures are measurable in the data, when two
active treatments are compared, and when the key confound-
ing variables are measurable.

Atworkshop 3, Hector Izurieta, FDA, described a real-world
study using Medicare Part D beneficiary data on the effective-
ness and duration of effectiveness of the shingles vaccine,
Zostavax. lzurieta explained how the investigators achieved
balance between the treatment cohorts using propensity score
matching and Mahalanobis metric matching, and conducted a
secondary analysis to account for unmeasured confounders.

During discussion, David Madigan, Columbia University,
noted that in disease areas for which RCTs are impractical, ev-
idence from observational studies could be particularly valu-
able. Several participants discussed methods for observational
data analysis. Madigan and Schneeweiss said transparent re-
porting of study methods can promote replicability and aid in
assessing study validity. Speaking to a project currently under
way, Jessica Franklin, Harvard Medical School, said replication
of RCT results using observational databases can help estab-
lish criteria for conducting such studies more widely. Look-
ing toward the future of observational studies, Javier Jiminez,
Sanofi, and Mark van der Laan, University of California, Berke-
ley, said new methods such as predictive analytics and ma-
chine learning can potentially be used to predict outcomes for
individual patients or identify associations.

Nicole Gormley and Heng Li, FDA, spoke from a regulato-
ry perspective. Gormley described FDA’s regulatory criteria for
evaluating observational evidence: the data’s relevance for a
product’s proposed indication; well-assessed outcomes; meth-
ods used to minimize bias; and rigorous statistical analysis.



REGULATORY PERSPECTIVES AND FUTURE
OPPORTUNITIES

At workshop 3, Pall Jonsson, National Center for Health and
Care Excellence (UK), described the Innovative Medicines Ini-
tiative GetReal project, explaining that health technology as-
sessment relies on understanding the comparative effective-
ness of new treatments. He noted that RWE can play a role in
supplementing evidence from RCTs.

Komathi Stem, monARC Bionetworks, noted that using
RWE can potentially engage patients more deeply in their care
and in research, particularly with increases in usage of mo-
bile technology and patients’ ability to aggregate and store
data about their own health. She explained that supporting
a patient-centric shift in health research and care may require
rethinking legislation, incentives, and partnerships. Levy de-
scribed how new methods—such as adaptive designs, plat-
form trials, or greater incorporation of RWE—have the poten-
tial to significantly reduce cost and time investments required
for medical product development.

Concluding the workshop series, a panel of FDA leaders re-
acted to the workshop discussions. Jacqueline Corrigan-Curay,
FDA Center for Drug Evaluation and Research (CDER), said
CDER routinely uses RWE to support postmarketing safety
evaluation and, to a limited extent, to evaluate effectiveness
in certain rare diseases (including oncology). She emphasized
that CDER’s experience with Sentinel and other demonstration

projects can inform policies going forward. Steve Anderson,
FDA Center for Biologics Evaluation and Research (CBER), not-
ed that CBER uses population-based data systems to conduct
RWE safety and effectiveness studies, including the Biologics
Effectiveness and Safety Sentinel Initiative to expand CBER’s ca-
pabilities by providing data infrastructure, tools, and expertise.

Last, Jeffrey Shuren, FDA Center for Devices and Radiolog-
ical Health (CDRH), said CDRH uses RWE in its product eval-
uations in pre- and postmarket decisions; it has started two
programs combining registry data with other RWD to address
regulatory needs. CDRH’s 2017 RWE guidance, Shuren said,
highlighted relevance and reliability as two critical consider-
ations in evaluating RWE. All three FDA representatives said
their Centers are interested in continuing to use RWE, but
acknowledged that evidence used for regulatory purposes is
necessarily different.

Mark McClellan, Duke-Margolis Center for Health Policy,
touched on the idea of fit-for-purpose RWE in an environment
with more readily available tools. He noted that clarity and
specificity about when RWE is appropriate—and which data
sources and methods are appropriate to address different types
of questions—is the key to developing a framework for gener-
ating relevant evidence. Simon explained that, ultimately, de-
livering better health care to patients is the goal of using RWE.

DISCLAIMER: This Workshop Highlights was prepared by Erin Hammers Forstag, Benjamin Kahn, Amanda Wagner Gee, and
Carolyn Shore as a factual summary of what occurred at the workshop. The statements made are those of the rapporteur
or individual workshop participants and do not necessarily represent the views of all workshop participants; the planning
committee; or the National Academies of Sciences, Engineering, and Medicine.
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Virtual Clinical Trials: Challenges and Opportunities

The Forum on Drug Discovery, Development, and Translation of the National Academies of Sciences, PROCEEDINGS OF A WORKSHOP
Engineering, and Medicine hosted a workshop in Washington, DC, Virtual Clinical Trials: Challenges g :

and Opportunities, held November 28-29, 2018. This workshop examined the current clinical trials
infrastructure and potential opportunities for supporting the practical implementation of virtual
clinical trials. Workshop participants discussed inefficiencies of the current clinical trial enterprise;
the boundaries of what might be considered a virtual clinical trial; the opportunities to expand ac-
cess for patients; perspectives of using digital health technologies in clinical care and observational
and interventional studies; the impact of using digital health technologies on access and equity to
clinical trials; the policy landscape governing clinical trials; and possible opportunities for future
action.

DEFINING ‘VIRTUAL CLINICAL TRIALS’

Virtual Clinical Trials

‘ CHALLENGES AND OPPORTUNITIES

Workshop participants used a variety of terms to refer to clinical trials in which all or part of the

study incorporates digital health technologies and enables remote participation. Clay Johnston, Dell Medical School—The
University of Texas at Austin, observed that an adequate umbrella term is not easy to identify. He commented that terms such as
“decentralized,” “remote,” or “site—agnostic” may only describe some types of trials that incorporate digital health technologies.
Ray Dorsey, University of Rochester, added that many study activities still require a centralized location. Additional terms referred
to by workshop participants include “direct-to-participant,” “location—variable,” and “mobile.” Each of these terms highlights
different aspects of how digital health technologies may be incorporated into study design.

OPPORTUNITIES TO IMPROVE CLINICAL TRIALS

According to Dorsey, clinical trials, as currently conducted, are expensive, inefficient, and inaccessible. Furthermore, he added
that they fail to represent the patient population adequately. He envisions that in the near term, clinical trials could be conducted
centrally (at one trial site), at multiple individual trial sites, and/or remotely (via digital health technologies), depending on the
type of data needed. Dorsey provided examples that illustrate how virtual clinical trials can increase participant access and geo-
graphic representation, improve participant experience, and enhance recruitment of patient subpopulations.

Donna Cryer, Global Liver Institute, stated that a quality clinical trial is one that generates the minimal amount of credi-
ble, replicable, and evaluable data needed to answer meaningful questions with the least time and cost burden on participants.
She expressed hope that as more virtual clinical trials are conducted and patient communities are better engaged, the quality
of endpoints and outcome measurements will improve such that trials can more effectively address questions about a patient’s
quality of life. Cryer emphasized that these types of trials offer opportunities to foster ongoing relationships with participants,
better understand clinical conditions longitudinally, and generate new and relevant research questions.

Craig Lipset, Pfizer, Inc., described a 2011 study conducted by Pfizer, REMOTE, which was designed to validate available
virtual technologies by repeating a standard brick-and-mortar clinical trial that Pfizer had conducted for Detrol, a drug used to
treat overactive bladder. REMOTE was discontinued due to recruitment issues, but it successfully demonstrated the ability of re-
searchers to remotely screen patients, seek informed consent, monitor safety, and capture required data to demonstrate safety
and efficacy. According to Lipset, the study did not operate at the limit of available technology at the time it was conducted, nor
did it require new legislation, safe harbor, or guidance from regulators. Lipset emphasized that moving beyond such pilot pro-
grams may require a change in will and culture by stakeholders across the clinical trial enterprise.
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LESSONS LEARNED FROM VIRTUAL CLINICAL
TRIALS

Jenny Bollyky, Livongo, described three challenges associated
with remote management of chronic conditions: (1) attribut-
ing digitally collected data to the individual under observa-
tion, (2) providing meaningful data for the participant being
monitored (e.g., instant feedback on blood glucose levels for
people living with diabetes), and (3) coordinating care for peo-
ple with chronic conditions. Leveraging real-world evidence in
a research setting may be complicated by the Hawthorne
effect—the alteration of behavior by the subjects of a study due
to their awareness of being observed, noted Bollyky.

Joshua Denny, Vanderbilt University Medical Center, dis-
cussed how longitudinal research on large cohorts that ag-
gregates data from a variety of sources (e.g. electronic health
records, participant provided data, collected biospecimens,
claims data), can facilitate trials. He focused on three ex-
amples: All of Us,' U.K. Biobank,? and Project Baseline.? The
combination of data that emerge from cohort studies, noted
Denny, could be leveraged to conduct a wide range of clinical
research activities, including the identification of new disease
targets and pharmacogenomic discovery, testing for adverse
drug events, and identifying disease subtypes. Furthermore,
Denny highlighted that large, diverse observational cohort
studies can enable direct and targeted recruitment of diverse
populations, in addition to more intelligent trial design.

Steven Cummings, San Francisco Coordinating Center,
discussed what he termed “direct-to-participant” (D2P) trials,
which he defined as having no physical clinical sites, and thus
no geographic limits on recruitment. He argued that the term
‘D2P trials’ more aptly captures the importance of building
relationships with participants and that this approach can sim-
plify trial design (i.e., improve enrollment, screening, data col-
lection and reporting, etc.), thus increasing the likelihood of
trial success. He added that recruitment from trusted commu-
nities and providers could lend D2P trials more success than
solely web-based recruitment.

Kimberly Hawkins, Sanofi Genzyme, highlighted oppor-
tunities that decentralized trials provide, including increased
geographic flexibility and reduced burden for participants;
continuous data collection for faster and more accurate de-
tection of health signals; and improved long-term follow-up
with participants. Hawkins also listed challenges that decen-
tralized trials can pose, such as operational (e.g., integration of
emerging types of data and maintaining a temperature-con-
trolled supply chain), regulatory (e.g., endpoint and digi-
tal health technology validation), and change management
(e.g., integration of decentralized trials into medical product
development).

Wendy Weber, National Center for Complementary and
Integrative Health, discussed the National Institutes of Health’s
Health Care Systems Research Collaboratory, and its role in
supporting embedded clinical trials, or research that engag-
es health care delivery systems as partners. Such trials can

leverage electronic health records (EHRs), which can provide
a cost-effective source of information collected during routine
care. However, as Weber mentioned, EHRs may not always
reflect the schedule of data collection necessary for a clinical
trial nor include the type of data needed. As such, embedded
pragmatic trials may work best when the outcome of interest
is captured in the EHR and when the trial itself does not place
undue burden on patients and clinicians during routine health
care visits, noted Weber.

Noah Craft, Science 37, emphasized that successful D2P
trial design should fit participant needs. Adrian Hernandez,
Duke University School of Medicine, added that the field needs
to develop the science of patient engagement to better under-
stand patient preferences and participation in clinical research.
Jon White, Office of The National Coordinator for Health Infor-
mation Technology (ONC), stated that ONC and the Centers
for Medicare & Medicaid Services have issued proposed rules
for how the federal government will regulate health informa-
tion systems to make EHR data more readily available through
application program interfaces. Josh Rose, IQVIA, said that
flexibility is key when interacting with participants—some clin-
ical trial participants want more in-person interaction while
others prefer to use just the technology.

ACCESS AND EQUITY

Silas Buchanan, Institute of eHealth Equity, emphasized the
importance of engaging directly with community members
when deploying digital interventions. Building a network of
partnerships and leveraging trust brokers within the commu-
nity can be instrumental in the success of public health cam-
paigns. Using his social impact firm, Institute for eHealth Equi-
ty, as an example, Buchanan provided key lessons learned for
how virtual clinical trials can be designed and positioned to in-
crease inclusion of underrepresented populations and how to
address the unique socioeconomic factors those populations
face, if specific trial design considerations call for it. A strong
ethos of community engagement is key to the introduction of
digital health tools, emphasized Buchanan, as is acknowledge-
ment of histories of discrimination and transparent discussion
about power and responsibilities.

Sherine El-Toukhy, National Institute on Minority Health
and Health Disparities, discussed the inclusion of minority
populations in research and commented on barriers to par-
ticipation, such as skepticism about the researchers and val-
ue of the study. She suggested that while health information
technology may reduce health inequities, it can unintention-
ally exacerbate existing disparities or create new ones. She
emphasized that understanding and prioritizing the target
population’s needs, values, and preferences is critical for de-
signing culturally and linguistically appropriate clinical trial
recruitment material.

Will Mcintyre, The Michael |. Fox Foundation, pointed
out that trial participation often reflects the urban—rural di-
vide. He then discussed how synergy between the research
and technology sectors could equip study participants with

Available at https://www.joinallofus.org/en/about (accessed April 16, 2019).
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technologies that will better enable those living in rural areas
to connect with studies.

Sally Okun, PatientsLikeMe, commented on how virtual
clinical trials can use unique designs to create new insights
and increase participation rates of those who are typically
excluded from clinical trials. ALSUntangled, a research con-
sortium, seeks to understand the efficacy of alternative and
off-label treatments for amyotrophic lateral sclerosis (ALS) and
engages in patient—driven inquiry. In one its studies, ALSUn-
tangled expanded its inclusion criteria such that those with
more advanced forms of ALS could participate.

Participant engagement could be improved by return-
ing individual research results to participants—a trend that
reflects a broader cultural shift from paternalism to partner-
ship in medicine and research, proposed Kathy Hudson,
People-Centered Research Foundation. However, doing so
may need to be balanced with the risk of damaging the in-
tegrity of the study, added Okun and El-Toukhy. Buchanan
highlighted the importance of creating a trustworthy mecha-
nism for returning data to participants. Hudson added that for
widespread culture in the pharmaceutical industry to change,
there needs to be evidence that involving participants im-
proves outcomes and a continued expectation from the U.S.
Food and Drug Administration (FDA) that clinical trials focus
on patient partnership.

POLICY CONSIDERATIONS

Leonard Sacks, FDA, highlighted the opportunities to use
mobile technologies and engage local providers to promote
inclusivity and convenience for trial participants, and for gath-
ering information on real-world patient experience. These
opportunities will require policies and regulations to address
patient safety, privacy, the integrity of the data produced by
remote technologies, and the responsibilities of the investiga-
tors involved in technology—enabled decentralized trials. En-
suring participant safety in a decentralized trial is no different
than in a traditional clinical trial, said Sacks. However, he noted
that digital health technologies are creating opportunities for
greater safety oversight by replacing episodic monitoring with
continuous monitoring of variables, such as blood glucose lev-
els, heart rate, and rhythm. At the same time, he cautioned, it
is important to ensure that technology failure does not jeop-
ardize participant safety or the integrity of the data and that
technical support is available for when a digital health tech-
nology malfunctions.

Leanne Madre, Clinical Trials Transformation Initiative
(CTTI), described lessons learned from CTTl’s Decentralized
Clinical Trials Project. CTTI has identified multiple benefits to
decentralized trials, such as faster trial participant recruitment;
improved retention; greater control, convenience, and comfort
for participants; and increased participant diversity. To achieve
these benefits, CTTl issued six categories of recommendations:
(1) Engage early with FDA and those who have already con-
ducted a decentralized trial can be important for developing
the trial protocol and trial success; (2) Maintain licensed inves-
tigators in each active trial site or use investigators licensed in

governing physician licensure; (3) Use mobile health care pro-
viders to facilitate participant protocol contributions, such as
blood draws or administration of the investigational product,
as a decentralized trial can cover a wide geographic area; (4)
Review laws governing D2P shipment of drugs as these laws
can also vary from state to state; (5) Consider differences be-
tween a standard and decentralized trial when delegating re-
sponsibilities to investigators, sub-investigators, and local pro-
viders; (6) Ensure that trial participants and trial staff are aware
of procedures related to adverse events.

Deven McGraw, Ciitizen Corporation, discussed the im-
portance of protecting participant data and privacy, as well
as policy mechanisms in the United States and Europe that
govern these protections. Privacy, McGraw stated, is about
enabling appropriate data use with good data stewardship
that engenders trust among trial participants. She added that
investigators must make and keep commitments to trial partic-
ipants concerning how their data will be used and disclosed,
and be transparent about how data will be used. In the con-
text of a virtual or decentralized trial, the Health Insurance
Portability and Accountability Act (HIPAA) covers identifiable
data collected—even from a mobile health technology—if the
investigator is a HIPAA-covered entity. However, it is less clear
if HIPAA covers data that reside in consumer mobile devices.
McGraw mentioned that recent developments in privacy law,
such as the California Consumer Protection Act and the Euro-
pean Union’s Global Data Protection Rule, are now requiring
more explicit forms of consent for data reuse.

Matthew MclIntyre, 23andMe, discussed policy and reg-
ulatory challenges in developing informed consent processes
for remote studies that involve passive data collection—data
collection in which information is automatically gathered, of-
ten without the awareness of the research participant. While
privacy considerations for passive data collection primarily
draw on HIPAA, participants may have concerns that go be-
yond the risk of de-identification, such as who will have access
to their data and how their data will be used. This is true for
paradata—additional data collected along with passive data,
such as time stamps and geolocation. As the quantity of para-
data collected makes de-identification a challenge, McIntyre
said that one solution is data minimization. However, this
comes at the expense of limiting quality control and oversight
of protocol compliance. Mcintyre indicated that the incorpo-
ration of passive data in trials may require new policies for
mixed uses and sources of data, in addition to dynamic ways
to acquire informed consent and inform participants about
data collection

REFLECTIONS ON THE WORKSHOP AND
POTENTIAL FUTURE DIRECTIONS

Concluding the workshop, participants reviewed key themes
discussed during the workshop. Johnston emphasized the im-
portance of using human-centered design and seeking input
from participants early in the trial design process. Kelly Simcox,
Sanofi, pointed out the need to have more visibility regarding
current virtual clinical trials so that lessons learned are shared

multiple states, given state-by-state variations in regulations 148 and D2P trials can move beyond the pilot-stage and towards
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mainstream clinical trial methodology. Rebecca Pentz, Emory
University School of Medicine, and Hudson emphasized the
importance of relaxing exclusion criteria to increase equitable
participation in trials. They also highlighted the importance of
community engagement, and how returning data to commu-
nity members in real time can empower participants and help
build trust in the trial process. John Wilbanks, Sage Bionet-
works, noted the disconnect between the technology needed
to support virtual clinical trials and the current policy envi-
ronment. He emphasized the importance of understanding
consent as an ongoing relationship—not a one-time transac-
tion—especially when digital health technologies are passively
collecting data.

Johnston emphasized the need for development of an on-
tology to describe the variety of studies occurring in the virtu-
al clinical trial space. While regulatory issues were raised as a
barrier to conducting virtual clinical trials, Hudson suggested
that policy analysis and advocacy could facilitate implementa-
tion of reform. Craft went further to propose that the federal
government could carve out an exemption to state laws for
telemedicine-based clinical research. Johnston and Cummings
mentioned that virtual clinical trials may require greater inclu-
sion of participants in study design, governance, as well as
drug safety monitoring boards. Resources that provide guid-
ance for meaningful engagement and bidirectional training
for a study team will also be important to engage participants

meaningfully, noted Hudson.

Virtual clinical trials are not a “one-size-fits-all” model and
only a fraction of clinical trials might be considered fully vir-
tual. In the near term, Hawkins suggested that digital health
technologies may only be applicable in a few settings, such
as disease areas for which telemedicine is already an accept-
ed practice or for evaluating medical products with a known
safety profile and endpoints that can be measured remotely.
However, in the longer term, Lipset and Dorsey highlighted
that virtual clinical trials have the potential to streamline the
process of drug development and may offer new opportuni-
ties for a modern, more patient-centric clinical trial enterprise.

DISCLAIMER: This Workshop Highlights was prepared by Eeshan Khandekar and Carolyn Shore as a factual summary of what
occurred at the workshop. The statements made are those of the rapporteur or individual workshop participants and do not
necessarily represent the views of all workshop participants; the planning committee; or the National Academies of Sciences,

Engineering, and Medicine.

SPONSORS: This workshop was supported by Abbvie Inc.; American Society for Microbiology; Amgen Inc.; Association of
American Medical Colleges; AstraZeneca; Burroughs Wellcome Fund; Critical Path Institute; Eli Lilly and Company; FasterCures;
Foundation for the National Institutes of Health; Friends of Cancer Research; GlaxoSmithKline; Johnson & Johnson; Merck &
Co.; National Institutes of Health: National Cancer Institute, National Center for Advancing Translational Sciences, National
Institute of Allergy and Infectious Diseases, National Institute of Mental Health, National Institute of Neurological Disorders
and Stroke, Office of Science Policy; New England Journal of Medicine; Pfizer Inc.; Sanofi; Takeda Pharmaceuticals; and U.S.
Food and Drug Administration: Center for Drug Evaluation and Research, Office of the Commissioner.

Virtual Clinical Trials: Challenges and Opportunities: Proceedings of a Workshop can be purchased or downloaded from the
National Academies Press, 500 Fifth Street, NW, Washington, DC 20001; (800) 624-6242; www.nap.edu.

For more information, visit www.nationalacademies.org/VirtualClinicalTrialsPW.
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Social Determinants of Health in Oncology

Workshop Hosted by the National Cancer Policy Forum
In Collaboration with the Board on Mathematical Sciences and Analytics

October 28-29, 2019

NAS Lecture Room

2101 Constitution Ave., N.W.
Woashington, D.C. 20418

Statement of Task

An ad hoc committee will plan and host a 1.5-day public workshop that will examine health equity and the
social determinants of health in the context of cancer, and consider opportunities to effectively use big
data and convergence science to improve health outcomes and reduce disparities. The workshop will
feature invited presentations and panel discussions on topics that may include:

o The impact of social determinants of health on cancer incidence and outcomes
e Ways to capture precise and meaningful data on social determinants of health in oncology (social omics)
e Potential biomarkers of environmental and social factors that may affect cancer incidence and
care outcomes (e.g., microbiome, exposome, and epigenome)
o The potential advantages and limitations of various methods for identifying geographic populations
and communities at risk (e.g., state, county, zip code, city ward, or congressional district)
e Potential opportunities to reduce bias in capturing big data and applying computational methods

to inform cancer care

e Examples of how community engagement and big data could be used to inform policies to

promote health equity in oncology

The planning committee will develop the agenda for the workshop sessions, select and invite speakers and
discussants, and moderate the discussions. A proceedings of the presentations and discussions at the
workshop will be prepared by a designated rapporteur in accordance with institutional guidelines.

Planning Committee

Robert A. Winn, MD (Chair)

Professor of Medicine

Division of Pulmonary, Critical Care, Sleep, and Allergy
University of lllinois at Chicago

Associate Vice Chancellor, Community-Based Practice
Director, University of lllinois Cancer Center

University of lllinois Hospital & Health Sciences System

Garnet Anderson, PhD

Senior Vice President and Director

Public Health Sciences Division

Fred Hutchinson Cancer Research Center
Affiliate Professor, Department of Biostatistics
University of Washington

Kenneth Anderson, MD

Kraft Family Professor of Medicine

American Cancer Society Clinical Research Director
Jerome Lipper Multiple Myeloma Center

Harvard Medical School

Dana-Farber Cancer Institute
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Karen Basen-Engquist, PhD, MPH

Annie Laurie Howard Research

Distinguished Professor

Director, Center for Energy Balance in Cancer Prevention
& Survivorship

Professor of Behavioral Sciences

The University of Texas MD Anderson Cancer Center

Ronald Kline, MD, FAAP

Medical Officer, Patient Care Models Group
Center for Medicare and Medicaid Innovation
Centers for Medicare & Medicaid Services

Otis Brawley, MD, MACP, FASCO, FACE
Bloomberg Distinguished Professor
Department of Epidemiology

Bloomberg School of Public Health
Department of Oncology

School of Medicine

Johns Hopkins University

Rebecca Miksad, MD
Senior Medical Director
Flatiron Health

Nicole F. Dowling, PhD

Associate Director for Science

Division of Cancer Prevention and Control
Centers for Disease Control and Prevention

Timothy Rebbeck, PhD

Director, Center for Global Cancer Prevention
Vincent L. Gregory Professor of Cancer Prevention
Harvard T.H. Chan School of Public Health
Professor, Division of Population Sciences
Dana-Farber Cancer Institute

Stanton L. Gerson, MD

Director, Case Comprehensive Cancer Center

Professor of Hematological Oncology

Case Western Reserve University

Director, University Hospitals Seidman
Cancer Center

Victoria Seewaldt, MD

Professor and Chair, Department of Population Science
City of Hope

Associate Director, Cancer Control

City of Hope Comprehensive Cancer Center

Lori Hoffman Hogg, MS, RN, CNS, AOCN®
VHA National Program Manager, Prevention Policy
National Center for Health Promotion
and Disease Prevention
National Oncology Clinical Advisor
Office of Nursing Services
Department of Veterans Affairs

George J. Weiner, MD

C.E. Block Chair of Cancer Research

Professor of Internal Medicine

Director, Holden Comprehensive Cancer Center
University of lowa

Nicholas Horton, ScD
Beitzel Professor of Technology and Society
Amherst College

Robin Yabroff, PhD

Senior Scientific Director
Health Services Research
American Cancer Society
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Opportunities and Challenges for Using Digital Health Applications

in Oncology
A National Cancer Policy Forum Workshop
In Collaboration with the Forum on Cyber Resilience
July 13-14, 2020
Keck 100
500 Fifth St., N.W.
Woashington, D.C. 20001

Statement of Task

A planning committee of the National Academies of Sciences, Engineering, and Medicine will plan and host
a 1.5-day public workshop that will examine opportunities and challenges, including validation, data
security, and patient privacy issues, for the use of digital health applications in oncology. The workshop will
feature invited presentations and panel discussions on topics such as:

e An overview of existing and emerging digital health applications and the potential benefits and
risks associated with their use

e Strategies to validate digital health applications, regulate their use, and mitigate potential risks
associated with their use

e Strategies for protecting the security of data collected using digital health applications

e Patient privacy considerations, especially given the potential for data linkage with data from
other sources of personal information

e Best practices and principles for access to and consent for the use of patient data generated by
digital health applications

o Ways to integrate patient-generated health data into EHRs and clinical workflow

e Lessons learned from other industries and/or countries that could inform digital health application
development and use.

The planning committee will develop the agenda for the workshop sessions, select and invite speakers and
discussants, and moderate the discussions. A proceedings of the presentations and discussions at the
workshop will be prepared by a designated rapporteur in accordance with institutional guidelines.

Planning Committee

Lawrence N. Shulman, MD, FACP, FASCO (Chair)
Deputy Director, Clinical Services

Director, Center for Global Cancer Medicine
Abramson Cancer Center

Professor of Medicine

University of Pennsylvania

Karen Basen-Engquist, PhD, MPH

Annie Laurie Howard Research Distinguished Professor
Director, Center for Energy Balance in Cancer Prevention
& Survivorship

Professor of Behavioral Science

The University of Texas MD Anderson Cancer Center

Cathy Bradley, PhD
Associate Director, Cancer Prevention and Control
University of Colorado Cancer Center
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Deborah Estrin, PhD
Association Dean

Robert V. Tishman '37 Professor
Cornell Tech

Mia Levy, MD, PhD

Director, Rush University Cancer Center
Associate Professor of Medicine
Division of Hematology and Oncology
System Vice President, Cancer Services
Rush System for Health

J. Leonard Lichtenfeld, MD, MACP
Deputy Chief Medical Officer
American Cancer Society

Bradley Malin, PhD

Vice Chair for Research Affairs in Biomedical Informatics

Professor of Biomedical Informatics, Biostatistics &
Computer Science

Co-Director, Center for Genetic Privacy & Identity in
Community Settings

Co-Director, Health Data Science Center

Director, Health Information Privacy Laboratory

Vanderbilt University

Deven McGraw, JD, MPH, LLM
Chief Regulatory Officer
Ciitizen

Neal J. Meropol, MD
Vice President
Research Oncology
Flatiron Health

Randall A. Oyer, MD

Medical Director, Oncology

Ann B. Barshinger Cancer Institute
Lancaster General Penn Medicine

Lisa Kennedy Sheldon, PhD, APRN, AOCNP®, FAAN
Chief Clinical Officer
Oncology Nursing Society
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Forum on Drug Discovery, Development, and Translation
Roundtable on Genomics and Precision Health

The Role of Digital Health Technologies in Drug Development
A Workshop

Other Activities of Interest

Genomics-Enabled Learning Health Care Systems: Gathering and Using Genomic
Information to Improve Patient Care and Research (2014)

e \Workshop Website
e \Workshop Proceedings

Harnessing Mobile Technology to Predict, Diagnose, Monitor, and Develop
Treatments for Nervous System Disorders (2018)

e \Workshop Website
e \Workshop Proceedings

Applying Big Data to Address the Social Determinants of Health in Oncology
(2018)

e \Workshop Website

Neuroscience Data in the Cloud (2019)

e \Workshop Website
e \Workshop Proceedings
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https://www.nationalacademies.org/our-work/genomics-enabled-learning-health-care-systems-gathering-and-using-genomic-information-to-improve-patient-care-and-research-a-workshop
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https://www.nationalacademies.org/event/06-05-2018/harnessing-mobile-technology-to-predict-diagnose-monitor-and-develop-treatments-for-nervous-system-disorders-a-workshop
https://www.nap.edu/catalog/25274/harnessing-mobile-devices-for-nervous-system-disorders-proceedings-of-a
https://www.nationalacademies.org/our-work/applying-big-data-to-address-the-social-determinants-of-health-in-oncology-a-workshop
https://www.nationalacademies.org/event/09-24-2019/neuroscience-data-in-the-cloud-a-workshop
https://www.nap.edu/catalog/25653/neuroscience-data-in-the-cloud-opportunities-and-challenges-proceedings-of
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