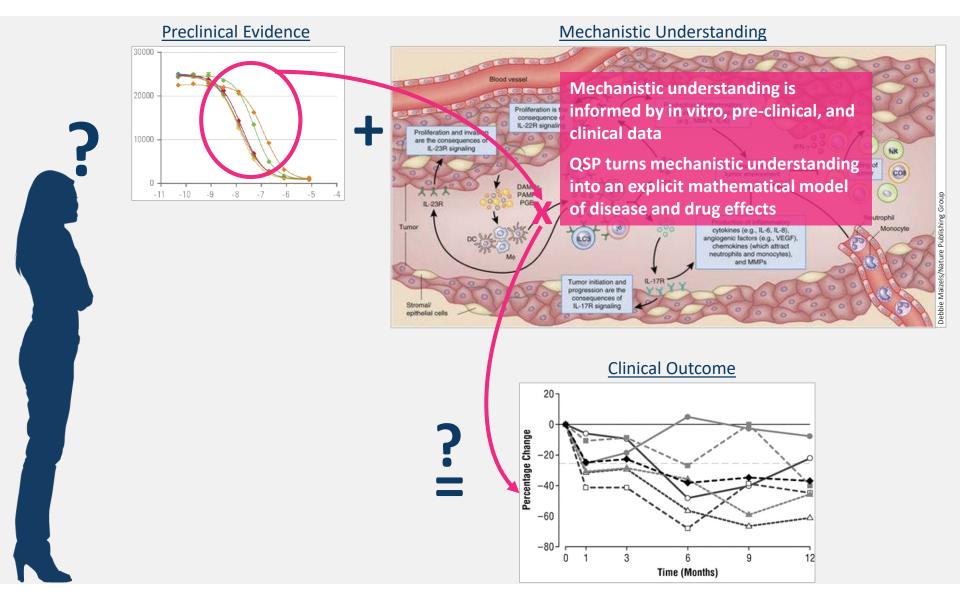


Using Mechanistic Modeling To Support Geriatric Drug Development

Drug R&D for Adults Across the Older Age Span: A Virtual Workshop

National Academies of Sciences, Engineering, and Medicine Christina Friedrich, PhD
Chief Engineer, Rosa & Co LLC

August 5th, 2020


Mechanistic modeling uses biological data and ROSA **** understanding to explore disease and drug mechanisms.

Three main sub-types of mechanistic modeling:

- 1. Quantitative Systems Pharmacology (QSP)
 - How do biological and drug mechanisms interact to produce clinical responses?
- 2. Quantitative Systems Toxicology (QST)
 - How do biological and drug properties interact to produce toxicities?
- 3. Physiologically-Based Pharmacokinetics (PBPK)
 - How do physiological properties and drug properties interact to produce exposure profiles in tissues of interest?
- While this presentation focuses on QSP, the arguments put forth apply to all mechanistic modeling approaches

QSP helps reduce risk by improving understanding of how drug activity influences clinical outcomes.

Impact of QSP Modeling: Clarifying Mechanisms Reduces Risk.

REDUCE RISK

Gain further insights from data

Mitigate impact of variability & uncertainty along pipeline

Compound Evaluation

Best MOA and pharmacological properties

Translational Research

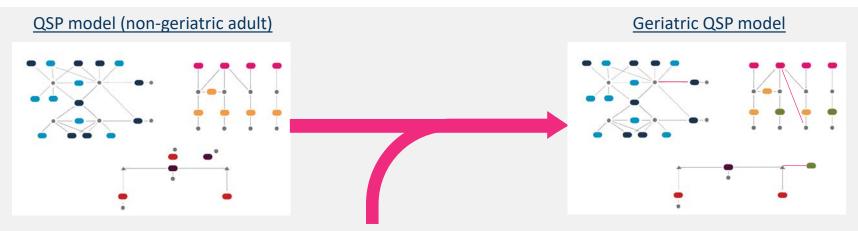
Relative efficacy and species differences

Clinical Trial Design

Dosing, patient selection, and combinations

Patient Stratification

Biomarkers, competitive differentiation


CLARIFY MECHANISMS

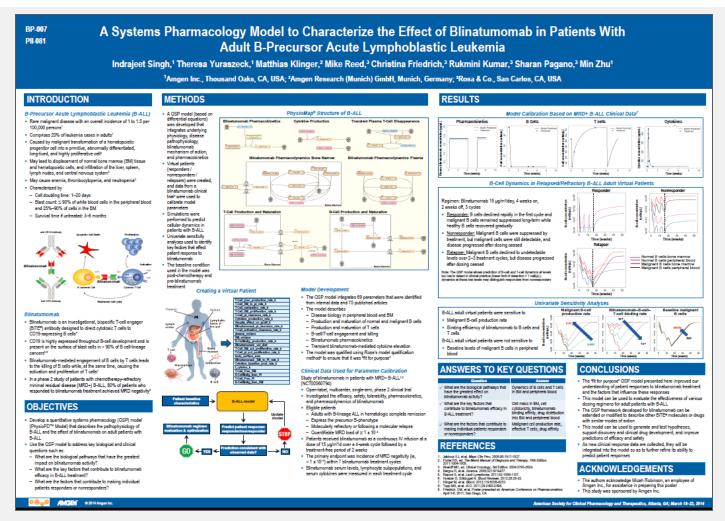
Explore the role of mechanisms and drug targets

Integrate mechanistic information into a focused biological representation

QSP modeling can inform geriatric drug development.

<u>Differences between non-geriatric and geriatric physiology</u>

https://www.slideshare.net/Drraveesoni/psychopharmacology-in-elderly


- Differences in drug PK and PD can result from:
 - o Physiological effects of aging
 - Co-morbidities
 - o Polypharmacy
- These factors can be represented mechanistically in a QSP model to better anticipate clinical outcomes

Case Example from Pediatrics: Pediatric Protocols in Immuno-Oncology

Highlights of this work were presented as a joint Rosa/Amgen poster at 2014 ASCPT Meeting.

Collaborators:

Rosa & Co

- Rukmini Kumar
- Mike Reed
- Sharan Pagano

Amgen

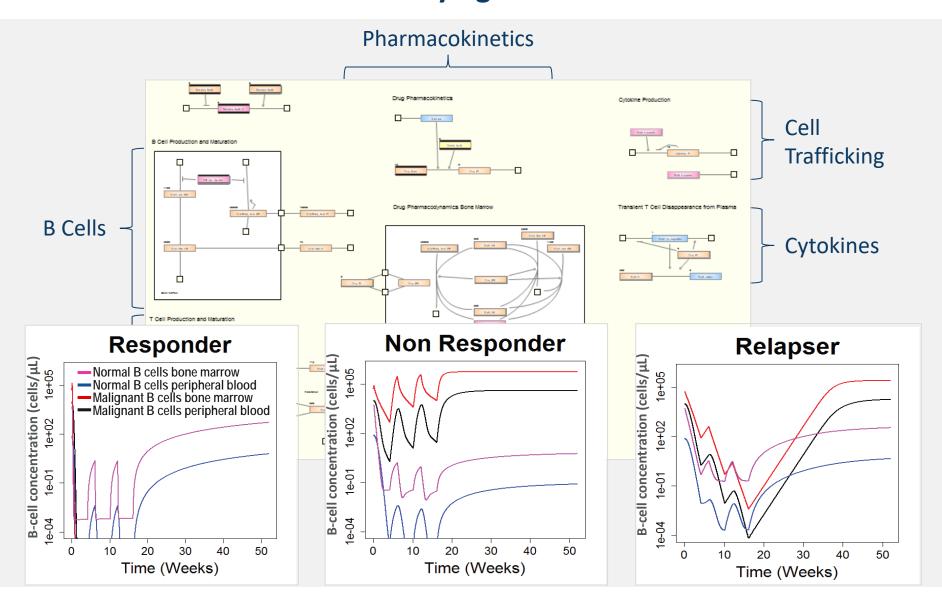
- Min Zhu
- Theresa Yuraszeck
- Indrajeet Singh
- Matthias Klinger

Follow-on research in adults by Amgen team has also been publicly presented

B-Cell Acute Lymphoblastic Leukemia (B-ALL) PhysioPD™ Platform Research

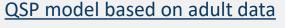
Client Research Challenges:

- Amgen wanted to investigate optimal dosing regimens for bispecific T-cell engager (BiTE®) antibody in adults, children, and infants
- Phase 2 data in adult population were available


Research Approach:

- Develop QSP model to represent disease progression, therapy MOA
- Create adult Virtual Patients, match Phase 2 data
- Represent known immunological/physiological differences between adults and children

Program Impact:


- Increased confidence for moving ahead in pediatric population
- Identified dosing strategies for all sub-populations

Adult B-ALL model captured responses seen in Phase 2 ROSA **** trial and clarified underlying mechanisms.

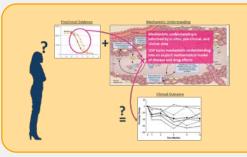
Adult QSP model served as foundation for pediatric QSP model, which was then used to refine protocols.

Pharmacokinetics Cell Trafficking Responder Non Responder Responder Responder Trafficking Responder Trafficking

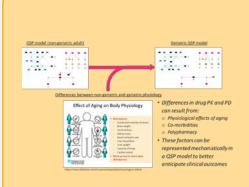
<u>Differences between adult and child physiology</u>

- Literature information was used to set parameters to reflect differences between adult and child/infant physiology/pathophysiology:
 - o Bone marrow volume
 - o Plasma volume
 - Body surface area
 - Cellularity of bone marrow, density effect on proliferation
 - o Child, infant PK parameters

- Baseline malignant B cells in bone marrow, plasma
- Baseline T cell precursors, T cells in bone marrow and plasma
- Malignant B cell production rate


o B cell growth rate, death rate

Pediatric QSP model


- T cell cytotoxicity
- T cell precursor production rate, proliferation rate, clearance rate
- Cytokine production rate

KEY TAKE-AWAYS

QSP modeling connects the dots between mechanisms and outcomes.

A QSP model of non-geriatric adult physiology can serve as a foundation for a geriatric model.

Mechanistic impacts of aging, co-morbidities, and polypharmacy can all be incorporated.

A geriatric QSP model with a range of Virtual Patients can be used to anticipate systemic outcomes, reduce risks, and customize treatment.