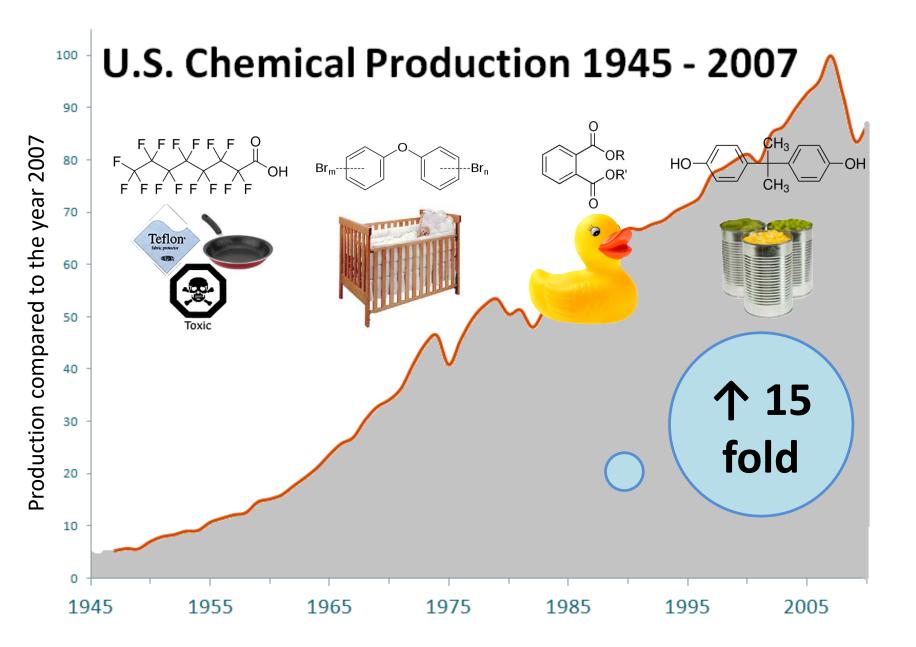
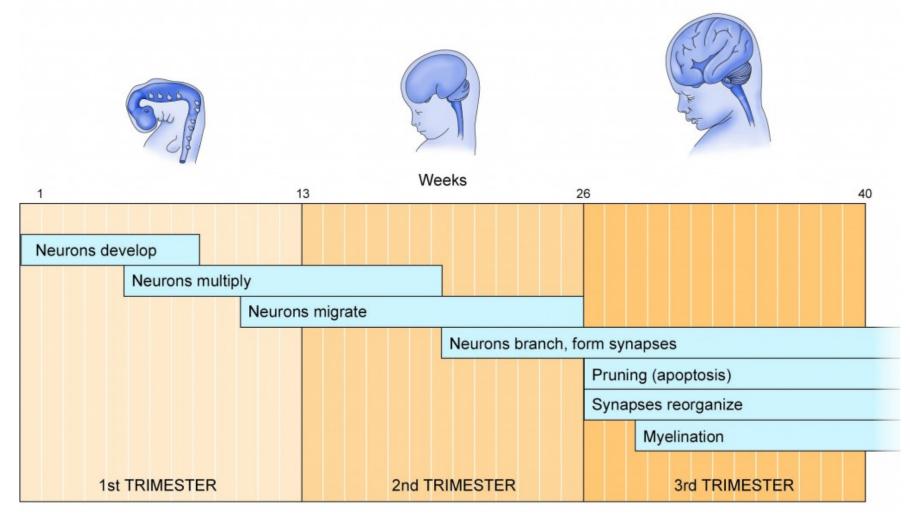

Outline


- Overview neurodevelopmental outcomes and chemical exposures
- Why chemical exposures matter for neurodevelopmental outcomes & opportunities for prevention
- Where are there other opportunities for new studies & prevention?

Increasing Prevalence of Neurodevelopmental Disorders

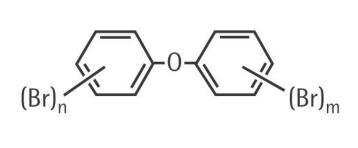


Exposures start in utero to Toxic Chemicals

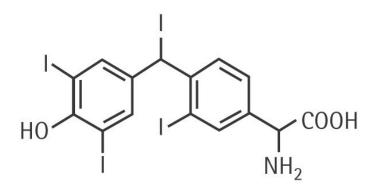
Industrial Chemicals in Virtually Every U.S. Pregnant Woman

Perchlorate PCB-170 PCB-153 1-Hydroxypyrene 3-Hydoxyphenanthrene PCB-146 2-Hydocyphenanthrene PCB-118 1-Hydocyphenanthrene PCB-110 industrial chemicals found PCB-105 1-Napthol in pregnant women 2-Napthol PCB-101 2-Hydroxyfluorene PCB-99 3-Hydroxyfluorene PCB-74 9-Hydroxyfluorene PCB-66 nlorinated Diphenyl Eth Mono-(3-carboxypropyl) phthalate (MCPP) PCB-52 Mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP) PCB-49 Mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP) PCB-44 Mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) PCB-28 PBDE-153 Mono-ethyl phthalate (MEP) Mono-n-butyl phthalate (MnBP) PBDE-100 benzyl phthalate Mono-isobutyl phthalate (MiBP) PBDE-47 Perfluorononanoic acid (PFNA) Mono-benzyl phthalate (MBzP) Monoisobutyl pht Benzophenone-3 Perfluorooctane sulfonic acid (PFOS) Hexachlorobenzene Perfluorooctanoic acid (PFOA) o-n-butyl pht p,p' - Dichlorodiphenyldichloroethene (DDE) PCB-138 and -158 1,2,3,4,6,7,8-Heptachlororodibenzo-p-dioxin (HpCDD)

Critical periods of fetal brain development occur during in utero

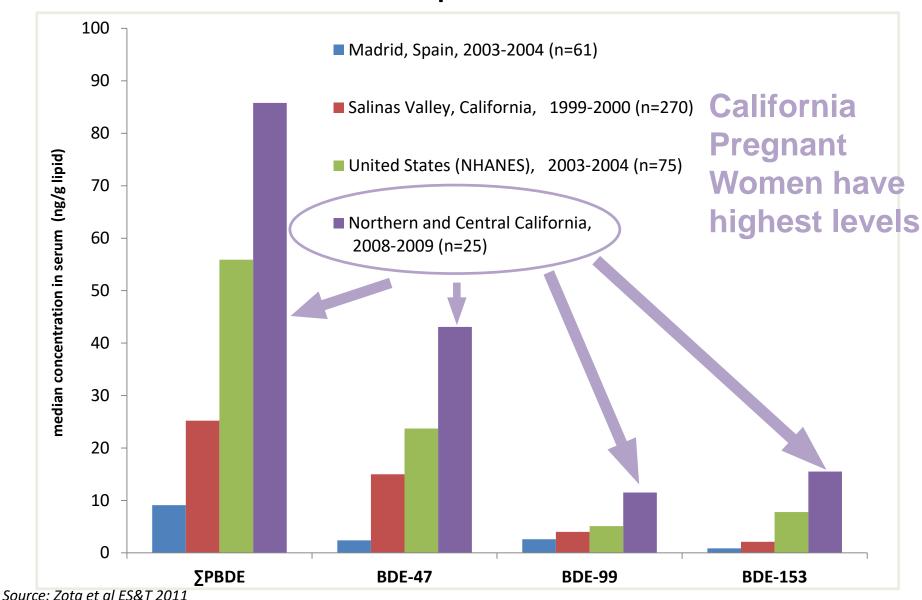


Comparing the Environment to Other Risk Factors - IQ


Table 2. Estimated FSIQ point losses associated with different risk factors in a population of 25.5 million children.

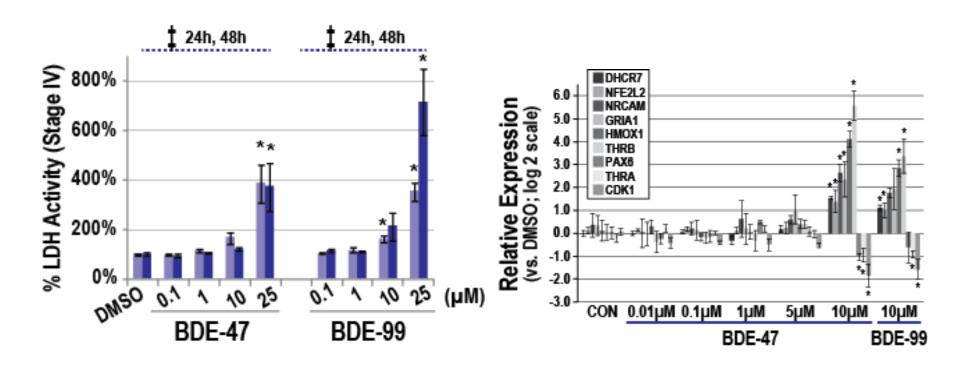
lion children.		
Risk factor	Total no. of FSIQ points lost	
Medical conditions		34 million
Congenital heart disease	104,805	OT IIIIIIOII
Preterm birth Type 1 diabetes	34,031,025 185,640	
Acute lymphocytic leukemia	135,788	
Brain tumors	37,288	
Duchenne muscular dystrophy	68,850	38 million
Neurodevelopmental disorders		
ASDs	7,109,899	
Pediatric bipolar disorder	8,164,080	
ADHD	16,799,400	45
Postnatal traumatic brain injury	5,827,300	15 million
Socioeconomic nutritional psychos		
Nonorganic failure to thrive Iron deficiency	5,355,000 9,409,500	
Environmental chemical exposures	3,403,300	40 million
Methylmercury	284,580	40 111111011
Organophosphate pesticides	16,899,488	
Lead	22,947,450	Source: Bellinger EHP 2012
		g

Polybrominated Diphenyl Ethers (PBDEs) Flame chemicals



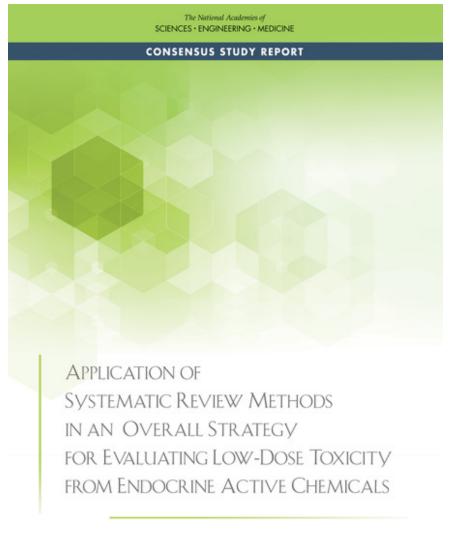
Thyroid hormone

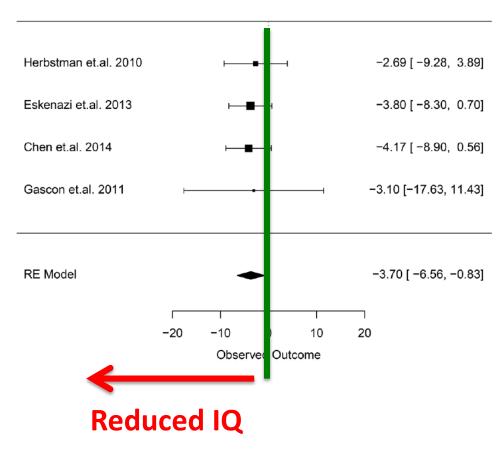
Exposure shows - flame retardants in pregnant women worldwide – up to 100%



PBDEs

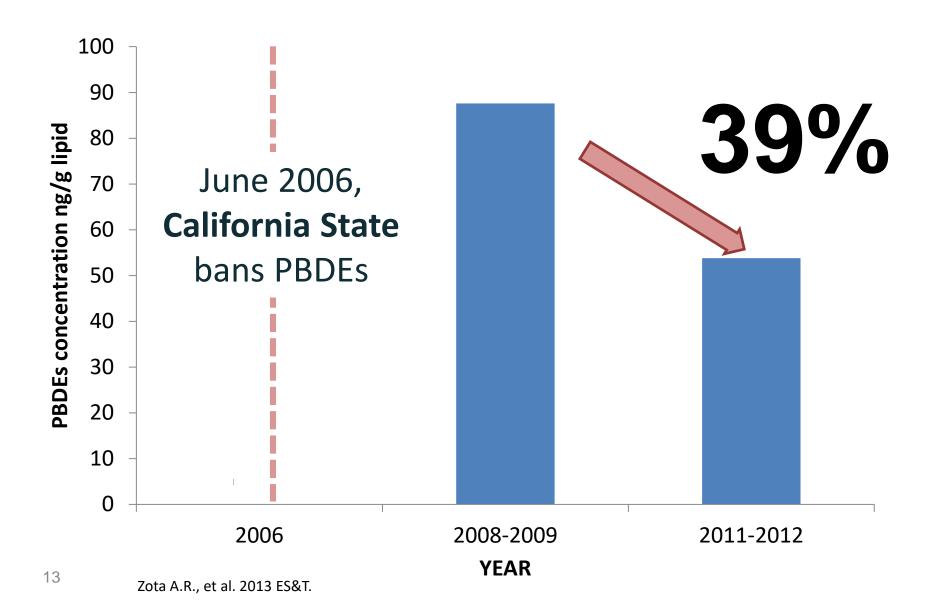
- In humans, thyroid hormone disruption identified as possible mechanistic link
- In vitro, disruption of developing fetal human brain cells
- In animals, affects learning, memory, and attention

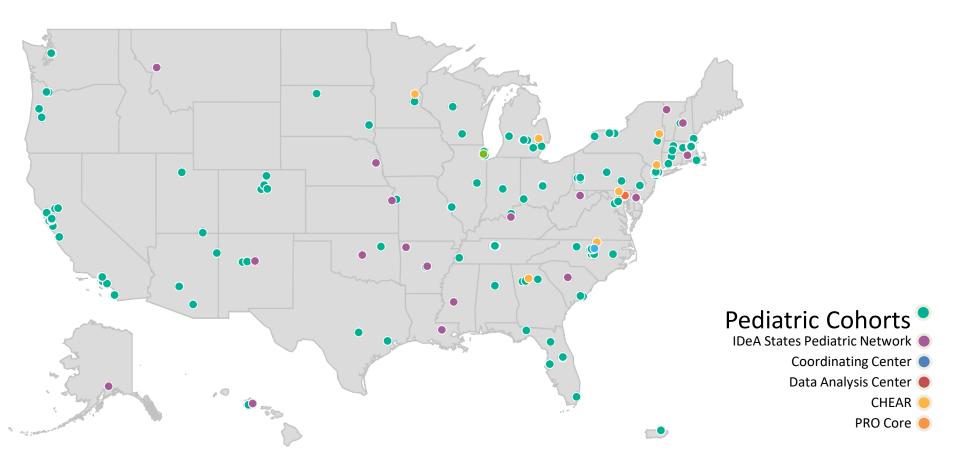

PBDE's induce developmental toxicity in Human Embryonic Stem Cell Model of Neurogenesis



- PBDEs affect cytotoxicity and function of hESC-derived neural progenitor cells (NPCs)
- BDE-47 causes concentration-dependent global changes in gene expression in NPCs
- Genes/pathways altered included: thyroid hormone signaling, CNS development, oxidative stress, cell cycle targets at doses as low as 10 uM

Source: Chen et al., 2019


PBDES 'presumed' hazard to human intelligence


CA Ban on PBDEs Lowered Levels in Pregnant women

Out of the Frying Pan Into the Fire

NIH - Environmental influences on **C**hild **H**ealth **O**utcomes (ECHO) Program Opportunity to understand and address Neurodevelopmental outcomes

Linked longitudinal child cohorts of ~ 50,000 children across the US Improve child health by understanding risk factors and interventions

Pregnancy outcomes, Obesity, Neurodevelopment and Respiratory

Prioritized candidate chemicals for biomonitoring in child health cohort based on:

Selected Chemical Panels

Alternate flame retardants & Organophosphorus flame retardants

flame retardants, and applied to consumer products as plasticizers, stabilizers, lubricants,

Alternative plasticizers

developed as substitutes for phthalates

Aromatic amines

used in dyes and pigments (e.g hair dyes, mascara, tattoo ink, toners, paints), polyurethane production, polymeric resins, corrosion inhibitors, rubber vulcanization accelerators, and pharmaceuticals

Environmental phenols

consumer and household products and serve as plasticizers, detergents, and preservatives

Pesticides

- Present in consumer products
- Biomonitoring (≥10% in biospecimen) or environmental media (≥20% detection frequency in air, house dust, food, drinking water)
- Potential toxicity includes Neurotoxicity
 - Use USEPA ToxCast assays
 - Opportunity to identify other potential neurotoxicants
 - 9,000 compounds;
 - ~1500 different endpoints

Opportunity: ~100 Novel Chemicals to be measured in ECHO prenatally

Alternative Flame Retardants

Melamine MEL

Cyanuric Acid CYA

Ammelide AMD

Ammeline AMN

Pesticides

Azoxystrobin Azoxystrobin

Cyprodinil Cyprodinil

Metalaxyl Metalaxyl

Propiconazole Propiconazole

Pyrimethanil Pyrimethanil

Tebuconazole Tebuconazole

Nitenpyram NIT

Thiamethox am THX

Imidacloprid IMI

Acetamiprid ACE

Thiacloprid TH1

Clothianidin CLO

Dinotefuran DIN

Flonicamid FLO

Sulfox aflor SUF

Imidaclothiz IMZ

6-Chloronicotinic acid 6-CN

N-desmethy I thiamethox am N-DMT

Thiacloprid-amide TA

N-desmethyl-acetamiprid N-DMA

Metribuzin Metribuzin

Tetraconazole Tetraconazole

Atrazine Atrazine

Aromatic amines

2-Methylaniline MTA

Alternative Plasticizers

mono-ethyl phthalate mEP

mono-buty I phthalate mBP

mono-benzyl phthalate mBzP

mono-(2-ethy lhex y I) phthalate mEHP

 $mono\hbox{-}(2-ethy\,\hbox{I-5-hy}\,drox\,y\,hex\,y\,\hbox{I})\ phthalate$

mEHHP

mono-(2-ethy I-5-ox ohex y I) phthalate mEOHP

mono-carbox y-iso-octy I phthalate mCIOP

mono-carbox y-iso-nony I phthalate mCINP

Mono-ethyl terephthalate (4-Ethoxycarbonyl)

benzoic acid) mETP

mono-tert-buty I terephthalate mTBTP

Mono-benzyl-terephthalate mBzTP

Mono-2(ethylhexyl) terephthalate mEHTP

Organophosphorus-based flame retardants

2,2-Bis(chloromethy I) propane-1,3-diy Itetrakis(2-

chloroethyl) bisphosphate V6

2-Ethylhexyl diphenyl phosphate EHDPP

Bis(2-ethylhexyl) phosphate BEHP

Tris(2-butox y ethy I) phosphate TBOEP

Tris(2-ethylhexyl) phosphate TEHP

tri-n-buty I phosphate TNBP

Tri-iso-buty I phosphate TIBP

trimethy Ipheny I phosphate TMPP

Triethy I phosphate TEP

Tripheny I phosphate TPHP

tripropy I phosphate TPP

Tris(2-chloroethy I) phosphate TCEP

Organophosphorus-based flame retardants

cresyl diphenyl phosphate CDPP

Trimethy I phosphate TMP

Dibutyl phosphate DNBP

Diisobuty I phosphate DIBP

Bis(butoxyethyl) phosphate BBOEP

Diphenyl phosphate DPHP

Bis(2-methylphenyl) phosphate BMPP

Environmental phenol

Bisphenol A digly cidy I ether BADGE

Bisphenol AF BPAF

Bisphenol B BPB

3,3',5,5'-Tetrabromobisphenol A TBBP-A

2,2',6,6'-Tetrachlorobisphenol A TraTBA

4-n-Nony Iphenol 4-NP

Bisphenol A (2,3-dihydroxypropyl) glycidyl ether

BADGE·H2O

Bisphenol A bis(2,3-dihydroxypropyl) glycidyl

ether BADGE·2H2O

Bisphenol A (3-chloro-2-hydroxypropyl) glycidyl

ether BADGE·HCI

Bisphenol A bis(3-chloro-2-hydroxypropyl)

glycidyl ether BADGE-2HCl

3,3',5-Trichlorobisphenol A TrCBA

4,4'-di-hydroxydiphenylmethane BPF

 $bis (4-hy\,drox\,y\,pheny\,I) propane\,\,B\,PA$

4,4'-sulfony Idiphenol BPS

4,4'-cyclo-hexylidenebisphenol BPZ

4,4'-(1-pheny lethy lidene)bisphenol BPAP

Environmental phenols

4,4'-(1,4-pheny lenediisopropy lidene) bisphenol

BPF

Benzophenone-1 BP-1

Benzophenone-2 BP-2

Benzophenone-3 BP-3

Benzophenone-6 BP-6

Benzophenone-8 BP-8

4-hydroxybenzophenone 4-OH-BP

methyl paraben MeP

ethyl paraben EtP

n-propy I paraben PrP

n-butyl paraben BuP

benzyl parabe BzP heptaparaben HeP

hydroxy-methyl paraben OH-MeP

hydroxy-ethyl paraben OH-EtP

4-Hydroxybenozoate 4HB

Triclocarban TCC

Triclosan TCS

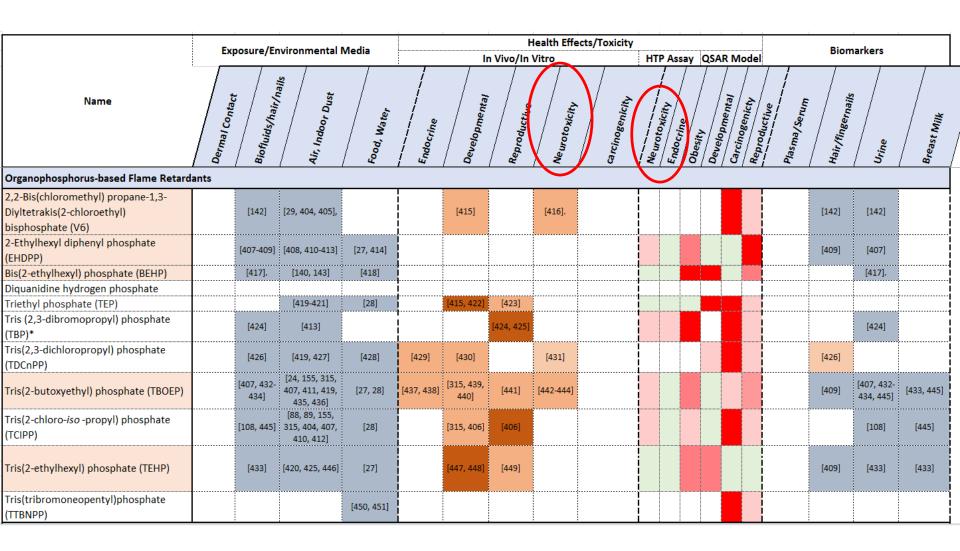
2,4,5-trichlorophenols 2,4,5-TCP

2,3,4,5-tetrachlorophenols 2,3,4,5-TeCPs

2,3,4,6-tetrachlorophenols 2,3,4,6-TeCPs

2,3,5,6-tetrachlorophenols 2,3,5,6-TeCPs

pentachlorophenol PCP


4-n-octylphenol 4-OP

Others

8-hydroxy-2'-deoxyguanosine 8-OHDG

Cotinine Cotinine

Example summary: organophosphorus-based flame retardants

Conclusions

- Environmental chemical exposures are ubiquitous
- Environmental chemicals can contribute to neurodevelopmental disorders
- New tools and cohorts provide opportunity to understand & prevent environmental contributors to neurodevelopmental disorders

Thank You to Our Funders & PRHE Team

Thank you to our funders:

The Tides Foundation

The Marisla Foundation

The California Environmental Protection Agency

The Passport Foundation

The JPB Foundation

The National Institutes of Health

The Clarence E. Heller Charitable Foundation

PRHE Faculty & Staff &

Affiliates:

Aileen Andrade

Alana D'Aleo

Allison Landowski

Amy Padula

Anne Sausser

Courtney Cooper

Cynthia Melgoza Canchola Susan Lamontagne

Dana Goin

Dimitri Abrahamsson

Erin DeMicco

Harim Lee

Joshua Robinson

Kristin Shiplet

Laura Bettencourt

Lynn Harvey

Nadia Gaber

Nicholas Chartres

Maribel Juarez

Annemarie Charlesworth Marya Zlatnick

Cheryl Godwin de Medina Rachel Morello-Frosch

Stephanie Eick

Swati Rayasam

Tali Felson

Thank you!

For more information prhe.ucsf.edu

Follow us

