In Utero EDC Exposure May Reprogram the
Adult Mouse Brain: A Role for Epigenetics
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Developmental Origins of Health and Disease
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Early Development Represents a Vulnerable Window to
Environmental Perturbations
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Bisphenol A Alters DNA Methylation
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Genomic Imprinting is Mammalian-Specific and Results in
Monoallelic, Parent-of-Origin-Specific Expression
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Imprinted Genes Reside in Clusters and are Regulated by ICRs
that are DNA Methylated on a Single Parental Allele
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Direction of

Imprint

Paternal
H19 Maternal
IGF2R Maternal
GRB10 Maternal
CINE ;ifﬁ:gr?!specific)
SEEss mztlfrr:r?specific)
PEG3 Paternal
NDN Paternal
NESP Maternal
GNAS Maternal

From Kalish et al, 2014

Functions of Imprinted Genes

Function of Gene Product Role in Embryo
Growth/Behavior

Positive regulator of growth Growth

Negative regulator of growth Suppression of growth
Negative regulator of growth Suppression of growth
Negative regulator of growth Suppression of growth
Signal adaptor Aggression

Ubiquitin ligase & transcriptional co- Memory, learning,

activator motor function

Zinc flnger protein; control of Sex-specific behavior
apoptosis

Regulator of neuronal growth and  Spatial learning;
differentiation socialization
Secretory pathway Exploratory behavior
Signal transduction Cognition & sleep

Direction of Function of Gene Role in Placenta
Imprint Product

Gene

Zinc finger protein; control of

PEG3 Paternal . Growth
apoptosis
PEG1 Paternal Hydrolase Growth
MASH2  Maternal Helix-loop-helix transcription Spongiotrophoblast
factor development
PHLDA2 Maternal Pleck_strln homology domain Spor)gl_otrophoblast
protein restriction
CDKN1C Maternal Cell cycle regulator Spor.lg|.otrophoblast
restriction
SLC22A3 Maternal Cation transporter Nutrient transfer



BPA Exposure Model
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Early Life BPA Exposure is Representative of Human Exposure
Levels

BPA exposure (per kg bw/d)

10 pg
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Susiarjo et al (2013) PLoS Genetics; Susiarjo et al (2015) Endocrinology



The Snrpn Domain®**
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Susiarjo et al (2013) PLoS Genetics



Increased Proportion of E9.5 Placentae with Biallelic Expression of
Snrpn in BPA-Exposed Mice

Snrpn
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BPA Exposure Reduced Methylation of 16 CpGs in the
Maternal ICR in Placentas
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The Imprinted Snrpn Locus Experiences Loss of ICR
Methylation and Biallelic Expression in BPA-Exposed Offspring
(placentas and embryonic brain)
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Is BPA Exposure Linked to Long-term
Phenotypic Abnormalities?

F1and F2 offspring




Timeline of BPA Exposure to Generate F1 Offspring

Fertilization
~2 weeks pr. Birth 3 weeks/weaning 12-16 weeks
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Early Life Exposure to BPA Increases Behavioral
Despair in Adulthood
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Affective Behavioral Changes are Limited to the F1
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Transcriptome Analysis Suggests Early Life Exposure to BPA
alters Neurotransmitter Systems in Adult F1 Male Hippocampus

I

S— Name (IPA, Upregulated Genes) P-value

” Catecholamine Biosynthesis 9.10E-03
DNA damage-induced 14-3-3 Signaling 2.41E-02
_ GADDA4S5 Signaling 3.89E-02
Mitotic Roles of Polo-Like Kinase 4.18E-02
m'? Role of CHK Proteins in Cell Cycle Checkpoint Control 4.18E-02
“rg Name (IPA, Downregulated Genes) P-value
mﬁ ° Pyrimidine Deoxyribonucleotides De Novo Biosynthesis |  1.22E-03
m$: Pyrimidine Ribonucleortides De Novo Biosynthesis 4.86E-03
Pyrimidine Ribonucleotides Interconversion 4.86E-03
Salvage Pathways of Pyrimidine Ribonucleotides 2.18E-02
— Glutamate Receptor Signaling 2.83E-02
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Xin et al (2018) Hormones and Behavior
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Perinatal BPA Exposure Leads to Region-Specific
Changes in Expression of the Imprinted Gene Kcnq1 and
Epigenetic Modifiers in the Brains of Adult Offspring
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TaRGET Il Consortium
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Accessublllty Surrogate & Methylation
(= target tissue

a. Metabolic/endocrine disease
b. Cardiopulmonary disease
c. Developmental disorders
d. Reproductive disorders

Wang et al, 2018,
Nature Biotechnology

C Lawler, K McAllister, C Duncan, A Garton, F Tyson**, A. Ramsaran



Goals of the TaRGET Il
Consortium

Environmental
Exposures

Target &ﬂ Surrogate

Tissues Epigenomics Tissues

Goals

'\\\1 e Explore exposure-induced epigenomic signatures
P8 ®>=  « Perform surrogate analysis
* Provide a data resource for the research community
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Adapted from F. Tyson, NIEHS



TaRGET Il Consortium

TaRGET Il Consortium Investigator

NC: TCDD

David Aylor Marisa S. Bartolomei
North Carolina State University University of Pennsylvania
Pb
o
Shyam S. Biswal Dana Dolinoy

Johns Hopkins University University of Michigan

Gokhan Mutlu Sanjay Rajagopalan
University of Chicago Case Western Reserve University

Cheryl Walker Zhibin Wang
Baylor College of Medicine Johns Hopkins University

Modified from B. Zhang



TaRGET Il Approach for Identifying Epigenomic Signatures

Observed Phenotypes
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ATAC-seq **5hmC
Modified from F. Tyson



TaRGET Il Consortium

Data Coordination Center @ Washington University in St. Louis
Department of Genetics Department of Developmental Biology

Co-1: Bo Zhang

Daofeng Li Deepak Xiaoyu Zhuo Wanging Shao Erica Pehrsson Paul Gontarz ~ Benpeng Miao

Puruchotham

Shuhua Fu ~ Shaopeng Liu

Xiaoyun Xing  YiranHo JuHeon Maeng AlanDu Yujie Chen

https://data.targetepigenomics.org Modified from B. Zhang



The DCC Focuses on Genomics data, Including Data Quality Control, Data Integrative
Analysis and Data Sharing and Visualization

e Data quality Y
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https://data.targetepigenomics.org Modified from B. Zhang



TaRGET Il Consortium Data (Phase |) was Released 5/20/2020

Series GSE146508

Title

Organism
Experiment type

Summary

Overall design

Samples (769)
# More...

Transcriptome and open chromatin analysis of 5-month mouse liver and blood
by the TaRGET II consortium

Mus musculus

Expression profiling by high throughput sequencing

Genome binding/occupancy profiling by high throughput sequencing

The TaRGET (Toxicant Exposures and Responses by Genomic and Epigenomic
Regulators of Transcription) program is a research consortium funded by the
National Institute of Environmental Health Sciences (NIEHS). The goal of the
collaboration is to address the role of environmental exposures in disease
pathogenesis as a function of epigenome perturbation, including
understanding the environmental control of epigenetic mechanisms and
assessing the utility of surrogate tissue analysis in mouse models of disease-
relevant environmental exposures (https://targetepigenomics.org).

RNA-seq and ATAC-seq of liver and blood samples from 5-month mice that
were subjected to disease-relevant environmental exposures.
The TaRGET II consortium (https://targetepigenomics.org/about/)

GSM4387308 Aylor_ATAC_Blood_Ctrl_5month_Female_biorepl
GSM4387309 Aylor_ATAC_Blood_Ctrl_5month_Female_biorep2
GSM4387310 Aylor_ATAC_Blood_Ctrl_5month_Female_biorep3

GEO accession: GSE146508

BioProject: PRJINA610793

Released data:

769 Modified from B. Zhang



Moving Forward--Neurotoxicology Resources

BPA, DEHP, Pb: Cortex RNA-seq, WGBS in progress
TCDD: Cortex, hippocampus, hypothalamus RNA-seq in progress

PM2.5: Cortex and hypothalamus RNA-seq and WGBS in progress

> Toxicol Sci. 2020 May 27;kfaa069. doi: 10.1093/toxsci/kfaa069. Online ahead of print.

Single Cell Analysis of the Gene Expression Effects of
Developmental Lead (Pb) Exposure on the Mouse
Hippocampus

Kelly M Bakulski 1, John F Dou ', Robert C Thompson 2, Christopher Lee ', Lauren Y Middleton '
, Bambarendage P U Perera ', Sean P Ferris 2, Tamara R Jones ', Kari Neier ', Xiang Zhou '
, Maureen A Sartor ' 2, Saher S Hammoud 2, Dana C Dolinoy *, Justin A Colacino '

https://data.targetepigenomics.org



Future Questions/Ideas

How appropriate is mouse as a model for human developmental disorders associated
with exposures?

How important are epigenetic perturbations in abnormal phenotypes and in predicting
outcomes? Which epigenetic marks?
Chromatin structure, DNA methylation

Can we use surrogate tissues to predict phenotypes of target tissues?
early exposures could affect all tissues but only manifest an abnormal
phenotype in a subset

Is there an exposure signature? General or specific to a given agent?

We have only addressed single exposures in our studies. What about more complex
exposures?
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